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Abstract 

The humongous volumes of data utilized to train the machine learning models are 

vulnerable to leakage by model inversion attacks and membership inference attacks. These 

days, massive amounts of research are being conducted to leverage differential privacy to 

safeguard the privacy of users. Tabular data generation from differentially private generative 

adversarial networks is still an untapped area. This work suggests a framework to enhance 

privacy protection in generating synthetic data by utilizing Wasserstein distance. The developed 

architecture generated synthetic data that replicated the time series relations of real-world data 

without compromising identifiable features of members of the input data. Results obtained from 

the architecture were compared with two other current GAN frameworks, DP-WGAN, and 

Time GAN. The privacy vs. utility tradeoff was found to be improved in the case of the 

architecture under discussion, as can be seen from the RMSE scores and Overall Quality Report. 

Keywords: Generative Adversarial Networks; Synthetic Data; Differential Privacy; Privacy-

Utility Trade-Off; Time-Series Data; Tabular Data; Wasserstein Distance. 

 Introduction  

Machine Learning (ML) has become a part of many industries, from business and 

medicine to government administration [1]. This is due to ongoing development and ever-
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growing flexibility. Yet, generating top-performing models not only needs vast amounts of data 

but also high computational capacities. Recent developments in hardware, like high-

performance CPUs and GPUs, along with cloud-based operations have eased many 

computational limitations. Conversely, the presence of data, though plentiful, poses a different 

problem: the safe, ethical, and privacy-respecting manipulation and utilization of said data is 

still an unresolved issue [2]. This constraint is a significant bottleneck to the wider and safer 

use of ML and DL technologies. Today, model exploitation can be avoided by redesigning the 

architectures of the models to be more secure [6] or by training the models on synthetic data 

[7]. The former represents a much more labor-intensive process. This is due to the fact that 

moving from an old architecture to a new one is difficult. Alternatively, the latter may not lead 

to as much model utility. 

Synthetic Data Generation (SDG) is the creation and tagging of machine generated data 

that is very much like actual world data. SDG is generally applied in order to fill gaps in datasets 

or to substitute highly sensitive data. Businesses use synthetic data to train their models to 

safeguard privacy and avoid data leaks. For instance, to balance patient data privacy and 

facilitate AI research, NHS England partnered with researchers to create synthetic medical 

records through GAN-based models under differential privacy. The aim was to permit hospitals 

and researchers to study patient trends without revealing sensitive health data. By substituting 

actual patient data with privacy-protecting synthetic data, the models retained high utility for 

predicting disease progression and the risk of readmission for patients. Such an approach 

maintained GDPR compliance while facilitating innovation. The suggested LSTM-augmented 

DP-WGAN model can be applied across privacy-sensitive industries that process time-series 

tabular information, including healthcare, finance, and energy systems. 

For instance, in a healthcare setting, synthetic patient records with actual real-time vital 

signs or medication history can be created and made available to researchers without invading 

the privacy of patients. The system may be plugged into the data pipeline of an organization, 

receiving actual data, adding differential privacy mechanisms, and producing synthetic data. In 

banking environments, the system may produce realistic transaction records for fraud detection 

models without the customer identities being disclosed.  In energy applications, synthetic 

replication of smart meter's time-series data is possible for load forecasting or infrastructure 

planning. The synthetic data features may be very similar to real-world data but not exactly the 

same due to privacy-utility trade-off [8]. As the synthetic and original data become more 
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similar, the privacy measure of the synthetic data decreases, but the utility improves. Increasing 

the privacy measure of the synthetic data makes the similarities between the generated and 

original data sparse, leading to reduced usefulness of the synthetic data. A good balance in the 

privacy-utility trade-off needs to be determined depending on the requirements of the company. 

 Literature Review 

The revolutionary advances made in deep learning have raised the use of deep learning 

models in a diverse range of sectors, but this has also exposed the models to different privacy 

challenges. Research conducted by Ximeng Liu et al. [3] and Hui Sun et al. [4] classifies and 

describes a broad variety of Deep Neural Network (DNN) and Generative Adversarial Network 

(GAN) vulnerabilities, specifically model inversion attacks, which are capable of reversing-

sensitive training data based on model parameters [5]. All these issues underline the necessity 

for strong privacy-preserving mechanisms within synthetic data generation. Synthetic Data 

Generation (SDG) tries to strike a balance between data utility and privacy by generating 

artificial data that replicates real-world datasets while retaining the utility and privacy scores 

specified by the application needs. Yet, as synthetic data becomes increasingly realistic, privacy 

threats grow as well, with the perennial privacy-utility trade-off [7]. Differential Privacy (DP) 

offers an exact mathematical system to address this issue. The paper by Martin Abadi et al. [8] 

proposed DP-SGD, a base training algorithm that uses noise and gradient clipping to ensure 

privacy at the cost of little utility loss. 

GANs have been widely used for DP data generation because of their better generative 

performance. In contrast to Variational Autoencoders (VAEs), GANs generally require simpler 

training configurations and provide high-quality outputs. The Wasserstein GAN (WGAN), 

introduced by Arjovsky et al. [11], substituted the Jensen-Shannon divergence with the 

Wasserstein distance, enhancing convergence and stability. To solve the privacy issues of 

WGANs, Dingfan Chen et al. [10] proposed the Gradient Sanitized WGAN (GS-WGAN) that 

selectively applies gradient clipping, providing robust privacy guarantees. Subsequently, 

Liyang Xie et al. [15] investigated noise addition and weight clipping mechanisms for 

differentially private WGANs, whereas Jinsung Yoon et al. [16] generalized GANs to the time-

series domain with the TimeGAN model that employs supervised loss to learn temporal patterns 

better. 
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In addition, research like Pepijn te Marvelde [13] and Valtteri Nieminen [14] modified 

GS-WGAN to produce time-series and tabular data, respectively. Te Marvelde proved that 

image-based architectures can be used for time-series synthesis, and Nieminen utilized 

subsampling for privacy amplification in training. Xie et al. [17] proposed a DP-GAN 

framework that incorporates representation learning, making it more efficient to synthesize 

complicated tabular data. Though their model improves utility, it is computationally expensive 

and does not perform well on sparse, high-dimensional inputs. Chen et al. [18] introduced 

PrivSyn, which trades off privacy and utility with sophisticated GAN training methods; 

however, it has not been subjected to thorough evaluation on real-world downstream tasks and 

thus has limited practical understanding. In healthcare applications, Esteban et. al.[19] 

introduced Recurrent Conditional GANs (RCGANs) to synthesize realistic medical time-series 

data with excellent temporal coherence. However, their approach doesn't include formal 

differential privacy mechanisms, potentially introducing gaps in privacy guarantees. Feature-

label protection. Torkzadehmahani et al. [20] presented DP-CGAN, enabling supervised 

learning on privacy-protected synthetic data with robust privacy guarantees; however, it doesn't 

naturally extend to multivariate or long-range sequential data. Zhang et al. [21] designed a two-

stage GAN that enhances temporal pattern generation with privacy constraints but has a 

complicated structure requiring considerable training effort and hyper parameter adjustment. 

Lastly, Mohamed et al. [22] introduced Secure GAN, which scales DP-GANs for enterprise-

level deployment and high-dimensional data. Even so, the model suffers from limitations in 

preserving sample diversity while scaling to extremely large sets. 

In summary, the literature review offers a solid foundation for applying GANs to 

synthetic data generation with privacy preservation. WGAN and GS-WGAN were the two 

frameworks of choice because they strike a balance between utility and convergence. 

Mechanisms based on differential privacy such as DP-SGD and gradient sanitization enhance 

privacy guarantees. Although attempts are ongoing to extend GANs to tabular and time-series 

data, there is scope to enhance model flexibility, efficiency, and evaluation methods. 

The following were inferred from the literature survey: 

• Methods such as DP-SGD and gradient sanitization make it possible for GANs to 

offer privacy assurances without a substantial loss of utility. 

• Wasserstein distance improves training stability in GANs over previous adversarial 

losses. 
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• Time GAN and GS-WGAN extensions were demonstrated to work efficiently in 

producing time-series and tabular data. 

• Prior image-based GANs can be employed for tabular and time-series data 

generation with high utility and privacy. 

2.1 Research Gaps 

• Methods such as gradient sanitization become computationally costly when applied 

to large scale data. 

• Memory-based models such as LSTMs can inadvertently hold sensitive patterns 

present in real data, which necessitates the precise tuning of privacy parameters. 

• Several GAN architectures are tailored towards particular types of data and might 

not be effective for structured data formats such as tabular time-series. 

• Quantitative evaluation of both privacy and data utility is still challenging and 

without standard metrics 

 Background 

3.1. Differential Privacy 

The foundation of many algorithms that use privacy protections is Differential Privacy 

(DP) [9].  DP uses a mathematical definition of privacy that blends machine learning constraints 

with statistical thresholds.  Regardless of whether a person's private information is included in 

the differentially private analysis, DP mathematically guarantees that the results will be the 

same.  (ε,δ)-DP is a randomized mechanism M with range R, if holds for any subset O and for 

adjacent datasets S and S^', where both differs by one training sample as shown in formula (1). 

Pr[ℳ(𝑆) ∈  𝒪] ≤ 𝑒𝜀  . Pr[ℳ(𝑆′) ∈  𝒪] +  𝛿 (1) 

M is the training algorithm and ε corresponds to the upper bound of privacy loss whereas 

δ corresponds to the probability of breaching DP constraints. 

3.2 Wasserstein Distance 

Wasserstein Distance (WD) is similar to a cost function since it is calculated via the 

minimum amount of work [8]. represents the quantity of work needed to discover similarities 

among distributions. As WD is a distance function, it can be applied to a wide range of machine 

learning issues that can be formulated in metric space. The main advantage of WD compared 
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to other distance methods is that it can be employed with any type of data and distribution. The 

Wasserstein loss function is an integral component of Wasserstein GANs (WGANs) and plays 

a crucial role in stabilizing the GAN training process. 

Classical GANs employ Jensen-Shannon (JS) divergence, which tends to produce 

vanishing gradients and unstable training. Wasserstein distance gives smoother gradients, 

enabling the generator to learn better. In contrast to JS divergence, Wasserstein loss gives a 

continuous and interpretable measure of how close the generated distribution is to the real 

distribution. A lower Wasserstein loss value indicates that generated samples are closer to real 

data. WGANs are less likely to collapse the mode of the generated data, where the generator 

produces more similar output. Wasserstein distance aids GANs in converging more stably 

during training, particularly when used together with methods such as gradient penalty or 

gradient sanitization. Within the proposed architecture, the discriminator (critic) calculates 

Wasserstein loss between fake and real time-series samples. This loss helps the generator 

enhance its outputs, generating more realistic and temporally coherent synthetic data. 

3.3 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) are models utilized in the generation of novel 

data from a given input dataset, mimicking patterns or regularities in the initial dataset. The 

GAN identifies these patterns by breaking up the problem of unsupervised learning into a 

problem of supervised learning. This is done with the aid of two sub-models known as the 

generator and the discriminator. 

The generator model is trained to produce new data, whereas the discriminator model is 

created to label data as fake or real.  The generator trains to deceive the discriminator, into 

thinking the data is original. The discriminator on the other hand, trains to label more precisely 

whether the data is original or generated. The discriminator predicts the class label of the data 

as real or fake according to examples provided by the domain. The training dataset consists of 

actual examples along with synthetic examples from the generator model. This way, the two 

models engage in an adversarial game that culminates in the generator being capable of 

producing synthetic data that can deceive the discriminator into believing it is real. 

 

 



 Sathiyapriya K., Mridula M., Kumaresh S., Sravya Vankadara 

ISSN: 2582-2640  218 

 

 Proposed Methodology 

This research work achieves the generation of artificial tabular time series data through 

the use of the GS-WGAN architecture to impart differential privacy to the training data. The 

utility versus privacy trade-off the generated data is observed and noted against two 

benchmarked GAN models mentioned. The ADANI GREEN dataset is utilized as the real-

world input to the used GAN architectures. The performance of the resulting synthetic data is 

measured by training an LSTM model on actual data and evaluating it on the generated data 

from each of the models. For privacy monitoring, data point similarity between the real and 

synthetic datasets is monitored. 

4.1 DP-TWGAN Architecture 

The DP-TWGAN architecture, depicted in Figure 1, builds upon the core DP-WGAN 

framework through the addition of two significant changes: (i) replacing weight clipping with 

gradient sanitization, and (ii) adding Long Short-Term Memory (LSTM) units to both the 

generator and discriminator. Gradient sanitization, a mechanism introduced in GS-WGAN [10], 

provides enhanced convergence for differentially private Wasserstein GANs through the 

selective use of gradient clipping on a set number of parameters. This bound clipping limits 

oscillation near local minima, allowing for quicker convergence than standard weight clipping 

but at increased computational expense. 

In the architecture presented, in Figure 1, LSTM (Long Short-Term Memory) is utilized 

prominently in tabular time-series data generation in the generator and discriminator operations. 

The LSTM component in the generator learns the temporal relationship within the input noise 

vector and assists in generating sequential data that replicates the patterns and structures of real-

world datasets. As LSTM can maintain memory over long-time steps, it keeps generated 

samples consistent over time which is important in time-series synthesis. The LSTM in the 

discriminator assesses the temporal coherence of real and artificial sequences, helping to detect 

temporal patterns and anomalies in the synthesized sequences. This enhances the ability of the 

discriminator to differentiate between actual and artificial data. It also assists in the computation 

of the Wasserstein loss more accurately by taking into account not only feature distribution but 

also time-dependent relationships. 
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The addition of LSTM units addresses the temporal dependencies inherent in sequential 

data, taking advantage of LSTMs’ ability to store memory in order to capture long-range 

patterns better. Yet, this temporal memory also poses the risk of privacy, since LSTMs might 

inadvertently store and forward sensitive features from the actual data. Therefore, the privacy 

parameters should be well-adjusted in order to achieve a proper privacy-utility tradeoff. 

 

Figure 1. Overall Architecture of DP-TWGAN 

• Utility 

The utility of the proposed model is compared with pre-existing models as shown in Fig 

2. Each model's usefulness is evaluated by making a price prediction using Long Short-Term 

Memory (LSTM).  The original ADANI GREEN dataset is used to create synthetic data for 

each model.  The generated data is statistically compared to the original dataset following 

Synthetic Data Generation (SDG).  The LSTM model is trained using the data that each model 

synthesizes following the statistical comparison.  The original dataset is used for testing in order 

to simulate real-world situations.  The performance of the GAN models is evaluated based on 

the RMSE scores obtained for each model.  To guarantee an objective investigation, the privacy 

bound of each model is set to be the same during the performance comparison. 
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Figure 2. Utility Comparison 

• Privacy 

As illustrated in Figure 3, the privacy of the suggested model is contrasted with that of 

existing models.  The purpose of the privacy comparison is to assess the models' vulnerability 

and privacy bounds.  The datasets produced by each model are used to efficiently calculate the 

privacy scores. This facilitates a clear understanding of each model's limitations and 

shortcomings. Based on various privacy metrics and an overall quality report, the original 

dataset and the synthetic time-series dataset produced by each model are compared.  For every 

model, the privacy-utility ratio is monitored and evaluated. 

 

Figure 3. Privacy Comparison 
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 Implementation 

5.1 DPWGAN 

Here, the objective function is the loss function of the Wasserstein GAN. DP-WGAN 

applies randomized response in order to add random noise to the output of the discriminator, 

making it harder for the generator to learn about the sensitive data in the training dataset. The 

privacy budget parameter determines the level of noise addition. DP-WGAN applies weight 

clipping and Wasserstein distance to achieve convergence of parameters. 

A random permutation of the dataset is created with a random permutation function, and 

a batch of samples is extracted from the data by slicing. Fake samples are created with the 

generator network. The loss of the discriminator is computed as the negative of the difference 

between the mean scores of real and fake samples and is backpropagated through the 

discriminator network when the discriminator weights are updated with the optimizer. The 

weights are clipped for privacy. The loss of the generator is thereafter computed using the 

discriminator’s score, aiming   to maximize the discriminator's score for synthetic samples. The 

gradients are then backpropagated through the generator, and a step in the gradient's opposite 

direction is taken by the generator's optimizer to update the weights of the generator. 

5.2 TimeGAN 

TimeGAN [16] is a GAN-based model that has the capability to generate precise time-

series data across diverse domains. TimeGAN is able to learn the stepwise conditional 

distributions in the data through the use of original data for supervision and by including a 

stepwise supervised loss. To offer a reversible transformation between features and 

representations, an embedding network is employed to reduce the high dimensionality of the 

adversarial learning space. On this basis, the recovery networks, the discriminator, and the 

generator are implemented as recurrent neural networks, each providing their own respective 

features. The discriminator serves to capture stepwise conditional distributions, whereas the 

network is useful for offering a reverse mapping of features. 

5.3 DP-TWGAN 

Differentially Private-Time based Wasserstein GAN (DP-TWGAN) is employed to 

create differentially private synthetic time series data. The DP-TWGAN consists of two primary 
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parts: a generator used to create new time series data similar to actual data, and a discriminator 

that attempts to identify real and synthetic data. The generator is designed as an LSTM neural 

network with one or more layers of hidden units. It accepts a random noise vector as input and 

produces a sequence of values that are supposed to approximate a time series. The discriminator 

is similarly an LSTM neural network but with one output node that determines if the input 

sequence is real or fake. The GAN model is then trained by cycling through training the 

generator to create realistic data and training the discriminator on how to identify real and fake 

data correctly. 

The DP-TWGAN specifies a personalized loss function involving the Wasserstein 

distance and the gradient penalty to ensure that the generator generates realistic data close to 

the real data. Furthermore, a PyTorch DataLoader is employed to feed the actual data into the 

DP-TWGAN model for training. Differential privacy is applied by defining hook functions at 

last. A hook function is an in-between function that is attached to a neural layer. It manipulates 

intermediate outputs or gradients of the neural layers during the forward and backward 

propagations. In order to defend against attacks from adversaries, the hook function injects 

noise into the gradients (generator and discriminator parameters) during training. DP-TWGAN 

training is illustrated in Algorithm 1. 

Algorithm 1 The training of DP-TWGAN 

Input: Number of epochs num_epochs, DataLoadertrain_loader, Batch size batch_size, 

Input dimensions input_dim, Output dimensions output_dim, Discriminator function 

discriminator, Generator function generator, Wasserstein loss with gradient penalty 

wasserstein_loss_gp 

Output: Trained discriminator module discriminator, Trained generator module generator 

1. Initialize n=0 

2. for each epoch in range(num_epochs): 

    a. for each batch in train_loader: 

 i. Extract the input feature from the batch and take only the first output_dim features as 

real_x 

        ii. Create a tensor of ones with shape (batch_size, 1) as real_y 

        iii. Generate a fake feature set by passing the input feature through the generator and 

take only the first output_dim features as fake_x 

       iv. Create a tensor of zeros with shape (batch_size, 1) as fake_y 

v. Pass real_x and fake_x through the discriminator and obtain the outputs dis_real and 

dis_fake respectively 

        vi. Compute the Wasserstein loss with gradient penalty using dis_real, dis_fake, real_x 

and fake_x as input to the wasserstein_loss_gp function and store the result in loss_d 

      vii. Zero out the gradients of the discriminator optimizer 
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       viii. Compute the gradients of the loss_d with respect to the parameters of the 

discriminator 

        ix. Update the discriminator parameters using the optimizer_d 

        x. If n is divisible by 5, then: 

            a. Generate a fake feature set by passing the input feature through the generator and 

take   only the first output_dim features as fake_x 

            b. Pass fake_x through the discriminator and obtain the output dis_fake 

            c. Compute the loss_g as the negative mean of dis_fake 

            d. Zero out the gradients of the generator optimizer 

            e. Compute the gradients of the loss_g with respect to the parameters of the generator 

            f. Update the generator parameters using the optimizer_g 

            g. Increment n by 1 

5.3.1 Generator 

The generator structure of the suggested DP-TWGAN is made up of fully connected 

units and an LSTM unit to produce data. The random noise is obtained sequentially to preserve 

the nature of temporal spatiality. Synthetic data is produced using the random noise in every 

iteration. The neurons are stimulated using the noise and hidden states as input. The output of 

the LSTM layer is fed into fully connected layers to generate individual attributes. To apply 

differential privacy to the model's architecture, the generator receives a certain level of noise 

according to the privacy budget. To improve the capture of the time dependency among each 

datum, LSTM is added to the fully connected layers. This improves the capacity of the model 

to generate data with temporal locality. While it diminishes the privacy budget since additional 

memory is being added through the use of the LSTM, it enhances the utility of the synthetic 

data. Despite introducing noise, the gradients of the fully connected layer parameters, hidden 

layer parameters, and LSTM model parameters are clipped to avoid parameter convergence. 

Weight clipping is not implemented, and clipping of gradients is employed instead to enhance 

the rate of convergence of the model over its ancestor. 

5.3.2 Discriminator 

The architecture of the Discriminator contains fully connected layers and an LSTM 

layer to detect synthesized and real data. Every feature is associated with the LSTM layer, which 

indicates a sequence of time. The result of the LSTM layer is fed to a fully connected layer in 

order to provide scores according to the Wasserstein loss function. The whole array of features 

is mapped to numbers indicating the latent space. The Wasserstein loss measures how close the 

latent space distribution of the provided data is to the original dataset's latent space. 
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Discriminator scores more accurately with increased iterations. At the same time, the generator 

also produces higher-quality synthetic data based on more knowledge of the initial latent space. 

Similar to the generator model, object perturbation is implemented in the Discriminator's 

training phase. Gradient clipping is also implemented to attain parameter convergence despite 

noise injection. The Discriminator goes through five cycles of training for every training 

iteration of the generator to avoid mode collapse and to prevent the generator from employing 

recurring patterns to deceive the Discriminator. 

 Evaluation and Results 

6.1 Observing Utility 

Utility measurement is done to evaluate the synthetic dataset created in the real world. 

Utility measurement has been done for downstream model utility. Downstream model utility is 

applied to measure how efficient the created dataset is for downstream operations within a 

system or pipeline. The downstream utility highlights the significance of the real-world models 

that will be using the synthetic time-series dataset created. To this end, an LSTM model is 

trained to carry out stock price prediction for Adani Green stock. The closing price of the 

subsequent minute is calculated based on the 6-dimensional input using the LSTM model. The 

synthetic time series dataset is employed to train the LSTM model and the learned LSTM model 

is validated on the original dataset. 

The usefulness of the created dataset is assessed through the Root Mean Square Error 

(RMSE), which indicates how dense the data is around the best-fit line. For verifying 

experimental data, root mean square error is typically utilized in forecasting as well as 

regression analysis. The value of RMSE is calculated in the following way: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)2𝑁

𝑖=1

𝑁
 

(2) 

where Predictedi stands for the predicted ith value, Actuali stands for the actual ith 

value, and N stands for the total number of samples. Figure 4 displays the results of training 

and testing the model on the original dataset.  High levels of overlap between the actual and 

predicted values demonstrate the model's exceptional performance during the training and 

testing stages. The RMSE scores for the test and train sets are 0.19 and 0.17, respectively.  
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However, the sensitive data is extremely vulnerable to leakage because the model uses it 

directly. 

 

Figure 4. Original Dataset based Model Performance 

6.1.1 DP-WGAN 

The DP-WGAN model was tested by fine tuning hyper parameters such as epochs, batch 

size. number of critics, hidden dimensions, noise dimensions, and privacy budget (sigma value) 

as shown in Table 1. 

Table 1. Hyper Parameter Tuning for DP-WGAN 

Batch Size Epochs 
Number of 

Critics 

Hidden 

Dimensions 

Noise 

Dimensions 
Sigma 

Utility 

(RMSE 

Score) 

Privacy 

64 100 3 8 10 1 17.04 76.3% 

64 400 5 10 15 3 13.82 79.8% 

128 100 5 10 15 1 21.07 90.5% 

128 200 8 15 10 3 20.47 89.1% 

128 400 10 20 20 5 17.62 88.4% 

256 100 1000 10 20 1 11.71 87.9% 

Table 1 shows that smaller batch sizes and fewer critics result in more useful and private 

generated data.  When batch sizes were smaller than larger batches, the introduction of noise, 
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which Sigma controlled, had an impact on the privacy scores.  Lower epochs were tested more 

for efficiency because the number of epochs did not seem to have a significant impact on 

privacy and utility. 

The LSTM model is trained using the dataset produced by DP-WGAN.  The model's 

performance with the dataset produced by DP-WGAN is shown in Figure 5.  The generated 

dataset is used to train the model, and the original dataset is used for testing.  With minimal 

overlap between actual and predicted values, the LSTM model performs poorly in both training 

and testing.  This is due to the DP-WGAN model's inability to create datasets while maintaining 

temporal locality and a lack of memory states.  The model's usefulness is rather low, even 

though the dataset has high privacy protection levels.  The model will not be useful in the real 

world due to its training RMSE score of 11.97 and test RMSE score of 21.07. 

 

Figure 5. DP-WGAN Synthesized Dataset based Model Performance 

6.1.2 Time GAN 

The TimeGAN model was tested by fine tuning hyper parameters such as epochs, batch 

size, sequence length, hidden dimensions, and noise dimensions as shown in Table 2. 

Table 2. Hyper Parameter Tuning for Time GAN 

Batch 

Size 
Epochs 

Sequence 

Length 

Hidden 

Dimensions 

Noise 

Dimensions 

Utility 

(RMSE 

Score) 

Privacy 

80 1000 10 20 20 1.53 66% 
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80 2000 12 25 20 2.09 68.2% 

100 2000 14 24 32 1.01 75% 

100 3000 20 30 30 1.87 73% 

125 2000 15 20 25 1.24 70% 

As the sequence length decreased, Time GAN's data became more useful.  The privacy 

score rose as a result of the increased noise dimensions.  For better utility and privacy trade-

offs, smaller batch sizes are typically more ideal.  The utility and privacy scores did not appear 

to be significantly impacted by the quantity of hidden dimensions or epochs. The LSTM model 

is trained using the Time GAN-generated dataset.  The model's performance with the Time 

GAN-generated dataset is shown in Figure 6.  Prior to testing on the original dataset, the model 

is trained on the generated dataset.  With exceptionally high levels of overlap between actual 

and predicted values, the LSTM model exhibits strong performance in both training and testing.  

This is because of the TimeGAN model's architecture, which aims to identify temporal 

relationships in the dataset and use those correlations to create a synthetic dataset.  The test 

RMSE score is 1.01 and the train RMSE score is 0.29.  The model's privacy scores are low, 

despite the dataset's high model utility, which makes it perfect for real-world situations. 

 

Figure 6. Time GAN Synthesized Dataset based Model Performance 
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6.1.3 DP-TWGAN 

As shown in Table 3, the DP-TWGAN model was tested by fine-tuning 

hyperparameters like epochs, batch size, number of critics, hidden dimensions, and privacy 

budget parameters (lambda and epsilon).  

Table 3. Hyper Parameter Tuning for DP-TWGAN 

Batch 

Size 
Epochs 

Sequence 

Length 

Hidden 

Dimensions 
Lambda Epsilon 

Utility 

(RMSE 

Score) 

Privacy 

80 500 5 20 0.3 0.3 29.07 80.09% 

85 750 10 25 0.7 0.4 13.56 77.81% 

100 1000 5 32 0.5 0.5 7.77 82.11% 

100 1500 10 30 0.8 0.5 14.45 67.19% 

125 1000 10 27 0.5 0.3 17.9 71.34% 

125 2000 15 32 0.9 0.8 7.63 79.40% 

The utility is impacted inversely by the epsilon value, whereas the privacy score is 

directly impacted.  The scores are not directly impacted by the batch size or the number of 

epochs.  It is found that relatively small values of epsilon and lambda are associated with higher 

utility and privacy. Fig. 7 displays the model's performance using the dataset produced by the 

DP-TWGAN.  The original dataset is used to test the model after it has been trained on the 

synthesized dataset.  The LSTM model exhibits very high levels of overlap between the actual 

and predicted values during training, demonstrating excellent performance.  The LSTM model 

initially performed poorly during the testing phase, exhibiting low levels of overlap, but it 

eventually recovered.  The LSTM model cannot effectively adjust to abrupt price fluctuations 

because of the stock prices' volatility. 

Temporal dependencies in the dataset are captured by the architecture of the DP-

TWGAN model, which then uses these dependencies to create a synthetic dataset.  Such 
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dependencies are captured by the LSTM layers, which are then used to train the discriminator 

and generator.  The test RMSE score is 7.77, while the train RMSE score is 0.27.  The dataset 

has sufficient levels of model utility, is practical for real-world use, and has higher privacy 

scores than TimeGAN and DP-WGAN. 

 

Figure 7. DP-TWGAN Synthesized Dataset based Model Performance 

6.2 Observing Privacy 

Four distinct metrics are combined to assess the generated datasets' privacy.  Outliers' 

proximity to the rest of the data set's normal distribution is calculated using the Nearest 

Neighbour Distance Ratio (NNDR). The distance between the closest record and the next 

closest record is used to compute the NNDR.  While synthetic data points with NNDR values 

close to 1 are near the original points in dense regions of the original data, those with NNDR 

values close to 0 are closer to the original data's sparse points.  The degree of privacy increases 

with the extent to which the NNDR distribution of synthetic data matches that of real data.  The 

following is the Nearest Neighbour ratio: 

𝑁𝑁𝐷𝑅 =
𝐷𝑜

𝐷𝑒

 (3) 

where 𝐷𝑜 is the observed mean distance between each feature and the corresponding 

nearest neighbour and  𝐷𝑒 is the expected mean distance. 

The Distance to Closest Records (DCR) method calculates the shortest distance between 

a record and its nearest neighbour in a dataset. DCR is useful for determining the privacy risk 



 Sathiyapriya K., Mridula M., Kumaresh S., Sravya Vankadara 

ISSN: 2582-2640  230 

 

associated with the disclosure of a certain dataset. A lower DCR value indicates a higher 

possibility of re-identification and, as a result, a higher privacy risk for the dataset. The DCR is 

computed in the following way: 

𝐷𝐶𝑅 = min(𝑑(𝑥, 𝑦)) , 𝑥 ≠ 𝑦 (4) 

where the dataset's distance metric, d(x,y), measures the separation between records x 

and y. All pairs of unique records in the collection are averaged to get the minimal distance. 

The k-anonymity measure works by dividing the dataset into distinct populations that have the 

same set of identifying traits. The k-anonymity measure tries to ensure that each individual in 

the dataset is indistinguishable from at least k-1 other individuals in the dataset in order to make 

it impossible to re-identify any individual in the dataset. 

The Overall Quality Report module by Virtual Data Lab combines the scores obtained 

by DCR and K-Anonymity measures to establish an overall privacy score for the synthetic 

dataset. The scores assigned are based on the amount of data that will not be leaked and remain 

private in the case of model inversion attacks or data leaks. 

6.2.1 DP-WGAN 

The overall quality report for the DP-WGAN generated dataset is 82.14%. It shows that, 

based on   the K-Anonymity and DCR, the synthetic values are closer to ideal to ensure privacy. 

The NNDR score for this model is greater than 0.6 for most columns which shows that for each 

column, privacy is maintained pretty well as shown in Figure 8. 

 

Figure 8. NNDR Scores for DP-WGAN 
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The dispersed and clustered data points in Figure 9 suggest poor utility, but the absence 

of overlap suggests good privacy. The likelihood of discovering the original values is low 

because the values in the synthetic and real datasets differ. 

 

Figure 9. Scatterplot for DP-WGAN 

6.2.2 TimeGAN 

TimeGAN's overall quality report is 64.83%. It demonstrates that the synthetic values 

are not optimal, indicating lower privacy, according to the K-Anonymity and DCR scores. 

Figure 10 shows that each column's overall NNDR score, which averages to 0.62, is likewise 

low. These results are more vulnerable to attacks because the value is low due to the 

dissimilarity of the NNDRs. 

 

Figure 10. NNDR Scores for TimeGAN 

Figure 11's graph illustrates the visual overlap between the synthetic and real values.  

The similarity of exact values in real and synthetic data indicates vulnerability to leakage, even 
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though the overlap between the two types of data suggests great utility.  Low NNDRs and the 

overall quality report indicate that privacy is poor. 

 

Figure 11. Scatterplot for TimeGAN 

6.2.3 DP-TWGAN 

DP-TWGAN has an overall quality report of 81.13%.  This demonstrates that the 

synthetic values are optimal to guarantee privacy based on the K-Anonymity and DCR scores.  

Figure 12's columns display the extent to which each attribute's NNDR values match.  As a 

result, privacy increases with the degree to which the synthetic values resemble the actual 

values.  The DP-TWGAN offers high privacy, as evidenced by the average data quality of 0.70. 

 

Figure 12. NNDR Scores for DP-TWGAN 
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The real values and the synthetic values are seen to overlap in Figure 13.  In contrast to 

TimeGAN, the values do not exactly overlap.  Therefore, it can be concluded that privacy is 

superior in synthetic data from DP-TWGAN, but there is a subsequent utility trade-off. 

 

Figure 13. Scatterplot for DP-TWGAN 

 Conclusion 

Machine learning and deep learning methods are also evolving and being used in 

increasingly real-life applications. To meet the humongous data needs of these models, 

significant research has been devoted to the creation of synthetic data. To leverage this 

information in lieu of frequently difficult-to-obtain, personally identifiable, or sensitive 

information in large amounts, the privacy and usefulness of synthetic data have been the central 

topics of this research. An architecture that leverages Wasserstein distance to enhance privacy 

protection and LSTM to capture temporal locality to produce synthetic time series tabular data 

has been used. The privacy of the created dataset was measured with metrics like DCR, NNDR, 

and SDV Quality Score. Post-finetuning the models and comparison with regard to various 

metrics, the proposed solution's privacy and utility have been determined comparatively. DP-

TWGAN attained an RMSE score of 7.77 with better utility compared to DP-WGAN, which 

had an RMSE score of 21.07. In addition, the planned architecture produced more private data 

than TimeGAN since the former attained an overall quality report of 81.13% while the latter 

attained 64.83%. It is, therefore, noted that the proposed DP-TWGAN provides a superior 

utility for privacy trade off. 

As additional improvements, acceptance in datasets can be validated with additional 

multivariate time-series datasets. Improved capture of the temporal relationships between the 



 Sathiyapriya K., Mridula M., Kumaresh S., Sravya Vankadara 

ISSN: 2582-2640  234 

 

input can be done through more suitable models with improved memory. Effective training 

strategies can also minimize computational requirements and facilitate the process of creating 

publishable trained generator models. In addition to improved generalization of acceptance in 

datasets, the conversion of time-series data into images and consequent pattern identification 

can significantly enhance privacy guarantees and defense against membership inference 

attacks. 
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