IRO Journals

Journal of Soft Computing Paradigm

An Accurate Bitcoin Price Prediction using logistic regression with LSTM Machine Learning model
Volume-3 | Issue-3

Design of Distribution Transformer Health Management System using IoT Sensors
Volume-3 | Issue-3

Energy Management System in the Vehicles using Three Level Neuro Fuzzy Logic
Volume-3 | Issue-3

Cloud Load Estimation with Deep Logarithmic Network for Workload and Time Series Optimization
Volume-3 | Issue-3

Design of a Food Recommendation System using ADNet algorithm on a Hybrid Data Mining Process
Volume-3 | Issue-4

Review on Data Securing Techniques for Internet of Medical Things
Volume-3 | Issue-3

Automatic Diagnosis of Alzheimer’s disease using Hybrid Model and CNN
Volume-3 | Issue-4

Population Based Meta Heuristics Algorithm for Performance Improvement of Feed Forward Neural Network
Volume-2 | Issue-1

Comparative Analysis of an Efficient Image Denoising Method for Wireless Multimedia Sensor Network Images in Transform Domain
Volume-3 | Issue-3

A Comprehensive Review on Power Efficient Fault Tolerance Models in High Performance Computation Systems
Volume-3 | Issue-3

An Integrated Approach for Crop Production Analysis from Geographic Information System Data using SqueezeNet
Volume-3 | Issue-4

An Accurate Bitcoin Price Prediction using logistic regression with LSTM Machine Learning model
Volume-3 | Issue-3

Design of Distribution Transformer Health Management System using IoT Sensors
Volume-3 | Issue-3

Design of a Food Recommendation System using ADNet algorithm on a Hybrid Data Mining Process
Volume-3 | Issue-4

Automatic Diagnosis of Alzheimer’s disease using Hybrid Model and CNN
Volume-3 | Issue-4

Effective Prediction of Online Reviews for Improvement of Customer Recommendation Services by Hybrid Classification Approach
Volume-3 | Issue-4

Acoustic Features Based Emotional Speech Signal Categorization by Advanced Linear Discriminator Analysis
Volume-3 | Issue-4

Analysis of Statistical Trends of Future Air Pollutants for Accurate Prediction
Volume-3 | Issue-4

Identification of Electricity Threat and Performance Analysis using LSTM and RUSBoost Methodology
Volume-3 | Issue-4

Review on Data Securing Techniques for Internet of Medical Things
Volume-3 | Issue-3

Home / Archives / Volume-3 / Issue-3 / Article-1

Volume - 3 | Issue - 3 | september 2021

A Comprehensive Review on Power Efficient Fault Tolerance Models in High Performance Computation Systems
Pages: 135-148
Published
07 August, 2021
Abstract

For the purpose of high performance computation, several machines are developed at an exascale level. These machines can perform at least one exaflop calculations per second, which corresponds to a billion billon or 108. The universe and nature can be understood in a better manner while addressing certain challenging computational issues by using these machines. However, certain obstacles are faced by these machines. As huge quantity of components is encompassed in the exascale machines, frequent failure may be experienced and also the resilience may be challenging. High progress rate must be maintained for the applications by incorporating certain form of fault tolerance in the system. Power management has to be performed by incorporating the system in a parallel manner. All layers inclusive of fault tolerance layer must adhere to the power limitation in the system. Huge energy bills may be expected on installation of exascale machines due to the high power consumption. For various fault tolerance models, the energy profile must be analyzed. Parallel recovery, message-logging, and restart or checkpoint fault tolerance models for rollback recovery are evaluated in this paper. For execution with failure, the most energy efficient solution is provided by parallel recovery when programs with various programming models are used. The execution is performed faster with parallel recovery when compared to the other techniques. An analytical model is used for exploring these models and their behavior at extreme scales.

Keywords

Exascale Machines Parallel Recovery Message Logging Checkpoint Fault Tolerance Model

Full Article PDF Download Article PDF 
×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
For single article (Indian)
1,200 INR
Article Access Charge
For single article (non-Indian)
15 USD
Open Access Fee (Indian) 5,000 INR
Open Access Fee (non-Indian) 80 USD
Annual Subscription Fee
For 1 Journal (Indian)
15,000 INR
Annual Subscription Fee
For 1 Journal (non-Indian)
200 USD
secure PAY INR / USD
Subscription form: click here