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Abstract 

    This study explores the application of Deep Neural Networks (DNN) for fault 

detection in a standalone photovoltaic (PV)-based DC ring microgrid system. It follows a 

structured five-step methodology, beginning with the identification of various fault types, 

including short circuits, open circuits, hot spots, overheating, mismatch, and partial shading. 

Current and voltage signals undergo pre-processing steps such as data cleaning, normalization, 

and segmentation before being used to train the DNN model. The training and evaluation are 

conducted using simulation data from a PV-based DC ring standalone microgrid developed in 

Simulink. While the confusion matrix indicates challenges in accurately classifying faults like 

partial shading due to higher misclassification rates, the model achieves high diagnostic 

accuracy for hot spot faults with a test accuracy of 98%, along with strong precision and recall 

scores. The integration of DNN in the standalone PV-based DC ring micro grid, known for its 

looped topology and reliability, enables early fault detection and supports predictive 

maintenance, thereby enhancing system safety, reliability, and performance. 

Keywords: DC Ring Micro Grid, Deep Neural Networks, Photovoltaic System, Fault 

Detection, Machine Learning. 
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 Introduction 

     The global transition toward sustainable and decentralized energy solutions has driven 

the advancement of direct current (DC) microgrids, which provide notable benefits in terms of 

efficiency, reliability, and seamless integration of renewable energy resources. Among various 

DC micro grid topologies, the ring configuration has emerged as a preferred choice due to its 

inherent capability to support multiple power flow paths, thereby enhancing system flexibility 

and fault tolerance. This closed-loop structure is particularly advantageous in standalone 

applications where uninterrupted power delivery and system resilience are essential, as it allows 

power rerouting during faults or line disconnections to maintain continuous supply to critical 

loads [1] [2]. In this context, the present work focuses on a photovoltaic (PV)-based DC ring 

standalone system micro grid, incorporating 50 kW PV arrays and a lithium-ion battery 12KW 

energy storage system. The system includes multiple strategically placed DC loads and 

bidirectional power links that enable efficient power exchange across the ring. To ensure rapid 

and intelligent protection, Solid-State Circuit Breakers (SSCBs) in coordination with Intelligent 

Electronic Devices (IEDs) are deployed at key interconnection points, providing fast fault 

detection, isolation, and automatic system reconfiguration. 

 

Figure 1. PV-based DC Ring Microgrid 

This architecture, shown in Figure 1, is designed to maintain operational stability under 

varying load conditions and fault events, supporting intelligent load sharing, real-time 

switching, and uninterrupted power delivery. The primary objective of this study is to evaluate 

the performance of the proposed PV-based DC ring standalone microgrid using important 

performance metrics such as voltage regulation, power quality, system efficiency, and 

intelligent fault detection accuracy [3]. The findings aim to support the development of robust, 

resilient, and adaptive DC microgrids for future smart energy systems. 
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 Related Work 

    DC microgrids have become a popular choice for integrating renewable energy sources 

due to their high efficiency and compatibility with modern DC loads. Unlike traditional AC 

systems, DC microgrids reduce conversion losses and offer simplified control. Among different 

topologies, ring-type configurations are known for their enhanced reliability and ability to 

maintain power flow during faults by providing multiple paths for current distribution. 

    The use of Deep Neural Networks (DNNs) for fault detection in photovoltaic DC ring 

standalone micro grids marks a notable step forward compared to prior studies that mainly focus 

on radial or star-configured systems. Ring topologies, which enable bidirectional power flow 

for improved reliability and redundancy, present greater challenges for fault detection due to 

their complex and less predictable fault propagation paths. These characteristics are 

underexplored in current research. By utilizing DNNs, this study effectively addresses these 

challenges, as the model can learn and identify complex spatiotemporal patterns associated with 

faults in such systems. This leads to more accurate fault classification and localization, 

demonstrating the suitability of deep learning techniques for advanced microgrid architectures 

[4]. 

    To further improve system protection, modern approaches utilize Solid-State Circuit 

Breakers (SSCBs) alongside Intelligent Electronic Devices (IEDs). These technologies enable 

rapid fault detection and isolation. Additionally, artificial intelligence techniques, particularly 

deep learning, has been successfully applied to detect and classify faults with high accuracy, 

precision, and recall, making DC microgrids more intelligent and responsive. 

 Proposed System 

  The proposed system represents a photovoltaic-based DC ring standalone microgrid, 

designed using MATLAB/Simulink. The network is structured in a closed-loop ring topology 

that enhances power flow flexibility and reliability under fault conditions. Key components 

include multiple DC lines, solar PV arrays, a battery energy storage system, and both DC and 

AC load [5]. Solar energy sources are connected at nodes B and E, while the battery system is 

integrated at node C to support power balance during fluctuations. Intelligent control is implied 

by monitoring units and circuit breakers placed across critical nodes to manage energy flow and 

isolate faults. 



                                                                                                                                                                                                   Prasanna Moorthy V., Ashok Kumar N. 

Journal of Soft Computing Paradigm, March 2025, Volume 7, Issue 1  47 

 

 

Figure 2. Simulation Block of DC Ring Microgrid 

This simulation setup, shown in Figure 2, ensures the system can operate efficiently 

even under fault or load variation scenarios. The ring structure allows rerouting of power, 

providing redundancy in case of any line failure. The integration of a discrete-time simulation 

environment (1 µs step time) enables high-speed fault detection and control analysis. By 

simulating realistic energy generation, consumption, and fault conditions, the model serves as 

a testbed for evaluating fault detection algorithms, system stability, and performance metrics 

such as accuracy, precision, and recall in protection schemes. 

3.1 Photovoltaic Subsystem Modeling and Fault Analysis 

 The photovoltaic (PV) subsystem simulation, shown in Figure 3, is developed using 

MATLAB/Simulink, with the PV array configured based on standard solar cell characteristics 

(irradiance: 1000 W/m², temperature: 25°C) is adopted from [16]. An MPPT controller with the 

Incremental Conductance algorithm adjusts the DC-DC boost converter's duty cycle to extract 

maximum power, optimizing energy conversion. The boost converter raises the PV output 

voltage to meet the DC ring bus requirements [6]. To evaluate system reliability, faults such as 

line-to-line short circuits and sudden load changes were introduced at various nodes and DC 

lines in the ring topology 

 

Figure 3. Simulink Model of PV Array subsystem [16] 
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The PV subsystem's response was evaluated using key performance metrics 

• Accuracy (correct detection of fault conditions), 

• Precision (correct identification of actual faults), and 

• Recall (ability to detect all true faults). 

   Voltage and current probes were used for real-time monitoring, while data from fault 

scenarios were analyzed using signal processing and classification algorithms to validate the 

system’s fault detection capability under dynamic conditions [7]. 

3.2 Incremental Conductance based MPPT Controller for PV System 

The Simulink model represents an Incremental Conductance (IncCond) based 

Maximum Power Point Tracking (MPPT) algorithm for a photovoltaic (PV) system, as shown 

in Figure 4. This technique determines the maximum power point by comparing the incremental 

conductance (dI/dV) to the negative of the instantaneous conductance (-I/V). When these values 

are equal, the system is at the maximum power point (MPP); if not, the algorithm adjusts the 

operating voltage by modifying the duty cycle of the DC-DC converter to move the PV system 

toward the MPP. 

 

Figure 4. Simulink Model of Incremental Conductance MPPT for PV System [17] 

This is done through control logic that generates an error signal based on the 

conductance comparison, which is then amplified and integrated to update the duty cycle. This 

method provides higher accuracy and faster response compared to simpler methods like Perturb 

and Observe, especially under rapidly changing irradiance conditions. 
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3.3 Battery Subsystem Modeling and Performance Analysis 

The battery subsystem in the DC ring micro grid, as shown in Figure 5, is designed 

using a lithium-ion battery integrated with a bidirectional DC-DC converter. This setup allows 

the battery to charge and discharge based on system demand. A pulse generator controls the 

switching of the converter, while voltage regulation is achieved through a feedback loop to 

maintain system stability. 

 

Figure 5. Simulink Model of Battery System with Boost Converter 

    To test the system’s reliability, faults like short circuits and load disturbances were 

introduced at the battery output. Performance was evaluated by observing the voltage and 

current behavior during these faults. Key metrics such as voltage sag, current spikes, and system 

recovery time were used to assess the battery’s response and the overall fault tolerance of the 

microgrid. 

3.4 Inverter and AC Load Modeling with Fault Analysis 

  The inverter subsystem, shown in Figure 6, is designed using a PWM-controlled IGBT 

inverter that converts DC voltage from the micro grid into a three-phase AC output. A pulse 

generator provides switching signals to the inverter gates, ensuring proper conversion. The AC 

output is delivered to a balanced three-phase load, and measurement blocks are used to monitor 

voltage, frequency, and current. A voltage sensor tracks the DC input to ensure the inverter 

operates within optimal voltage levels. 
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Figure 6. Simulink Model of PWM-based IGBT Inverter with AC Load 

   To test system robustness, faults were introduced at the inverter output or in the AC 

load by simulating short circuits or sudden changes in load impedance. These faults allow the 

evaluation of how the system responds to disturbances. The inverter’s performance was 

assessed by monitoring output voltage, frequency, and current. These parameters help analyze 

system stability, voltage quality, and the ability to maintain operation during faults. 

 Methodology  

 The proposed methodology involves designing a standalone photovoltaic (PV) 

DC microgrid in a ring topology using MATLAB/Simulink, incorporating a 44kW solar array, 

a 12kW lithium-ion battery, and various DC loads. Fault scenarios such as line-to-line, line-to-

ground, and open-circuit faults are simulated at different locations. Voltage and current signals 

are collected and preprocessed using noise filtering, normalization, and segmentation. 

Continuous Wavelet Transform (CWT) is then applied for feature extraction, generating time-

frequency scalograms. These scalograms are fed into a Deep Neural Network (DNN), which is 

trained to classify and detect faults [8] [9]. The model's performance is evaluated based on 

accuracy, precision, recall, and F1-score to assess its effectiveness in identifying faults under 

diverse conditions. 

4.1 System Description 

The proposed system features a standalone PV-based DC microgrid configured in a ring 

topology to enhance reliability and ensure continuous power delivery through multiple paths. 

It comprises a 50kW solar PV array, a 12kW lithium-ion battery storage system, and DC loads 

interconnected through DC buses, enabling bidirectional power flow for improved load 
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balancing and redundancy. Voltage and current sensors are strategically placed to monitor 

electrical parameters, providing real-time data for fault analysis. The system is modeled in 

MATLAB/Simulink, simulating the behavior of PV modules, battery dynamics, DC/DC 

converters, and loads under normal and fault conditions. Faults such as line-to-line, line-to-

ground, and open-circuit are injected at various locations and scenarios to simulate real-world 

disturbances. The resulting time-domain signals are used for pre-processing and feature 

extraction, forming the basis for deep learning-based fault detection. This setup provides a 

realistic, complex environment to evaluate DNN performance under diverse fault and power 

flow conditions. 

4.2 Signal Preprocessing and Feature Extraction 

 The raw voltage and current data collected from various monitoring points in the 

photovoltaic DC ring standalone microgrid were first pre-processed using a low-pass filter to 

remove high-frequency noise, followed by normalization to ensure consistent scaling and 

improve training efficiency. These signals were then segmented into fixed-length time windows 

to preserve temporal characteristics around fault events. For feature extraction, Continuous 

Wavelet Transform (CWT) was applied to convert the 1D time-series data into 2D time-

frequency scalograms, capturing both transient and steady-state information essential for fault 

identification. These scalograms were resized and used as input features for the Deep Neural 

Network (DNN), enabling it to effectively learn and distinguish complex fault patterns. This 

integrated pre-processing and CWT-based feature extraction approach enhanced the model’s 

ability to detect and classify faults accurately in the dynamic environment of a ring-configured 

microgrid. 

4.3 Feature Extraction using Continuous Wavelet Transform (CWT) 

Continuous Wavelet Transform (CWT) was selected for feature extraction due to its 

superior ability to simultaneously analyze time and frequency components, necessary for 

detecting faults in photovoltaic DC ring standalone micro grids. Traditional methods like 

Fourier Transform (FT) and Short-Time Fourier Transform (STFT) suffer from fixed 

windowing and low resolution, limiting their effectiveness in capturing transient, non-

stationary events. CWT’s multi-resolution capability efficiently detects rapid, localized fault 

signatures, critical in ring topologies where fault propagation depends on power flow direction. 

Initially, techniques like Principal Component Analysis (PCA), Fast Fourier Transform (FFT), 
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and Empirical Mode Decomposition (EMD) were explored but found inadequate for capturing 

transient behaviours. PCA outperforms in dimensionality reduction but fails to capture transient 

features, while FFT assumes signal stationarity. In contrast, CWT provides rich time-frequency 

representations through scalograms, significantly enhancing DNN-based fault detection 

performance in complex microgrid environments. 

4.4 Deep Neural Network (DNN) Model Formulation 

The Deep Neural Network (DNN) architecture designed for fault detection and 

localization in the photovoltaic DC ring standalone microgrid consists of three primary 

components: an input layer, hidden layers, and an output layer. The input layer is composed of 

three neurons corresponding to the extracted features obtained from the CWT-based 

scalograms, as shown in Figure 7. 

 

Figure 7. The Deep Neural Network Architecture 

 The DNN model is structured to effectively identify and locate faults within a PV-based 

DC ring standalone microgrid. It comprises three primary layers: an input layer, two fully 

connected hidden layers, and an output layer. The input layer consists of three neurons, each 

representing a feature extracted from Continuous Wavelet Transform (CWT)-based 

scalograms, capturing essential time-frequency information pertinent to fault detection. The 

model includes two fully connected hidden layers, each containing five neurons. The Rectified 

Linear Unit (ReLU) activation function is employed in these layers to introduce non-linearity, 

enhance feature learning, and mitigate issues like vanishing gradients during training. The 

output layer comprises two neurons: one for fault detection (classifying fault/no-fault 

conditions) and the other for fault localization (identifying the specific faulted branch within 

the ring network). A softmax activation function is utilized to provide probabilistic outputs, 
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facilitating accurate classification. This architecture was selected to balance model accuracy 

with computational efficiency, ensuring reliable fault detection and localization while 

maintaining fast processing suitable for real-time applications. The architecture of the DNN 

consists of multiple fully connected layers, each comprising several neurons. The output of a 

neuron in layer 3 is mathematically represented as: 

𝑎𝑗
(𝑙)

= 𝑓 (∑ 𝑤𝑗𝑖
(𝑙)
𝑎𝑖
(𝑙−1)

𝑛𝑙−1

𝑖=1
+ 𝑏𝑗

(𝑙)
) 

    Where 𝑎𝑗
(𝑙)

 is the activation output of the jth neuron in the lth layer, 𝑤𝑗𝑖
(𝑙)

 denotes the 

weight connecting the ith neuron of the previous layer to the jth neuron, and 𝑏𝑗
(𝑙)

 is the associated 

bias. In the hidden layers, the Rectified Linear Unit (ReLU) activation function is utilized and 

defined as: 

𝑓(𝑧) = max⁡(0, 𝑧) 

    This introduces non-linearity into the model and enables the learning of complex 

fault-related patterns. For multi-class classification, the output layer incorporates the softmax 

activation function to normalize the output values into probabilities: 

𝑦𝑘̂ =
𝑒𝑧𝑘

∑ 𝑒𝑧𝑗𝑘
𝑗=1

 

    Where 𝑦𝑘̂ represents the predicted probability of the kth class, and K is the total 

number of classes (e.g., normal, short-circuit fault, open-circuit fault, and ground fault). 

The model is trained using the categorical cross-entropy loss function, which measures 

the dissimilarity between the predicted class distribution and the actual label distribution, and 

is given by: 

ℒ = −∑ 𝑦𝑘
𝐾

𝐾=1
log(𝑦𝑘̂) 

    Where 𝑦𝑘 is the true label in one-hot encoded form. To optimize the model 

parameters, gradient descent is used, wherein the weights are updated iteratively as follows: 

𝑤𝑗𝑖
(𝑙)

← 𝑤𝑗𝑖
(𝑙)
− 𝜂 ∙

𝜕ℒ

𝜕𝑤𝑗𝑖
(𝑙)
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With 𝜂 denoting the learning rate. This training process continues until the model 

converges to a solution that minimizes the loss function across the training dataset. The 

mathematical framework thus enables the DNN to effectively model the relationship between 

the extracted input features and the fault classes, thereby enhancing the reliability and 

robustness of fault detection in PV-integrated DC microgrids. 

4.5 Fault Scenario Simulation 

Various fault scenarios were designed to reflect realistic operating conditions in a 

photovoltaic DC ring standalone microgrid. Simulated faults included line-to-line (L-L), line-

to-ground (L-G), pole-to-pole (P-P), and open-circuit (O-C) faults, as these are common and 

necessary to system stability and safety. Faults were introduced at key points, such as PV array 

outputs, DC ring branches, connections between distributed energy resources (solar panels, 

battery, wind turbine), and critical load points. Simulations were conducted under different load 

and generation conditions to capture system dynamics. This approach generated a diverse 

dataset, enabling the Deep Neural Network (DNN) to robustly learn, detect, and locate faults 

across the microgrid. 

 Results and Discussion 

 The flowchart outlines a five-step process for detecting faults in PV systems using a 

Deep Neural Network (DNN), as shown in Figure 8. Step 1 defines various fault types, 

including short circuits, open circuits, hotspots, overheating, mismatch faults, and partial 

shading, each impacting voltage and current differently. Normal conditions show stable 

behavior relative to irradiance and temperature.  

 

Figure 8. Training Flow Chart of Deep Neural Network 
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In Step 2, raw voltage and current data are cleaned, segmented, reconstructed, 

normalized, and denoised, then split into training and testing sets. Step 3 trains and fine-tunes 

the DNN model using the training data. In Step 4, the model’s performance is evaluated with 

the test set. Step 5 involves fault classification and diagnostic accuracy evaluation, enabling 

precise fault detection and improved PV system reliability. 

  In this study, a custom synthetic dataset was created using MATLAB/Simulink to 

simulate various fault and normal conditions in a PV-based DC ring micro grid with a 50 kW 

PV array and 12 kW lithium-ion battery. The dataset includes 5,000 samples covering open 

circuit faults, short circuits, line-to-line faults, hotspots, partial shading, MPPT malfunctions, 

and healthy states. Time-domain voltage and current signals were processed with Continuous 

Wavelet Transform (CWT) for feature extraction [10] [11]. The data was split into 70% training 

(3,500 samples) and 30% testing (1,500 samples). Pre-processing steps included cleaning, 

segmentation, denoising, normalization, and CWT-based feature extraction. A Deep Neural 

Network (DNN) was developed and fine-tuned, achieving 98% test accuracy, with 85.71% 

precision and 85.25% recall, successfully identifying fault types like "Hot Spot" in test cases. 

5.1 Confusion Matrix for Photovoltaic-based DC Ring Microgrid Fault Detection 

 The confusion matrix provides a visual assessment of the fault classification 

performance in a photovoltaic-based DC ring micro grid, with each row representing the actual 

fault class and each column indicating the predicted class by the deep neural network (DNN) 

model [12] [13].  

 

Figure 9. Confusion Matrix – Fault Diagnosis Accuracy in DC Ring Micro Grid 
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   The matrix, as shown in Figure 9, reveals that Overheating and Partial Shading are the 

two primary fault types included in the test data; however, the classification performance varies 

significantly. For Overheating, 299 samples were correctly classified, but 289 were 

misclassified as Hot Spot, with a few wrongly predicted as Mismatch, Normal, or Degraded 

Panel, indicating confusion due to overlapping current-voltage patterns. Partial Shading showed 

severe misclassification, with samples spread across Degraded Panel (443), Hot Spot (49), and 

Mismatch (494) classes, and only 1 correctly identified, revealing a major limitation. The model 

struggled with Partial Shading and overheating detection because these faults develop 

gradually, causing subtle changes rather than abrupt electrical shifts. Partial shading leads to 

slow, variable power reductions, while overheating affects internal resistance without sharp 

electrical changes, making them harder to detect using CWT-based features. Future 

improvements could include enhancing the dataset with more representative examples and 

incorporating thermal or irradiance sensor data for better fault classification [14] [15]. 

5.2 Implementation Platform and Model Performance Evaluation 

  The Deep Neural Network (DNN) model for fault detection in the photovoltaic DC 

ring microgrid was implemented using Python with TensorFlow and Keras, while 

MATLAB/Simulink was used to simulate the system and generate synthetic fault data. The 

simulation outputs were preprocessed and used to train the DNN in Python. The model’s 

performance was evaluated using metrics such as accuracy, precision, recall, and F1-score, 

along with a confusion matrix to assess classification results. The DNN achieved 98% accuracy, 

indicating its high effectiveness in detecting and classifying faults in the DC microgrid. 

5.3 Accuracy and Loss Curves for Photovoltaic-based DC Ring Microgrid Fault Detection 

The Deep Neural Network (DNN) training process was carefully structured to optimize 

fault classification in the photovoltaic DC ring micro grid. The dataset, generated through 

detailed MATLAB/Simulink simulations, included 5,000 samples with 70% (3,500 samples) 

used for training and 30% (1,500 samples) for testing. Each sample had 100 input features 

extracted from voltage and current signals using Continuous Wavelet Transform (CWT), 

providing rich time-frequency characteristics. The model was trained using TensorFlow/Keras 

in a supervised learning setup with categorical fault labels. The training curves over 100 epochs 

(4,000 iterations) show rapid accuracy improvement (stabilizing near 98%) and a steady 
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decrease in loss toward near-zero, indicating effective learning without over fitting. Smooth 

convergence without oscillations further confirmed the model's stability.  

 

Figure 10. Simulink Training Progress of DNN for PV Fault Detection 

Hyperparameter (Table 1) tuning was conducted systematically using manual and grid 

search strategies, supported by 5-fold cross-validation to ensure robustness and prevent over 

fitting. 

Table 1. Hyper Parameters and their Final Values for DNN Training 

Hyperparameter Value 

Hidden Layers 4 

Neurons per Layer [128, 64, 32, 16] 

Learning Rate 0.001 

Batch Size 32 

Activation Function ReLU (hidden layers), Softmax (output) 

Optimizer Adam 

Loss Function Categorical Cross-Entropy 

Dropout Rate 0.3 

Early Stopping Patience of 10 epochs 
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The training accuracy increases sharply and stabilizes near 98%, while the training loss 

decreases rapidly and approaches zero, indicating effective learning and convergence without 

overfitting. The smooth behaviour of both curves suggests stable training performance. As 

shown in Figure 10, the model successfully reaches high accuracy and low loss within 4000 

iterations (100 epochs) with a constant learning rate of 0.001 using a single CPU resource. As 

shown in Table 1, the selection and tuning of these hyperparameters contributed to the robust 

performance of the DNN model. 

5.4 DNN-based Accurate Hot Spot Detection 

 The displayed result highlights the performance of a Deep Neural Network (DNN) 

model used for fault diagnosis in a photovoltaic (PV)-based DC ring microgrid. After training 

the model, it achieved a high-test accuracy of 98%, indicating its strong ability to classify fault 

conditions correctly. The precision (85.71%) and recall (85.25%) values reflect the model’s 

reliability in identifying true positive cases of specific faults like hot spots, while minimizing 

false positives and false negatives is shown in Figure 11. 

 

Figure 11. Performance and Prediction Output of Trained DNN 

  In this case, the model processed data from the Simulink environment and accurately 

predicted the presence of a "Hot Spot" fault. Hot spots are critical faults in PV systems caused 

by localized heating, which can occur due to shading, soiling, or cell defects. These faults can 

degrade the system’s performance and pose safety risks if not detected early. The use of a DNN 

in a DC ring microgrid known for its looped configuration and reliability, enhances the system’s 
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resilience by enabling early, automated fault detection and classification, ensuring efficient and 

safe microgrid operation. 

5.5 Benefits of the DNN Over the Other Existing Methods 

Deep Neural Networks (DNNs) offer clear advantages over traditional and machine 

learning methods in detecting faults in photovoltaic DC ring microgrids. Unlike threshold-

based or rule-based approaches, DNNs can learn complex patterns directly from data, making 

them effective in identifying multiple fault types under varying conditions. They outperform 

models like SVMs and Decision Trees by handling large datasets more efficiently and 

eliminating the need for manual feature extraction, especially when combined with wavelet-

transformed inputs. 

Table 2. Comparison of DNN with Other Fault Detection Methods 

Method 
Feature 

Engineering 
 

Accuracy Noise 

Tolerance 

Multiclass 

Capability 

Adaptability 

Rule-Based 

Thresholding 

Manual Low Low Limited Low 

Support Vector 

Machine (SVM) 

Manual Moderate Moderate Moderate Moderate 

Decision Tree 

(DT) 

Manual Moderate Low Limited Moderate 

Convolutional 

Neural Network 

(CNN) 

Automatic High High High High 

Deep Neural 

Network (DNN) 

Automatic Very High 

(98%) 

High Excellent High 

Additionally, DNNs generalize well to unseen data and are more resilient to noise, 

which is essential for real-time applications. Their multi-layer structure enables deep feature 

learning, improving accuracy in classifying various fault conditions. In this work, the DNN 

model demonstrated strong performance, achieving 98% accuracy, proving it to be a robust and 

scalable solution for intelligent fault detection in DC microgrids. Table 2 provides a clear 

comparison of different feature engineering methods in terms of accuracy, noise tolerance, 



Performance Analysis of Deep Neural Network-based Fault Detection in Standalone Photovoltaic DC Ring Microgrids 

ISSN: 2582-2640  60 

 

multiclass capability, and adaptability, specifically in the context of fault detection in 

microgrids 

 Conclusion 

This work presents a Deep Neural Network (DNN)-based intelligent fault detection 

framework for photovoltaic (PV)-based DC ring standalone microgrids, achieving a test 

accuracy of 98%, with precision and recall values of 85.71% and 85.25%, respectively. The 

model effectively identifies critical faults such as overheating and partial shading, enhancing 

system reliability and supporting preventive maintenance strategies. However, confusion 

matrix analysis indicates challenges in classifying partial shading faults due to overlapping 

current-voltage signatures. While the training process shows good convergence, observed 

fluctuations in accuracy suggest potential over-fitting and the need for improved generalization. 

Future work should incorporate a dedicated validation dataset during training, considering a 

broader range of fault types, and explore hybrid deep learning models like Convolutional Neural 

Networks (CNNs) or Long Short-Term Memory (LSTM) networks for enhanced feature 

learning. Additional advancements may include real-time deployment through Hardware-in-

the-Loop (HIL) systems, the use of explainable AI techniques for greater model transparency, 

and dynamic learning strategies such as early stopping and adaptive learning rates. Overall, the 

proposed DNN-based approach provides a promising and scalable solution for reliable and 

automated fault detection in PV-based DC ring standalone microgrids, with substantial 

potential for future enhancement. 
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