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Abstract 

Several sectors, including relief, precision farming, logistics, and security, have started 

using drones. Their performance is often impacted by external factors, and among these, winds 

are the most impactful as they negatively affect aerodynamic efficiency, flight stability, and 

trajectory accuracy. Although H-infinity controllers could address the problem as a solution for 

disturbances, the amount of computation is large and therefore cannot fit into light-weight 

platforms such as drones that need lean and fast processing in real time. We propose a 

lightweight control scheme consisting of an Extended Kalman Filter (EKF) and a PID controller 

to address wind disturbance compensation. The drone dynamics are nonlinear; the EKF acts as 

a refining mechanism that improves input from noisy IMU/GPS sensors while also modeling 

wind forces as a state variable for real-time estimation of disturbances. This estimation is then 

fed in a feedforward manner into the controller that proactively rejects wind disturbances before 

they reach flight level. Simulated investigations on a 1.5 kg quadrotor subjected to sinusoidal 

and random wind disturbances have shown that PID+EKF has reduced the root-mean-square 

trajectory error by about 45% compared to that with the PID controller alone and has also 

reduced the velocity settling time to almost half of that with the PID controller. 

Keywords: Wind Disturbance Compensation, PID Controller, Extended Kalman Filter, Flight 

Stability, Disturbance Rejection, Outdoor Flight Conditions. 
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 Introduction  

The use of unmanned aerial vehicles (UAVs) or drones today is impressive, ranging 

from surveillance, precision agriculture, and infrastructure inspections to logistics. UAVs also 

play an important role in disaster response. A drone can operate in areas that are impossible for 

humans to reach or are harder to access, executing autonomous tasks while simultaneously 

gathering real-time data. Although used for many promising purposes, particularly in wind 

conditions, the adverse effects of the environment have posed a major limitation to the 

efficiency of drones, especially those used outdoors. Wind is a major source of instability in 

flight operations, especially when it is strong and winds change very suddenly. This instability 

causes the drone to veer off its intended path, drifting away from its target trajectory. As a 

result, the drone has to expend extra power to maintain its course, which leads to a definite loss 

of efficiency and power. It should be considered to implement controls that are effective in real 

time to counter environmental disturbances, especially in such conditions. As referenced in the 

literature, the rejection of disturbances using Model Predictive Control (MPC) and H-infinity 

methods is known to be very computationally expensive. These methods are known to be 

complementary in terms of parameter tuning requirements, which means that implementing any 

type of control on these lightweight and resource-constrained drones is not feasible for real-

time execution on lightweight aerial platforms. Sometimes, due to their energy inefficiency, 

ease of implementation, or primarily because of ease of use, PID controllers are and have been 

used. However, the classic PID controller is inadequate for modern UAV applications, which 

require greater precision and adaptability to rapidly changing conditions noticeable by noise-

laden sensors and turbulent winds. To address such problems, the current study proposes a 

modern hybrid control system consisting of PID and an Extended Kalman Filter (EKF) with 

feed-forward compensation. In this research, where the EKF is not a general state estimator, it 

plays a significant role in enhancing the PID. By considering the wind disturbances in the state 

vector, the EKF provides estimates of position, velocity, and attitude with a degree of 

refinement, even in the presence of noisy IMU/GPS measurements. Such estimates reduce 

overshoot and increase PID response time to external disturbances. With the EKF, feedback 

becomes reliable, and the control system improves significantly. The feed-forward system 

would utilize either real-time data or estimations of wind forces to preemptively counteract 

disturbances, reducing the need for feedback and enabling the UAV to respond to turbulence 

more efficiently and swiftly. The result of the PID calculations is to arrive at control inputs that 
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are sharper and more stable. Such inputs, when refined through an EKF, hold the drone steady 

on its path even through strong gusts of wind, as demonstrated in [4][6][7]. The contribution of 

this paper is the design, implementation, and simulation of the PID-EKF-Feedforward control 

system, which essentially integrates the PID, EKF, and Feedforward control systems. The aim 

is to create a lightweight system with a significant improvement in trajectory tracking that 

enhances stability, decreases control error, and reduces computational complexity so that it can 

be used on aerial vehicles in challenging wind-disturbed outdoor environments [2][5][10]. A 

significant challenge encountered when considering the outdoor flying of drones is the wind, 

which can make operation difficult. Even a mild breeze or sudden gusts can alter the course of 

a drone and simultaneously accelerate battery depletion. Every time a drone attempts to stabilize 

its flight path, it endures additional strain. Consequently, advanced control methods have been 

the focus of drone research. As we know, winds can change direction and speed abruptly, and 

methods like H-infinity (H∞) control and Model Predictive Control (MPC) do a great job of 

handling such changes. With MPC, the trajectory adjustments are pre-computed, and the drone 

is steered to the target before the issue even arises. The need for advanced tuning and the heavy 

computational cost of implementing such controls make them unviable for small, battery-

operated drones that operate in the field. This is the reason why a PID control loop still governs 

most drones. It’s straightforward to implement and computationally efficient, qualities that are 

important in smaller systems. But PID controls are reactive in nature; they respond only after 

the drone begins to drift and are inadequate to handle erratic winds or sensor noise. Several 

enhanced Kalman filter studies have been conducted to improve the intelligence and 

dependability of PID controls. 

It relies on raw sensor inputs to determine position, velocity, and orientation. When 

sensor data is unreliable, it uses the EKF to refine it into less noisy and more accurate sensor 

readings. As a result, the controller can make improved decisions and implement more accurate 

corrections, improving stability in windy conditions. The feedforward controller has been noted 

in recent years. It adds an extra, proactive layer to the system by anticipating disturbances and 

attempting to change the drone's response before the wind impacts it. With a real-time wind 

estimate, either from sensors or from computations done by the EKF, the feedforward controller 

pre-emptively adjusts motor outputs to maintain the alignment of the drone, thereby avoiding 

unnecessary corrections. The pre-emptive action redistributes part of the control effort from the 

feedforward controller to the PID loop. Hence, the predictive and feedback actions together 
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yield a control system that is more responsive, robust, and necessary, especially in unpredictable 

environments. 

This paper proposes a computationally efficient and lightweight control strategy that 

integrates a PID controller with an Extended Kalman Filter and feedforward compensation for 

smooth, precise, and stable flight in challenging conditions. It is optimized for real-time use 

with the modest computational resources of a small, low-powered drone. The simulation results 

affirm its positive impact on flight stability and trajectory tracking, bringing tangible 

improvements. The paper also describes a lightweight control system that addresses drift and 

blowoff in gusty and windy conditions, using a PID controller coupled with an extended 

Kalman Filter and feedforward compensation. By employing basic PID controllers, the 

designers aimed to mitigate their wind attacks and nonlinear conditions with near-zero 

estimation errors. The EKF delivers reliable state estimation, while the feedforward 

components address wind force disturbances. The results demonstrate that the PID-EKF system 

performs comparably   to more advanced controllers but with far less computational load, which 

is particularly advantageous for small drones in outdoor settings in the real world. 

 System Architecture 

The architectural design of the control system for a UAV includes the following 

modules: a dynamic UAV model, a sensor suite, controllers (P.I.D + Feedforward), and an 

Extended Kalman Filter (EKF) based state estimation mechanism. These modules collaborate 

to offer a system that follows a precise trajectory, maintains accurate attitude, rejects wind 

disturbances and ensure system stability. The terms and their explanation are explained in table 

1. 

Table 1. Terms and their Explanation 

Term Explanation 

𝑚 Mass of the Drone kilograms (kg) 

𝑑𝑡 Time step seconds (𝑠) 

𝑇 Time step seconds (𝑠) 

𝑡𝑖𝑚𝑒 Time Vector seconds (𝑠) 

𝑝(𝑝𝑜𝑠) Position Vector metres (𝑚) 

𝑣(𝑣𝑒𝑙) Velocity Vector   meters per second (𝑚
𝑠⁄ ) 
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𝑢 Control input (desired acceleration second squared (𝑚
𝑠⁄

2
) 

𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙    Control Force Newton (𝑁) 

𝐹𝑤𝑖𝑛𝑑 True wind force disturbance   Newton (𝑁) 

𝐹̂𝑤𝑖𝑛𝑑 Estimated wind force (EKF) Newton (𝑁) 

𝐹𝑓𝑓 Feedforward force Newton (𝑁) 

𝐾𝑝 Proportional gain  𝑁/𝑚 

𝐾𝑖 Integral gain   𝑁/(𝑚. 𝑠) 

𝐾𝑑 Derivative gain 𝑁. 𝑠/𝑚 

𝑒 Position error meters (𝑚) 

𝐴 State transition matrix 

𝐵 Control input matrix 

𝐻 Measurement matrix 

𝑄 Process noise covariance matrix 

𝑅 Measurement noise covariance 

𝑥𝑒𝑠𝑡 Estimated state 

𝑃 State covariance matrix 

𝑧 Measured position metres (𝑚) 

𝐾 𝑔𝑎𝑖𝑛 Kalman Gain 

I. Newton's Second Law 

𝑚𝑝̈ = 𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 𝐹𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 + 𝐹𝑤𝑖𝑛𝑑 

m = drone mass (1.5 kg),  

𝑝̈ = drone acceleration, 

 𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = PID-based control force, 

 𝐹𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = - 𝐹𝑤𝑖𝑛𝑑(using EKF-estimated wind), 

 𝐹𝑤𝑖𝑛𝑑 = unknown real wind disturbance 

i.    𝑚𝑝̈ = 𝑚𝑢(𝑡) − 𝐹̂𝑤𝑖𝑛𝑑 + 𝐹𝑤𝑖𝑛𝑑 

ii. 𝑝̈ = 𝑢(𝑡) +
𝐹𝑤𝑖𝑛𝑑−𝐹̂𝑤𝑖𝑛𝑑

𝑚
      

II. PID Control Law 

PID controller output: 
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𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜋)𝑑𝑟 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

 

Where, 

𝑒(𝑡) = 𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝(𝑡) 

𝐾𝑝 = 2.0, 

𝐾𝑖 = 0.5, 

𝐾𝑑 = 1.2 

III. True Wind Disturbance 

𝐹𝑤𝑖𝑛𝑑(𝑡) = [
0.8 + 0.3 sin(0.5𝑡) + 0.1𝜘(0,1)
0.5 + 0.3 cos(0.3𝑡) + 0.1 𝜘(0,1)

] 

Base wind + sinusoidal variation + random noise. 

IV. Measurement (Position Measurement with Noise) 

Measured position: 

𝑧(𝑡) = 𝑝(𝑡) + 𝑣𝑛𝑜𝑖𝑠𝑒 

𝑣𝑛𝑜𝑖𝑠𝑒~𝜘(0, 0.052) 

noise was added to the position sensor. 

V. Extended Kalman Filter (EKF) for Each Axis 

State vector per axis: 

𝑥 = [

𝑝
𝑣

𝐹𝑤𝑖𝑛𝑑

] 

EKF Prediction 

Predicted state: 

𝑥𝑘+1|𝑘 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 

Predicted covariance: 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘𝐴𝑇 + 𝑄 

Where, 

𝐴 = [
1 𝑑𝑡 0
0 1 𝑑𝑡
0 0 1

  ] 
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𝐵 = [

𝑑𝑡2

2
𝑑𝑡
0

] 

𝑄 = 0.001𝐼3 

EKF Update: 

Kalman Gain: 

𝐾𝑘 = 𝑃𝑘+1|𝑘𝐻𝑇(𝐻𝑃𝑘+1|𝑘𝐻𝑇 + 𝑅)−1 

Update estimate: 

𝑥𝑘+1 = 𝑥𝑘+1|𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘+1|𝑘) 

Update covariance: 

𝑃𝑘+1 = (1 − 𝐾𝑘𝐻)𝑃𝑘+1|𝑘 

Where, 

H=[1 0 0]; 

R=0.05 

VI. Feedforward Compensation 

From the EKF-estimated wind disturbance: 

𝐹𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = −𝐹̂𝑤𝑖𝑛𝑑 

It can be integrated within the existing control loop with the sole purpose of negating 

the effects of external disturbances. The anticipatory control action is useful in negating the 

effects of disturbances even before error feedback is received. Consequently, the control system 

is capable of making adjustments to wind conditions with greater speed and improved accuracy. 

By preemptively compensating for wind disturbances, the system enjoys enhanced stability and 

improved tracking performance. Feedforward control for wind disturbances decreases the 

impact of wind disturbances on the feedback controller, thereby making the controller’s 

operation smoother. This approach is particularly useful when disturbances are significant in 

magnitude and change quickly. Its performance hinges on the precision of the EKF wind 

estimator. 
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Figure 1. Unmanned Aerial Vehicles Model [Source: stickmanphysics.com/physics-of-

drones] 

Figure 1 shows the unmanned aerial vehicle model. The roll and pitch are stabilized 

through PID loops, using the EKF-enhanced signals to counter lateral drift; meanwhile, yaw is 

maintained via heading stabilization. Feedforward compensation for the estimated wind torques 

will vary motor thrust asymmetry, so that the attitude stays balanced against gusts. 

 Methodology 

The control and estimation system for the drone is organised as a single tightly 

integrated system with purposefully engineered algorithms designed to tackle real-world issues 

such as winds and sensor noise. As shown in (figure 2) the block diagram illustrates that the 

process begins with the target input from which the system generates a reference trajectory or 

position. A PID controller then calculates the control force by comparing the desired state with 

the current estimated state. 
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Figure 2. Flow Diagram of the Extended Kalman Filter 

Afterward, this control effort is merged with other known disturbances, such as 

aerodynamic effects and wind gusts, and then applied to the drone's motion model. The drone's 

dynamics describe changes in position and velocity over time, with control input and actual 

wind conditions externally influencing these changes. The true internal state of the drone cannot 

be observed due to unpredictable environments and sensor inaccuracies. The Extended Kalman 

Filter (EKF) therefore estimates these states. The EKF uses sensor inputs, which are often noisy, 

and produces estimates of critical states such as position and velocity with a specialized 

prediction-correction algorithm. The EKF predictions are made with the nonlinear drone model, 

and incoming sensor data is used to refine the predictions. Over time, the EKF adapts to learn 

the wind disturbances and improves the estimates of the drone's motion. Upon receiving these 

estimates, the controller is better equipped to inform the drone to anticipate and reject 

disturbances and follow its desired trajectory. The results are improved stability, 

responsiveness, and robustness of the system. 
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3.1 PID Controller 

A PID controller is a control loop feedback mechanism devised for industrial control 

processes with distributed implementation. A PID controller seeks to maintain the process 

variable at the setpoint by minimizing the difference between the setpoint and the process 

variable. It considers three terms: a proportional term for the present error, an integral term for 

the sum of past errors, and a derivative term for the expected error change based on the rate of 

change of error. By properly tuning the values of these three parameters, a PID controller can 

efficiently and steadily control processes such as temperature, velocity, or position. The 

proportional term for the UAV provides instantaneous correction for position and attitude 

errors, whereas the integral term corrects the errors induced by steady winds, and the derivative 

term thwarts oscillations in roll, pitch, and yaw. 

3.2 Extended Kalman Filter 

The Extended Kalman Filter is a sophisticated version of the Kalman filter for nonlinear 

systems. The EKF tries to emulate the behavior of the system functions by approximating the 

nonlinear functions with linear functions through the calculation of the system's Jacobian 

matrix. The EKF aims to reduce uncertainty, or refine the predicted system state information, 

using more dependable, sensor-provided data. The EKF is widely applied in nonlinear, intricate 

systems such as robotics and navigation. 

After the Extended Kalman Filter estimates the drone's state output, it is managed by 

three distinct PID controllers. Each controller has a specific responsibility: the position PID on 

the x, y, and z axes, the velocity PID on the speeds along all axes, and the attitude PID on the 

roll, pitch, and yaw axes. The control process initiates with sensor data from the Inertial 

Measurement Unit (IMU), GPS, and magnetometer, providing the UAV's position, velocity, 

and orientation. The EKF combines this sensor data for an accurate and consistent UAV state 

estimate. The three PID controllers adjust the drone's position, speed, and attitude in real-time 

based on this estimate, controlling the motors to achieve fine positioning. This, in turn, enables 

the closed-loop synergy, where the EKF facilitates reliable state estimation, and the PIDs adjust 

drone movements to meet stability and accuracy flight criteria. 
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Figure 3. EKF Filter 

State vector per axis: x = [p, v, Fwind] 

Since wind disturbances (Fw_x, Fw_y) are explicitly considered as state variables, the 

EKF can therefore estimate the external forces in real time and feed them into feedforward 

control to pre-emptively nullify the disturbances before drifting occurs. The PID was tuned first 

using Ziegler-Nichols rules, causing overshoot. The manual tweaking of gains was able to bring 

down the baseline error by about 18%, before the introduction of the EKF. 

3.3 PID + Extended Kalman Filter 

When paired with an Extended Kalman Filter (EKF), the control system performance 

can benefit significantly from having precise, active, and real-time tracking of system states, 

including position, velocity, and orientation, to name a few. The PID controller, on the other 

hand, uses its proportional, integral, and derivative components to assist the system in following 

the set commands as closely as possible. The EKF employs the predictive-update method 

devised for nonlinear systems to smooth sensor data against noise and to estimate the data for 

variables that are unmeasured, hidden, or state variables. Controlling all of these simultaneously 

provides it with great stability, enables the system to respond quickly, and allows for the 

rejection of disturbances. This makes it ideal for use in robotics, drones, self-driving cars, and 

any other complex dynamic system that needs precise control. 

3.4 Comparison between PID and PID + Extended Kalman Filter 

The Comparison between PID and PID + Extended Kalman Filter is illustrated in table 

2. 
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Table 2. The Comparison between PID and PID + Extended Kalman Filter 

Aspects PID PID+EKF 

Purpose 

Aims to control a process so that 

some variable achieves and stays 

around a desired setpoint. 

Aims to control a process so that 

some variable achieves and stays 

around a desired setpoint. 

System Model 

Requirement 

Does not require any mathematical 

model of the system. 

Needs a nonlinear system model 

and its Jacobian matrices 

Complexity 

 

Simple to implement and tune (just 

3 parameters: P, I, D). 

More complex; requires matrix 

operations and linearization, plus 

proper tuning of noise covariance 

Application 

Applied in control tasks (for 

example, motor speed control, 

temperature control). 

Applied in state estimation 

(position tracking, sensor fusion, 

SLAM). 

3.5 PID with Feed Forward 

As a rule, the reaction of PID controllers comes only after an error has occurred.  This 

creates a delay in the vehicle's system response and renders the response of the vehicle slow at 

times. In contrast, feedforward control anticipates the error-causing factors and deals with them 

in advance. This allows the system to respond more efficiently and swiftly. Feedforward 

compensates for predictable disturbances, like wind or gravity, before they become issues. This 

reduces the workload of the PID controller. It also reduces overshoot and makes the system less 

prone to jittering that sudden corrective actions can cause. This is an excellent approach when 

tracking moving objects or following changing trajectories that need precise timing and 

accuracy. For instance, in the case of wind, rather than permitting the UAV to drift and later 

correcting its position, feedforward maintains the UAV on course by actively adjusting its tilt 

and thrust. In practical applications, feedforward control, which is usually determined relative 

to anticipated changes in desired velocity, acceleration, or external forces, is added to the PID 

output so that the aggregate control signal becomes:  

Control Output = Feedforward + PID. 
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Unlike PID, which addresses unforeseen shifts, feedforward is designed to manage 

changes we anticipate. Their seamless integration results in improved response time and 

enhanced stability of the UAV control system, particularly under challenging environmental 

conditions. 

 

Figure 4. PID Controller with Feed Forward 

 Results and Discussion 

This block diagram depicts a feedback control and estimation system with closed-loop 

control, designed to regulate the positions of dynamic platforms such as vertical lifts and drones. 

The reference setpoint indicates the desired position, with the measured position subtracted 

from it to yield a control error. The difference is then fed into a discrete-time PID controller to 

calculate the control thrust command for minimizing the position difference. The sum of the 

commanded thrust, gravitational forces, and external wind disturbances will be the total external 

force acting on the system. 

By dividing this force by the object’s mass, the resultant acceleration of the system is 

determined. From there, the platform’s velocity and position states can be integrated. The 

presence of process noise and measurement uncertainty means that the Extended Kalman Filter 

will receive an estimate of the position that integrates the noisy measurements from the spatial 

sensors and the system model. The estimated position is fed back into the control loop so that 

control inputs can be revised. Control estimation co-integration schemes like this enable a 
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system to track a position precisely, even in the presence of environmental disturbances and 

modeling inaccuracies. The system is thus capable of near real-time adjustment in response to 

environmental changes, such as those arising from gusty winds or shifts in payload. In turn, this 

enhances the degree of dependability and safety in autonomous aerial and vertical locomotion 

tasks. 

 

Figure 5. Drone Positional and EKF Estimation 

The results clearly show that the EKF enhances position tracking under wind 

disturbances. First, there is an oscillatory behavior in the UAV while settling down to an 

equilibrium, with the EKF states reaching the true trajectory rapidly at the 5-6 second mark, 

where the EKF estimated position practically coincides with the actual position; hence, noise 

rejection and disturbance compensation are being managed well by the filter. Converging to a 

steady-state value of approximately 4.5 shows that the drift in the PID-EKF system is being 

modified and that the trajectory is kept steady. The very close matching of the estimated and 

true trajectories viewed in the figures guarantees that the filter is well-tuned and can give robust 

state feedback, allowing the controller to minimize position errors and stabilize the UAV in a 

short amount of time. The PID+EKF system provided a ~44% improvement over just PID, 

reducing RMS trajectory error from ~0.9 m to ~0.5 m, while the settling time was reduced by 

half, from 8 s to 4 s. This proves that with EKF-based compensation, the UAVs stabilize faster 
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and thereby consume less power since fewer corrective actions are required. The smoother 

attitude control in roll and pitch shows that the system is robust to disturbances caused by wind. 

 

Figure 6. Drone Velocity and EKF Estimation 

"Drone Velocity and EKF Estimation" The chart shows the actual velocity and EKF 

estimated velocity of the drone over time. The X-axis shows the time in seconds while the Y-

axis shows the velocity in meters per second. The red solid line indicates the drone's actual 

velocity in the X direction, and the blue solid line shows the drone's actual velocity in the Y 

direction. The EKF estimated velocities in the X and Y directions are shown in Figure 6 with 

the red and blue dotted lines, respectively. At the start of the experiment, the velocity of the 

drone was relatively high, approximately 6.5 m/s, but with an oscillatory underdamped 

response, it sharply decreased, a response typical of inertia bearing and feedback-controlled 

systems. After some time, the oscillations fade away and the air drone stabilizes almost to zero 

velocity at around 8 seconds, indicating that it is almost at hover or steady-state. Along with 

the actual velocities, the estimated velocities are shown to be in agreement with the actual 

velocities at all times in the plot, which means that the EKF is tracking the drone’s flux 

accurately. This correlation essentially measures the filter's effectiveness in managing the 

nonlinear dynamics and noise inherent in the system when delivering the real-time velocity 

estimates of the drone. Under almost identical wind disturbances, PID single optimally yielded 
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a path tracking error of 0.9 m RMS, while the PID+EKF reduced it to 0.5 m RMS (~44% 

improvement). 

 

Figure 7. True Wind Disturbance vs Estimated Wind Disturbance 

The graph titled “True vs Estimated Wind Disturbance” illustrates the actual wind 

disturbances and their estimations over 20 seconds in both the X and Y directions. The X axis 

(time in seconds) and the Y axis (wind force in newtons) are the horizontal and vertical axes, 

respectively. The actual wind forces are denoted by solid lines: red for the X direction and blue 

for the Y direction, while the estimated winds, possibly derived from EKF or observer-based 

methods, are shown in Figure 7 as red and blue dashed lines. The actual wind disturbances 

display a sinusoidal wave with added high-frequency noise, indicative of actual wind 

variability. The forces reach a maximum of about 1.2 to 1.4 newtons in the X direction and 0.9 

to 1.0 newtons in the Y direction. In contrast, the estimated winds are not only smoother but 

also smaller in magnitude as they stay below the actual disturbances, especially at the initial 

and peak intervals. The estimation, however, aligns with the general pattern and cyclic nature 

of the wind force, where the estimator captures the overall wind pattern but smooths transient 

high-frequency changes in the wind. This is the estimation approach’s trade-off between signal 

rejection and sensitivity. During peak wind gusts of 1.4 N, with these disturbances hitting torque 

peaks of 1.4 N, the PID controller alone resulted in RMS trajectory error of 1.1 m; whereas 
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PID+EKF lowered the RMS trajectory error to 0.6 m, accounting for a 45% improvement in 

the rejection of disturbances. 

4.1 Discussions 

The variation in measurement noise covariance over values between 0.01 and 0.1 

increased the trajectory error by only about 12%, showing the stability and effectiveness of the 

EKF under different assumptions about the sensor noise. With non-Gaussian square-pulse 

gusts, the EKF did introduce some very slight smoothing delays. Yet, in terms of trajectory 

stability, the feedforward loop had an extra 15% error compared to that present in Gaussian 

cases. Utilizing an update frequency of GPS data of 1 Hz would increase the error during the 

trajectory by about 20%; however, the aircraft's flight would remain stable. Estimation was seen 

to diverge, necessitating sensor redundancy in UAV applications in the case of complete IMU 

failure. 

 Conclusion 

A PID-EKF-feedforward controller greatly increases UAV stability in windy 

environments. The error was reduced by approximately 45%, with improvements in settling 

time by a factor of 2 compared with the sensor noise and transient gusts. Future work will 

extend validation with hardware experiments, adaptive PID tuning, and swarm-level 

cooperative UAV control. Future work will aim to enhance the recent approach with more 

advanced state estimation techniques, such as adding an EKF or an UKF to the quadcopter 

system to mitigate the nonlinear dynamics of the quadcopter. Next, the PID could be 

synthesized with gain sliding mode, scheduling, and model predictive control to increase 

performance during the flight in wind disturbances. Additionally, developing wind disturbance 

models, disturbance observers, and compensators will help increase disturbance rejection. 

Moving beyond 3D full trajectory finding to induce tracking of formal flight conditions and 

following very tricky maneuvers in active wind fields would add crucial value. It should be 

tested in real flights. The procedures could also be developed for systems with multiple agents, 

utilizing machine learning to forecast wind patterns and fine-tune controller parameters in real 

time. 
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