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Abstract 

This work utilizes a U-Net convolutional neural network for the segmentation of white 

blood cell (WBC) components, specifically targeting the nucleus and cytoplasm. This work 

utilizes a U-Net convolutional neural network for the segmentation of white blood cell (WBC) 

components, specifically targeting the nucleus and cytoplasm. Accurate WBC segmentation is 

challenging due to differences in cell shape, size, and staining quality. The segmented regions 

are further used to compute the cytoplasm-to-nucleus (C/N) ratio, which plays a vital role in 

medical diagnostics. Input images are pre-processed through normalization and resized to a 

standard dimension of 256 × 256 pixels. Batch normalization is applied to enhance model 

stability and convergence. The model is trained and deployed using Google Colab, achieving 

an accuracy of 80%. The proposed framework provides an effective solution for automated 

analysis of WBC images. 
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 Introduction  

The motivation for employing a U-Net convolutional neural network (CNN) for 

segmenting white blood cell (WBC) components, specifically the nucleus and cytoplasm, and 

computing the cytoplasm-to-nucleus (C/N) ratio stems from the vital role this ratio plays in 

medical diagnostics. Variations in the C/N ratio can indicate pathological conditions such as 

infections, leukemia, and other hematological disorders. Accurate segmentation of these 

cellular components is essential for identifying morphological anomalies that can signal 

disease. 

U-Net's encoder-decoder architecture with skip connections allows for precise 

localization and classification of features within an image, making it particularly well-suited 

for biomedical image segmentation tasks like WBC analysis. Studies have demonstrated that 

U-Net achieves high accuracy in segmenting nuclei and cytoplasm across various leukocyte 

types, including lymphocytes, monocytes, neutrophils, eosinophils, and basophils. This 

precision facilitates the computation of the C/N ratio, aiding in the differentiation between 

normal and abnormal cells. 

Analyzing white blood cell (WBC) images manually is often slow and subject to 

inconsistencies between observers, which can compromise diagnostic accuracy. To address the 

existing challenges, the study recommends a U-Net-based deep learning framework designed 

to accurately segment key WBC components, namely the nucleus and cytoplasm, and determine 

the cytoplasm-to-nucleus (C/N) ratio, a valuable metric in medical diagnostics. By utilizing 

automated segmentation, the approach aims to improve the speed and reliability of WBC image 

analysis. Preprocessing techniques such as image normalization, resizing to a standard 256 × 

256 resolution, and batch normalization are applied to enhance model performance and training 

stability. The model is implemented on Google Colab to ensure accessibility and scalability for 

practical clinical use. Ultimately, the goal is to create an efficient and accurate tool to support 

automated WBC evaluation in diagnostic workflows.[1] 

 Literature survey 

Khan et al. [2] Introduces a novel approach for classifying white blood cell (WBC) types 

by combining DL and ML techniques.  The authors utilize AlexNet convolutional neural 

network to extract multi-layer features from WBC images. These features are then fused and 
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refined using feature selection strategies to enhance their discriminative power. The refined 

features are subsequently classified using the efficient and fast learning algorithm, an Extreme 

Learning Machine (ELM),  

 J. Yao,[3] presents the white blood cells (WBCs) classification using object detection 

techniques. The authors employ state-of-the-art models, specifically YOLOv4, and Faster R-

CNN to simultaneously detect and classify different types of WBCs in microscopic images. 

This integrated method streamlines the process by combining segmentation and recognition 

into a single step, enhancing both speed and accuracy.  

J. A. et al [4] introduces an approach for automating the WBC classification using a 

Deep Features based Convolutional Neural Network (DFCNN).  A combined CNN architecture 

integrating AlexNet, GoogLeNet, and ResNet-50 is employed to extract a comprehensive set 

of features from WBC images. A hybrid algorithm combining the Mayfly Algorithm with 

Particle Swarm Optimization (HMA-PSO) is utilized to select the most relevant features, 

enhancing the efficiency and accuracy of the classification model. The selected features are 

input into an RNN with LSTM to classify WBCs. 

 Pfeil et al. [5] investigated the application of deep learning in conjunction with mobile 

microscopy for analyzing blood samples. Their work introduces a portable, point-of-care 

system that employs an inexpensive mobile microscope, an eyepiece camera, and a smartphone 

for visualizing human blood. They trained and refined several deep learning models, 

specifically Mask R-CNN, Mask Scoring R-CNN, D2Det, and YOLACT, for instance, 

segmentation tasks aimed at identifying and classifying various types of blood cells. Their 

findings indicated a 93% detection rate of actual blood cells, achieving a mean average 

precision of 0.57 and a mean average recall of 0.61. 

Ashish Girdhar et al. [6] presents an innovative approach to automating the WBC 

classification. The authors propose a deep learning model utilizing CNN to accurately identify 

and classify different WBCs, such as lymphocytes, neutrophils, eosinophils, basophils, and 

monocytes, from peripheral blood smear images. The model was trained as well as evaluated 

using publicly available datasets, achieving a high classification accuracy of 98.55%.  

Q. Zhai et al. [7] presents an innovative approach to automating the classification of 

WBCs using whole-slide images (WSIs). The algorithm employs threshold segmentation to 

quickly locate potential WBC regions within raw WSIs. Subsequently, a deeply aggregated 
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convolutional neural network (CNN) model processes these segmented regions to classify the 

WBCs accurately. The aggregation of convolutional features from different layers enhances the 

integration of spatial and semantic information, enabling the extraction of fine-grained features 

that are important for precise classification. The algorithm attains a classification accuracy of 

approximately 98.43%.  

E. Bașaran et al. [8] introduces an innovative approach that prioritizes both accuracy and 

interpretability. The proposed framework integrates a lightweight CNN, SqueezeNet, with the 

interpretability tool LIME. Furthermore, the Minimum Redundancy Maximum Relevance 

(mRMR) method is employed for feature selection to ensure a balance between the relevance 

and independence of the chosen features. Finally, a Support Vector Machine (SVM) classifier 

is used to perform the WBC classification. 

Bagido et al [9] presents a deep learning-based approach to classify different types of 

white blood cells (WBCs) from microscopic images. The authors utilized transfer learning 

techniques with pre-trained models to enhance classification accuracy. Among the models 

tested, Inception-ResNetV2 achieved the highest performance, attaining a classification 

accuracy of 98.4% for a dataset comprising four WBC types.  

Cengil, et al. [10] presents a hybrid methodology for WBCs into four types. The study 

employs two distinct transfer learning strategies: the first involves fine-tuning pre-trained 

models, AlexNet, ResNet18, and GoogLeNet, using a Kaggle dataset and classifying with 

softmax and Support Vector Machine (SVM) methods, achieving an accuracy of 99.83% with 

the ResNet18-SVM combination. The second approach utilizes these models as feature 

extractors, applying various classifiers and dimensionality reduction techniques like Principal 

Component Analysis (PCA), resulting in an overall classification accuracy of 97.95%. This 

research emphasizes the efficacy of combining transfer learning with traditional machine 

learning techniques for accurate and efficient WBC classification M. Makem et al [11] presents 

a method for segmenting white blood cell (WBC) nuclei in peripheral blood smear images. This 

segmentation is essential for automated blood analysis, aiding in the diagnosis of various 

haematological disorders. 

N. Alofi et al. [12] introduces a series of CNN based models for classifying WBC In this 

work the fine-tuned VGG-16 model achieved the highest classification accuracy of 99.81%. 

This study developed four hybrid models for classification tasks, combining the feature learning 
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capabilities of CNNs with the discriminative power of traditional machine learning classifiers. 

Specifically, VGG-16 and MobileNet were used as feature extractors, and Support Vector 

Machines (SVM) and Quadratic Discriminant Analysis (QDA) were used for the final 

classification. The VGG-16+SVM model demonstrated the highest accuracy at 98.44%, closely 

followed by the MobileNet+SVM model with an accuracy of 98.19%. 

The inference from the survey reveals a clear advancement in the automation of white 

blood cell (WBC) classification through deep learning and hybrid models. Pre-trained CNN 

architectures, such as AlexNet, ResNet, VGG-16, and Inception-ResNetV2, serve as powerful 

feature extractors, while their integration with machine learning classifiers like SVM, ELM, 

and RNN-LSTM significantly enhances classification accuracy. Techniques like feature fusion, 

optimization algorithms (e.g., HMA-PSO, mRMR), and interpretability tools (e.g., LIME) 

contribute to building robust and explainable models. The highest reported accuracy (99.83%) 

demonstrates the maturity and effectiveness of these approaches, emphasizing their potential 

for real-world clinical applications in hematological diagnostics. 

 Methodology 

In this work the White Blood Cells Dataset available on Kaggle is used [15].  This 

dataset comprises a collection of labeled microscopic images representing four major types of 

white blood cells (WBCs). The dataset includes 212 images of Basophils, 744 of Eosinophils, 

561 of Monocytes, and 6,231 of Neutrophils.  

The process begins with collecting input images of white blood cells (WBCs), which 

are then standardized through pre-processing steps. These include resizing all images to 256 × 

256 pixels to ensure consistency and applying batch normalization to stabilize and accelerate 

the training of the neural network. Following pre-processing, the images undergo segmentation 

using a U-Net model, a deep learning architecture well-suited for biomedical image analysis. 

The U-Net effectively isolates key components of the WBCs, specifically the nucleolus and 

cytoplasm, by generating precise segmentation masks. Finally, the cytoplasm-to-nucleolus 

(C/N) ratio is calculated by measuring the segmented areas of the cytoplasm and nucleolus. 

This ratio serves as an important diagnostic metric in identifying abnormal WBC morphology, 

aiding in the detection of various hematological conditions. Figure 1 shows the proposed block 

diagram.[13] 
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Figure 1. Proposed Block Diagram of WBC Image Segmentation 

The image segmentation task for white blood cell (WBC) analysis is handled using a 

custom U-Net architecture, a convolutional neural network specifically customized for 

biomedical image segmentation. The U-Net backbone is designed with a symmetric structure 

comprising an encoder (downsampling path) and a decoder (upsampling path), which allows 

for efficient feature extraction and accurate localization. The model includes standard deep 

learning layers such as convolutional layers for feature extraction, batch normalization to 

stabilize and speed up training, ReLU activations for non-linearity, max pooling for 

downsampling, and upsampling layers to reconstruct the segmented output at the original 

resolution. 

The U-Net architecture used in this work, follows the standard encoder-decoder 

structure with skip connections, which enables precise localization by combining high-

resolution features from the contracting path with contextual information from the expansive 

path. The encoder consists of a series of convolutional blocks, each containing two 

convolutional layers with a kernel size of 3 × 3, followed by a rectified linear unit (ReLU) 

activation and a 2 × 2 max-pooling operation for downsampling. The number of filters doubles 

at each downsampling step, typically starting from 64 and increasing to 128, 256, 512, and up 

to 1024 in the bottleneck layer. 

Within the decoder, the upsampling process involves iterative steps. Each step starts by 

increasing the spatial dimensions of the feature map using a 2 × 2 transposed convolution(up-

convolution). To retain fine-grained details, the upsampled feature map is then concatenated 

with the corresponding high-resolution feature map from the encoder through skip connections. 

These combined features are further refined by two consecutive 3 × 3 convolutional layers with 

ReLU activation. The number of feature channels is progressively reduced by half at each 

upsampling stage, mirroring the encoder's contraction. The final output layer utilizes a 1 × 1 

convolution to produce a feature map with the desired number of classes (nucleus and 

cytoplasm), followed by a softmax activation depending on the segmentation strategy. 
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Batch normalization is applied after each convolutional layer to stabilize learning and 

accelerate convergence. This architecture enables the model to learn both global context and 

fine-grained details, making it well-suited for biomedical image segmentation tasks like WBC 

component analysis. 

The dataset was divided into three subsets for training, validation, and testing purposes, 

with a split ratio of 70%, 15%, and 15%, respectively. To enhance the model's ability to 

generalize to unseen data, data augmentation techniques, including rotations, flips, zoom 

operations, and brightness modifications, were applied to the training set. The model was 

trained using the Adam optimization algorithm with an initial learning rate of 0.001 and a batch 

size of 16. The binary cross-entropy function was used to calculate the loss during training. 

Early stopping and learning rate scheduling were used to optimize training. The framework was 

implemented on Google Colab with GPU support. Binary focal loss was used to handle class 

imbalance by focusing more on hard-to-segment regions like the nucleus and cytoplasm, 

improving accuracy in detecting smaller structures. 

3.1 Training Details 

The model is trained using the Adam optimizer with a learning rate of 0.0004 ensuring 

adaptive learning during training. For the loss function, binary focal loss (with gamma = 2) is 

employed to address class imbalance and focus more on difficult-to-classify pixels. The training 

was conducted for 60 epochs using a dataset comprising 50 paired samples of WBC images and 

their corresponding segmentation masks. A separate set of unseen blood cell images was used 

for testing to evaluate the model’s generalization capabilities.[14] 

The pre-processing pipeline included several important steps: 

• Image resizing to 256 × 256 pixels to ensure uniform input size. 

• Normalization by scaling pixel values to standardize intensity. 

• Grayscale conversion, simplifying the image structure and reducing computational 

complexity 

3.2 Model Performance 

To determine the model's performance, the Jaccard Coefficient (Intersection over 

Union) was used as the primary metric. The model achieved an accuracy of 80% on the test set, 
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indicating reliable performance in segmenting the nucleolus and cytoplasm of WBCs. Despite 

a moderately high final loss of 1.2, the model demonstrates robustness in WBC image 

segmentation tasks with limited data. 

Figure 2. U-Net Architecture [16] 

The U-Net architecture (Figure 2) consists of four main stages. The Contracting Path (Encoder) 

captures image context using repeated 3×3 convolutions followed by ReLU and 2×2 max 

pooling, doubling feature channels from 64 to 1024. The Bottleneck connects encoder and 

decoder with two 3×3 convolutions and an up-convolution, reducing channels from 1024 to 

512. The Expanding Path (Decoder) upsamples the features using transposed convolutions, 

concatenates with encoder features (skip connections), and applies two 3×3 convolutions, 

gradually reducing channels from 512 to 64. Finally, the Output Layer uses a 1×1 convolution 

to map the features to the desired number of classes for segmentation. In this work, the 

Categorical Cross-Entropy (CCE) loss function is sufficient for handling the two-level 

segmentation task involving both the nucleus and cytoplasm. [14] 

 Result and Discussion 

Figure 3(a) shows the WBC input image of a neutrophil, while Figures 3(b) and 3(c) 

depict the segmented nucleus and cytoplasm regions of the neutrophil using the U-Net 

architecture. Figure 4(a) displays the WBC input image of an eosinophil, and Figures 4(b) and 

4(c) show the segmented nucleus and cytoplasm regions of the eosinophil using U-Net. Figure 

5(a) presents the WBC input image of a basophil, with Figures 5(b) and 5(c) illustrating the 

segmented nucleus and cytoplasm regions of the basophil using U-Net. Finally, Figure 6(a) 

shows the WBC input image of a monocyte, and Figures 6(b) and 6(c) display the segmented 

nucleus and cytoplasm regions of the monocyte using the U-Net architecture. 
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         (a) Input Image                      (b) Nucleus of WBC                (c) Cytoplasm of WBC 

Figure 3. Neutrophil 

 

          (a) Input Image                     (b) Nucleus of WBC                   (c) Cytoplasm of WBC 

Figure 4. Eosinophil 

 

        (a) Input Image                  (b) Nucleus of WBC                  (c) Cytoplasm of WBC 

Figure 5. Basophil 

 

               (a) Input Ima                  (b) Nucleus of WBC             (c) Cytoplasm of WBC 

Figure 6. Monocyte 
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4 .1 Determination of Nucleus- Cytoplasm Ratio of WBC Analysis. 

The inference from the Table 1 analysis of neutrophil images based on the nucleus-to-

cytoplasm (N/C) pixel ratio. The healthy neutrophils typically exhibit N/C pixel ratios and mean 

ratios close to 1, reflecting a balanced proportion between nucleus and cytoplasm. In contrast, 

unhealthy neutrophils show significantly higher N/C ratios (greater than 1.5), suggesting an 

enlarged nucleus or reduced cytoplasm, features commonly associated with abnormal or 

pathological conditions. These observations highlight that the N/C ratio, both in terms of pixel 

count and mean intensity, serves as a reliable indicator for identifying potential abnormalities 

in neutrophil morphology. 

Table 1. Neutrophil (the Nucleus-Cytoplasm Ratio with Respect to their Pixel Values 

and Ratio of Mean) 

Figure 

No. 

No. of 

pixels(N) 

No. of 

pixel (C) 

N/C 

Ratio(P) 

Mean Mean N/C 

ratio(m) 

Result 

 Nucleus cytoplasm  Nucleus Cytoplasm   

1 10164 10606 0.9583 14.0528 15.7522 0.9125 Healthy 

2 15896 18032 0.8816 33.0139 39.2641 0.8448 Healthy 

3 14870 13819 1.0759 31.3286 30.8258 1.015 Healthy 

4 12077 15598 0.7744 22.336 31.2474 0.7236 U.H 

5 11879 7798 1.5226 25.6625 17.1831 1.4663 UH 

6 15896 19032 0.8353 35.9927 41.8241 0.8638 Healthy 

7 18078 8778 2.0582 28.9141 14.322 1.9523 UH 

8 11239 4996 2.2471 22.5486 10.2096 2.1107 UH 

9 12366 10660 1.1598 22.903 18.6996 1.2133 Healthy 

10 6824 3356 2.0303 14.6884 7.322 1.8851 UH 

11 13334 14620 0.9121 28.6628 30.4773 0.9423 Healthy 

The observed from the Table 2 eosinophil analysis. The healthy cells generally have 

higher N/C pixel ratios (around 1.8–2.0) and corresponding mean ratios, indicating a prominent 

nucleus. Unhealthy cells tend to have lower ratios, suggesting morphological abnormalities. 
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Table 2. Eosinophil- Nucleus- Cytoplasm Ratio with Respect to their Pixel Values and 

Ratio of Mean. 

Figure 

No. 

No. of 

pixels(N) 

No. of 

pixel (C) 

N/C 

Ratio(P) 

Mean Mean N/C 

ratio(m) 

Result 

 Nucleus Cytoplasm  Nucleus Cytoplasm   

12 6824 3356 2.0301 13.6884 6.3224 1.8850 Healthy 

13 12509 6595 1.8956 24.9142 11.7521 1.9570 healthy 

14 12014 6525 1.8399 25.4213 12.4103 1.9028 Healthy 

15 12183 13180 0.9244 26.2351 26.1432 1.0032 U,H. 

16 14127 7550 1.8699 23.7333 12.0765 1.8281 Healthy 

17 13334 14629 0.9115 27.6628 29.4773 0.9423 UH 

18 14706 23671 0.6214 26.2887 43.7175 0.6187 UH 

19 16776 11127 1,5072 27.8983 17.3793 1.5263 UH 

20 17681 22707 0.7787 21.903 17.6996 1.2133 UH 

21 15770 27061 0.5829 25.3058 47.4806 0.5518 Healthy* 

The analysis of Table 3 shows basophils reveals that most healthy cells exhibit high N/C 

pixel ratios (around 3.5 to 5.0) and similarly elevated mean ratios, indicating a nucleus-

dominant structure typical for basophils. Unhealthy cases show either extremely high or 

inconsistent ratios, suggesting morphological irregularities. Overall, both pixel and mean ratios 

effectively distinguish healthy from abnormal basophils 

Table 3. Basophil - Nucleus- Cytoplasm Ratio with Respect to their Pixel Values and 

Ratio of Mean 

Figure 

No. 

No. of 

pixels(N) 

No. of 

pixel (C) 

N/C 

Ratio(P) 

Mean Mean N/C 

ratio(m) 

Resu

lt 

 Nucleus cytoplasm  Nucleus Cytoplasm   

22 26223 4304 6,080 17.4164 3.8483 3.3200 U.H 

23 

16204 4076 

3.9681 

10.4491 1.5337 

3.5306 Healt

hy 

24 

28448 8337 

3.5093 

59.2961 13.7867 

3.8827 Healt

hy 

25 24736 5636 4.3829 50.1382 11.0224 4.0037 healt
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hy 

26 

30517 6067 

5.0233 

50.3833 8.9865 

4.7676 healt

hy 

27 26920 5064 5.3074 36.0445 8.0706 3.7777 UH 

28 26894 10867 2.4734 56.9717 22.9517 2.3634 UH 

29 

32711 6576 

4.9682 

59.4263 11.1142 

4.6839 Healt

hy 

30 

40832 8661 

4.7101 

76.3398 15.5815 

4.4557 Healt

hy 

31 

35456 7039 

5.0313 

54.9406 10.6219 

4.5112 Healt

hy 

 

   Table 4 shows that healthy monocytes have a higher nucleus-to-cytoplasm (N/C) pixel 

ratio and a higher mean intensity ratio, typically with N/C values above 3.0 and mean ratios 

above 3.0. In contrast, unhealthy (UH) monocytes display lower N/C ratios (around or below 

2.0) and more balanced or higher cytoplasm intensities. Thus, both pixel and intensity-based 

N/C ratios effectively distinguish healthy from unhealthy monocytes. The results were obtained 

using the figures collected from White Blood Cells Dataset [15].  

Table 4. Monocyte - Nucleus- Cytoplasm Ratio with Respect to their Pixel Values and 

Ratio of Mean 

Fig 

No. 

No. of 

pixels(N) 

No. of 

pixel (C) 

N/C 

Ratio(P) 

Mean Mean N/C 

ratio(m) 

Resul

t 

 Nucleus cytoplasm  Nucleus Cytoplasm   

32 
19666 

4628 

4.2423 
29.775 

0.2732 

3.8717 Healt

hy 

33 
19724 

5454 

3.6116 
47.8477 

2.8916 

4.4872 Healt

hy 

34 
22835 

6423 

3.5512 
40.6659 

3.693 

3.7001 Healt

hy 

35 24820 6178 4.0012 49.179 1.8593 5.0512 UH 

36 27628 6649 4.1504 42.9046 4.9731 3.5333 Healt
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hy 

37 
25090 

6718 

3.9401 
42.3982 

5.6802 

3.7070 Healt

hy 

38 14511 13210 1.0984 14.1973 14.98 0.9686 UH 

39 23332 8982 2.5958 46.134 35.669 1.2291 UH 

40 11063 8982 1.3044 10.9215 6.3926 1.2767 UH 

41 
18668 

6095 

3.0288 
26.6628 

2.369 

3.0152 Healt

hy 

4.2 U-Net Model Training and Validation Graph 

Figure 7 shows the training and validation graph of U-Net. From the figure, it is 

observed that the number of iterations increases, and the validation accuracy maintains stable 

position. The x-axis indicates number of iterations and y-axis indicates an accuracy of the plot.  

 

 

 

 

 

 

Figure 7. Training and Validation Graph 

 Conclusion    

The segmentation of white blood cells was performed using the U-Net architecture, 

incorporating preprocessing steps such as resizing images to 256×256 pixels and applying batch 

normalization to enhance model stability and performance. The model, trained and evaluated 

on Google Colab, achieved an accuracy of 80%. Following segmentation, the cytoplasm-to-

nucleus (C/N) ratio was analyzed across different WBC types,Neutrophils, Eosinophils, 

Basophils, and Monocytes—to assess structural differences relevant to identifying abnormal 
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cells. The N/C ratio is a clinically valuable indicator, with elevated values often linked to 

malignancies like leukemia. This automated approach enables more reliable and consistent 

early diagnosis by minimizing human error and inter-observer variability. 
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