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Abstract 

Paddy farming, a cornerstone of global agriculture, faces significant threats from 

various diseases that affect the crop yield. This research presents a novel approach for detecting 

paddy leaf diseases using advanced deep learning techniques, specifically transfer learning with 

the MobileNetV2 architecture. The methodology involves the utilization of a comprehensive 

dataset consisting of paddy leaf images across multiple disease classes. Data augmentation was 

extensively employed to address the limitations posed by the dataset size. Both basic and 

advanced models were trained, with the advanced model achieving a remarkable validation 

accuracy of 97%. Additionally, Time-Test Augmentation (TTA) was applied to further enhance 

the model's performance. This research demonstrates the efficacy of deep learning techniques 

in agricultural disease detection and highlights potential improvements for future applications. 

Keywords: Paddy leaf disease, Convolutional Neural Networks, Transfer learning, Data 

augmentation, MobileNetV2, Image classification. 

 Introduction  

Agricultural development is becoming important because the ever-growing population 

in the world largely depends on agriculture. Almost 90% of people in the world depend on 

agriculture for their living. About 80% of the global population directly depends on farmers to 

feed the world. However, the agricultural sector is suffering from heavy losses due to insects, 

plant diseases, and a variety of economic constraints. These not only affect productivity but 

also pose a threat to food security in the world at large. Furthermore, there is often the problem 
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of a lack of skilled labour and a knowledge deficit in the sector regarding good agricultural 

practices, including fertilizer use and plant disease control [3]. 

Rice is one of the most largely consumed staple crops, but it is highly affected by 

diseases that cause considerable reductions in crop yield. Early symptoms of rice plant diseases 

often occur on the leaves, so early detection and intervention for the disease are essential for 

the success of the crop. The conventional system uses on-site physical examination by experts, 

which can be quite tedious and time-consuming. In this regard, semi-automatic and autonomous 

disease detection systems have become available, providing fast and accurate options apart 

from manual observations. These technologies, apart from being very efficient, also help in 

reducing costs and, therefore, became an important tool for modern agriculture. 

Some of the key rice diseases, including rice blast, bacterial blight, and sheath blight, 

can cause large damage and even lead to huge economic losses. For example, Magnaporthe 

oryzae produces rice blast with lesions on leaves, stems, and panicles, seriously affecting crop 

yields. Other diseases, such as bacterial blight (Xanthomonas oryzae), cause the rice leaves to 

turn yellowish and wilt, which also adds up to a huge loss in production. Apart from these, 

diseases like rice tungro, brown spot, and false smut are also the prime enemies of rice 

cultivation and hence there is a dire necessity for a highly effective system for disease detection. 

This research investigates the use of deep learning techniques in general, and 

particularly the use of Convolutional Neural Networks for automating the process of detecting 

rice plant diseases. The research suggests an efficient and reliable way of diagnosing such crop 

diseases using advanced image classification models, such as MobileNetV2, incorporated with 

data augmentation techniques. Thus, contributing to improvement in productivity and 

sustainability in agriculture through automation in disease detection and related fields. 

 Related Work 

Deep learning has been the breakthrough in computer vision, allowing machines to see 

and recognize objects with incredibly high accuracy across image recognition classification. 

The most important development took place with the release of AlexNet by Krizhevsky during 

the 2012 ImageNet competition, creating a breakthrough in image classification. Since then, 

multiple architectures have been introduced (e.g., VGG, ResNet, and Inception), with 

architectural modifications on top of convolutional neural networks (CNNs) to increase 
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performance and recall extraction efficiency for CNNs. These models have been invaluable for 

solving complex image recognition challenges spanning multiple industries, not least in 

agriculture [1], [5]. 

Transfer learning is a very powerful technique, especially in cases of limited or small 

labeled datasets. MobileNetV2 [2] is developed specifically for mobile and embedded systems, 

providing better speed and accuracy for classification. This architecture is computationally 

efficient due to depthwise separable convolutions. Transfer learning enables researchers to take 

existing models like MobileNetV2 and adapt them for custom tasks by retraining the model on 

smaller, domain-specific datasets. This has significantly reduced training time and improved 

model performance for specific tasks like the classification of crop diseases [4], [6]. There has 

been extensive research on employing CNNs for plant disease detection. Ferentinos [15] also 

showed that CNNs in plant disease diagnosis performed well even with smaller datasets using 

transfer learning. Various architectures such as ResNet and Inception have been successfully 

adapted to CNNs, achieving high classification accuracy in agriculture [7], [8]. 

However, although great success has been achieved in this area, research on deep 

learning for paddy leaf disease detection is still relatively limited. Several studies have utilized 

machine learning to identify paddy diseases, but these are mainly traditional optimization-based 

solutions such as image processing or traditional classifiers, which lack the impact of deep 

learning models [1], [9]. Furthermore, the datasets used in these studies are often limited in 

dimensionality and variability [10], [11]. 

This research aims to address these limitations by employing a deep learning approach, 

utilizing MobileNetV2 in conjunction with data augmentation techniques, to improve the 

classification accuracy of paddy leaf diseases. By utilizing these advanced methodologies, this 

research seeks to contribute to the growing field of automated disease detection in agriculture 

[12]. 
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 Methodology 

3.1 Dataset and Preprocessing 

 

Figure 1. Distribution Images and their Counts in Training Dataset 

The secondary dataset used for this study consists of 10 class paddy leaf diseases as 

shown in Table 1. The dataset contained 10,407 images for training and 3,469 test images 

spanned over Bacterial Leaf Blight (BLB), Blast, Brown Spot (BS), Dead Heart (DH), tungro 

as shown in Figure 1. The images were resized to 224x224 pixels which is the average input 

size for most of the pre-trained models such as MobileNetV2. 

The images underwent several augmentation techniques (Figure 2) to enhance the 

dataset. Random rotations were applied to the images, with a stochastic rotation of up to 10 

degrees. Zoom transformations were also introduced, using a fixed Local Linear 

Transformation (LLT) with a zoom range of 0.1, randomly applied while reading data samples 

from the dataset. Geometric distortions were incorporated through shear transformations with 

a factor of 0.25. Additionally, the images were flipped both horizontally and vertically to ensure 

that their orientation had no significant impact, regardless of how they were captured. Finally, 

translation transformations were used, applying small displacements in width and height up to 

10%, adding variability to the training dataset. 

These transformations ensured that the model would be trained on a diverse set of 

images and could give accurate classification in real-life scenarios. 
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Figure 2. Data Augmentation on Images 

Table 1. Training Images Summary 

Folder Name 
Number of 

Files 
Description 

bacterial_leaf_blight 479 
Images of paddy leaves affected by 

bacterial leaf blight disease. 

bacterial_leaf_streak 380 
Images showing bacterial leaf streak on 

paddy leaves. 

bacterial_panicle_blight 337 
Photos of paddy plants with bacterial 

panicle blight disease. 

blast 1738 
Paddy leaves showing blast disease 

symptoms. 

brown_spot 965 
Images of paddy leaves affected by brown 

spot disease. 

dead_heart 1442 
Photos displaying dead heart disease in 

paddy plants. 

downy_mildew 620 
Paddy plants suffering from downy 

mildew infection. 

hispa 1594 
Images of paddy plants affected by hispa 

disease. 

normal 1764 
Healthy paddy leaves without any disease 

symptoms. 

tungro 1088 
Photos of paddy plants infected by tungro 

virus. 

 



                                                                                                                                                                                                               Rohan Tiwari, Neha Vora 

Journal of Soft Computing Paradigm, September 2024, Volume 6, Issue 3  329 

 

3.2 Model Architecture 

3.2.1 Proposed Model 

 

Figure 3. Workflow of Paddy Leaf Disease Classification 

The process begins with data loading and preprocessing (Figure 3), where image data 

is loaded, pixel values are normalized, and labels are created for visualization purposes. 

Following this, the data augmentation step involves applying various augmentation techniques 

such as rotation, zoom, shift, and flip to the images, and generating an augmented data set to 

enhance the model's training. 

Next, in the model-building phase, a CNN architecture is created. The compilation and 

training steps are as follows, where the model is compiled using the Adam optimizer and 

categorical cross-entropy loss. The number of epochs is set, and the model's accuracy is tracked 

and plotted during training. Afterward, an Advanced Model (MobileNet V2) is employed, 

where a custom dense layer is added, and the model is recompiled, with callbacks implemented 

to enhance performance. Finally, the model is saved for future use. 
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3.2.2 Basic CNN Model 

The model begins with an input layer that accepts images in the shape of 224x224x3, 

where 3 represents the RGB channels. The first convolutional layer applies 32 filters of size 

3x3, designed to detect low-level features such as edges and corners. This layer uses the ReLU 

activation function, which introduces non-linearity, allowing the model to learn more complex 

representations. Following this, a max-pooling layer with a pool size of 2x2 is used to down-

sample the feature maps, retaining only the most dominant features. 

Next, a second convolutional layer with 64 filters of size 3x3 builds upon the features 

detected by the first layer, focusing on more complex patterns, including texture and shape 

differences. This is followed by another 2x2 max-pooling layer, which further reduces the 

spatial dimensions of the features, improving computational efficiency. The third convolutional 

layer, consisting of 128 filters with a 3x3 kernel size, detects even more complex features, such 

as those specific to plant diseases. This is again followed by a 2x2 max-pooling layer to prepare 

the features for the fully connected layers. 

The output of the convolutional layers is flattened and passed to a fully connected layer 

with 1,024 neurons, using the Swish activation function, which offers a smoother transition 

than ReLU and enhances performance in some tasks. The final layer is a softmax layer with 10 

neurons, one for each disease category. Softmax is applied to generate a probability 

distribution, and the model makes its final prediction based on the highest probability. The 

basic architecture of the CNN is like (Shown in Figure4) 

Here we have the trained basic CNN model for 10 epochs which has a validation 

accuracy of around ~79% and hence, that means — to achieve higher accuracies begin 

advanced approaches. The efficacy to recognize visual patterns in paddy leaf diseases reflects 

the value of CNNs which can indeed be inferred easily by a simple basic model. 
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Figure 4. The Basic Architecture of the CNN 

3.2.3 Transfer Learning with MobileNetV2 

The limitations of the simple CNN model led us to investigate transfer learning with 

MobileNetV2 (Figure 5), an efficient and accurate architecture. It is because models pre-trained 

on large datasets (like ImageNet) can be fine-tuned to other specific tasks, the technique known 

as transfer learning, which considerably reduces training effort after all. MobileNetV2 

Neuronal Network Architecture – Mobile Nets are lightweight deep neuronal network 

architecture particularly well suited for mobile and resource-constrained environments. Here is 

how it looks, we use depth-wise separable convolutions to reduce the number of parameters 

without loss in performance. For the transfer learning model, the base network was chosen as 

MobileNetV2 which has been pre-trained. The model represents the first initial layers that help 

to recognize general image features (edges, textures) that were cut off. The layers are very 

transferable across domains as they capture basic visual information. Some of the latter, more 

ImageNet-specific layers were removed and replaced with new fully connected layers 

customized to predict classes in the rice disease dataset. 

 

Figure 5. MobileNetV2 Architecture 
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3.2.4 New Architecture for Transfer Learning 

The model starts with the MobileNetV2 base, which is integrated with pre-trained 

weights from ImageNet. This base is not retrained, allowing other layers to be fine-tuned, and 

utilizes depth-wise separable convolution layers to reduce model size and computational cost. 

Instead of flattening the entire feature map, a global average pooling layer is used to condense 

each feature map into scalar values, preserving spatial information while converting the output 

into a 1D tensor. This step allows for the addition of dropout and batch normalization, which 

help regularize the input. 

Following this, a fully connected dense layer with 1,024 units and the Swish activation 

function learns complex feature combinations detected by MobileNetV2. The Swish activation 

function, known for its smooth non-linearity, enables faster model convergence compared to 

ReLU. A second dense layer with 128 units further refines the feature representations before 

classification. Finally, the output layer classifies the images into one of the 10 disease 

categories using a SoftMax layer with 10 units. 

The below-shown architecture (Figure6) was designed to handle the dataset-specific 

instead of its generalized abilities to handle any dataset. This was done by freezing the initial 

layers to avoid the problem of overfitting. This allowed to develop new layers whose sole 

purpose was to focus on disease-specific visual pattern in the rice leaf image. 

 

Figure 6. Modified Architecture for MobileNetV2 

3.3 Experimental Setup 

Table 2 below shows the hardware and the software used in the work  
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Table 2. Hardware and Software Used 

Language Python3 

Processor T4 GPU 

RAM 16GB 

Storage 128GB 

Operating System Ubuntu 

Environment Google Collab 

Framework TensorFlow, Keras 

Pre-Trained Model MobileNetV2 

 

3.4 Training Procedure 

The model built was compiled with an Adam optimizer at 0.001 learning rate and 

categorical cross-entropy loss. Early stopping, a powerful training strategy is utilized to halt 

the training process whenever the validation loss does not improve for 8 epochs, thereby 

preventing overfitting. To help stabilize the training, batch normalization was utilized between 

all fully Connected layers (except for predictions) and uniform dropout with rate 0.5 was used 

on top of fully connected layers to mitigate overfitting problems. The model was checkpointed 

with respect to the validation accuracy. The model was trained up to 100 epochs using a batch 

size of 32 and with the help of 16 workers raising data preprocessing speed. 

 Table 3 below highlights key epochs where significant performance changes were 

observed during the training process. It includes the accuracy, loss, and adjustments to the 

learning rate for each epoch, providing insights into model optimization. 

Table 3. Highlight of Key Epoch 

Epoch Training 

Accuracy 

Validation 

Accuracy 

Training 

Loss 

Validation 

Loss 

Learning 

Rate 

1 57% 13% 1.79 1.7 0.001 

10 90% 78% 0.74 0.79 0.001 
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20 94% 87% 0.33 0.42 0.001 

40 97% 97% 0.19 0.22 0.001 

46 98% 97% 0.15 0.14 0.0004 

52 99% 97% 0.12 0.16 0.0001 

 

3.5 Test Time Augmentation 

Time-Test Augmentation (TTA) was performed to improve the accuracy of the model 

during evaluation. TTA consists of augmenting each test image several times (flips, rotations...) 

and averaging the predictions of the model over these augmented images. Such regular 

Gaussian noise resulted in better predictions since the model experienced not only slightly 

varied input images by also more dense domains.  During different training processes, it could 

be called with a new set of randomly enqueued augmented data. 

After applying TTA during the evaluation phase, the model's accuracy increased from 

96.6% to 97.0%, demonstrating the method's ability to provide a marginal yet remarkable 

improvement in performance. This increase, although small, is significant in tasks where the 

cost of misclassification is high. 

 Results 

The performance of both Basic CNN and the transfer learning model was tested using 

validation set. Various metrics like accuracy, loss, and validation accuracy were recorded to 

assess the model’s efficacy in detection of paddy leaf diseases. 

4.1 Basic CNN Model Performance 

CNN basic model which was the first baseline was trained for 10 epochs. The model 

had a training accuracy of 79%, despite its simplicity and the fact that this number was higher 

than expected, the validation score settled around 70%. The accuracy of this model successfully 

distinguished certain disease families but was not as successful, especially in surface lesions 

with similar symptoms for instance the two bacterial blights; leaf and panicle where 

misclassifications were more common. 
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The basic model had fewer parameters and was less able to learn complex patterns in 

the data. It will also overfit faster as the dataset is small. This can be observed from the 

increasing gap between training and validation accuracy. Even though the CNN model can 

detect simple diseases it was not robust enough to classify diseases that needed fine-grained 

analysis. The Table 4 Summarize the basic CNN Model Performance. 

Table 4. Performance of Basic CNN Model 

Epoch 
Training 

Accuracy 

Validation 

Accuracy 

Training 

Loss 

Validation 

Loss 
Note 

1 57% 13% 1.79 1.7 
Initial epoch; poor 

Performance  

5 75% 58% 1.1 1.2 

Significant 

Improvement in 

validation. 

10 79% 70% 0.9 0.95 
Model starts to 

plateau 

15 82% 68% 0.85 0.85 
Slight overfitting 

Observed. 

 

 

 

 

 

 

 

Figure 7. Accuracy vs Validation Accuracy (CNN) 

In Figure 7 Validation accuracy crosses Accuracy multiple times which indicates the 

model is unstable. The model's weight changes too drastically which is leading to inconsistent 

performance between training and validation accuracy. 
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4.2 MobileNetV2 Transfer Learning Model (Advanced Model) 

Using transfer learning with MobileNetV2 led to a substantial improvement in 

classification performance. The advanced model outperformed the accuracy of the basic CNN 

within 10 epochs and achieved an accuracy of 90% and a validation accuracy of 78%. The 

advanced model continues to show improvement which each epoch and achieved an accuracy 

of 97% by the end of the 40th epoch. The improvements where likely due to a pre-trained model 

of MobileNetV2 which had high feature extraction capabilities. The Table 5 shows Key Epoch 

Metrics. 

Table 5. Key Epoch Metrics for Advanced Model 

Epochs 
Training 

Accuracy 

Validation 

Accuracy 

Training 

Loss 

Validation 

Loss 

1 57% 13% 1.79 1.7 

10 90% 78% 0.74 0.79 

20 94% 87% 0.33 0.42 

40 97% 97% 0.19 0.22 

46 98% 97% 0.15 0.14 

 

 

Figure 8. Training Accuracy vs Validation Accuracy (Advanced Model) 
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Figure 8 shows the steady merger of training accuracy with validation accuracy. This 

means the model is learning well and that the training process is stable. It is an indicator that 

the learning rate, model architecture, and other hyperparameters are appropriately set. 

4.3 Classification Metrics 

Table 6 shows the precision, recall, and F1 scores of various diseases in the dataset. 

Table 6. Classification Performance Metrics 

Diseases Class Precision Recall F1-Score 

Bacterial Leaf Blight 97% 96% 96.50% 

Bacterial Leaf Streak 98% 99% 98.50% 

Bacterial Panicle Blight 96% 94% 95% 

Blast 98% 98% 98% 

Brown Spot 97% 96% 96.50% 

Dead Heart 96% 95% 95.50% 

Downy  

Mildew 
98% 97% 97.50% 

Hispa 97% 98% 97.50% 

Normal 99% 99% 99% 

Tungro 98% 97% 97.50% 

Overall 97% 97% 97% 

 

4.4 Time Test Augmentation Results 

Time-test augmentation was applied to enhance the robustness of the model prediction. 

TTA increased the accuracy marginally by averaging predictions on multiple augmented 

versions of each test image. TTA improved overfitting, increasing validation accuracy to 

97.2%, adding further evidence that TTA can improve the ability of models — specifically on 

much nuance cases of visually ambiguous or difficult-to-distinguish diseases present in pixels. 

The disparity between the basic CNN and MobileNetV2 models clearly demonstrated the 

benefits of transfer learning while helping us understand our model architectures. Basic CNN 

validation accuracy is 70% and for MobileNetV2 model it is around 97%. This improvement 
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exemplifies the necessity of deploying state-of-the-art architectures and pre-trained models, 

especially when dealing with real-time images. 

 Conclusion 

The study proposed a fast and reliable method for detecting paddy leaf diseases using 

deep learning with transfer learning on MobileNetV2. This approach significantly improved 

accuracy, achieving ~97.2% in a 5-class validation, compared to just 70% using a basic CNN. 

Transfer learning, utilizing a pre-trained ImageNet model, enabled precise plant disease 

identification. Data augmentation helped mitigate overfitting, while Test Time Augmentation 

(TTA) further improved prediction reliability. This work demonstrates how deep learning can 

transform agricultural disease detection by offering a low-cost, high-accuracy, and fast 

solution, reducing the need for manual crop inspections. Future work could involve deploying 

the model on edge devices for real-time detection and expanding it to cover more diseases under 

varied environmental conditions for broader applicability. 
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