
Journal of Ubiquitous Computing and Communication Technologies (ISSN: 2582-337X)
www.irojournals.com/jucct/

Journal of Ubiquitous Computing and Communication Technologies, March 2023, Volume 5, Issue 1, Pages 1-20 1
DOI: https://doi.org/10.36548/jucct.2023.1.001

Received: 27.12.2022, received in revised form: 27.1.2023, accepted: 13.2.2023, published: 23.2.2023
© 2023 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

Virtual Musical Instruments with Python

and OpenCV

Isaac Abraham Thottathil1, S. Thivaharan2

1UG Scholar, Department of Computer Science and Engineering, PSG Institute of Technology and

Applied Research, India

2Assistant Professor, Department of Computer Science and Engineering, PSG Institute of Technology

and Applied Research, India.

E-mail: 121z119@psgitech.ac.in, 2thivahar@psgitech.ac.in

Abstract

There is an increasing need for musical aspirants to have access to cheaper musical

instruments. This study explores the opportunities to utilize image recognition algorithms via

OpenCV to port this technology into readily available modern devices, which will enable

inexpensive yet authentic methods of playing a piano. Through OpenCV and Pygame

libraries, one can set up a rigid camera that will trace the player’s fingers. The fingers if they

cross or hover over a specific coordinate of a key, the piano note (.wav file) will be played by

Pygame’s mixer module. This simple yet inexpensive option might help first-time musical

aspirants experience music in an affordable and accessible way. Furthermore, this article

explores the future scope of accommodating other musical instruments.

Keywords: Social media analysis, decision-making, computational intelligence, machine

learning.

 Introduction

Music is an expression of art that is evolving with technology. There is a growing

technology that deals with developing affordable and portable devices. However, beginners

in musical endeavors are hesitant to purchase expensive instruments. Hence, this article

utilizes the available technologies to improve musical instruments and make it readily

available to musical aspirants, whilst aiming to give the same experience while playing a live

musical instrument.

VIRTUAL MUSICAL INSTRUMENTS WITH PYTHON AND OPENCV

ISSN: 2582-337X 2

 In India, approximately 40% of the Indian population belongs to the middle-class

economy and the burgeoning cost of musical instruments can force young children to despise

their interest in playing musical instruments. A vast majority of rural schools have no basic

infrastructure to accommodate such growing interests. Playing a Keyboard, Piano, Guitar

might be a distant dream and families find it difficult to afford this skill. However,

technology has offered us keyboards and virtual instruments that are restricted in small

smartphones, but fail to promise us the authenticity of playing the instruments in reality. The

paper provides a virtual piano that can detect fingers via finger cap (using HSV recognition)

and by approximating the fingers to the 3D space it is located in, the Pygame runs the

corresponding wav file of the key.

 Literature Survey

This research work has attempted to create a virtual piano by utilizing Augmented

Reality (AR) and image recognition technology. With AR technology, several research work

have developed fingerings to generate data and predict data in real time with the help of a

HMM Model to decide the note currently being played.[30] In order to simulate a real-life

model, a 3D rendering of the current position of the fingerings is displayed to increase the

calibration.

Some techniques have attempted to achieve depth sensing data or the magnitude of how

much the fingers have been raised, to play a specific note. Pre-developed software like Leap

Motion has been utilized to provide data feed of the finger movement which in turn is

processed to play musical notes [5] [17][18][31].

By capitalizing on gesture detection, by differentiating finger from palms, using convex

hull algorithms or by using a CNN various hand movements can be classified.[22][24]

Proposed at segmenting images before usage or further detections, papers [26][27][28] have

pointed to the use of techniques that are not same as traditional Gaussian Blur, that would

create noise. They also call out for better edge detection techniques in data preprocessing. To

improve the data fed to the algorithm for playing a note, several attempts [23][25] have been

aimed at creating object tracking either via comprehensive models or through OpenCV and

HSV detection. This can be further fed as input to the program for playing a note.

In another instance to subtract skin-based subtraction from background [29], the camera

feed is converted to “YCrCb” scheme instead of RGB format. To isolate a moving hand, it

 Isaac Abraham Thottathil, S. Thivaharan

Journal of Ubiquitous Computing and Communication Technologies, March 2023, Volume 5, Issue 1 3

first identifies moving pixels, and then checks if the moving pixels fall under aYCrCb

threshold. Though it is appropriate for moving objects but cannot be effective for still cases.

As a piano is being played simultaneously it requires to be run on lightweight

applications. Several versions have looked into utilizing the full potential of Computer Vision

techniques. In attempts of utilizing Computer Vision techniques [4], there is a use case of

creating a replica of a Piano image. This piano image is applied as the prototype or the base

image, on which our fingers when placed can be identified. Since one’s fingers covers a note,

that finger is verified by masking and then the note covered is played. This technique uses

masking of the finger color, to identify the note being currently played or the note that is

being currently hidden. As laid out, this model is subject to insufficient lighting that can

cause improper note detection. Moreover, this model is based on the base image or the

prototype, which will have to be restricted or be predetermined by the developer.

This is why there is a need to have a base image that can be of any size and structure

with respect to one’s camera’s field of view. This paper shows a plausible means of finding a

finger from a live camera feed by utilizing the masking technique and it is independent of the

base image/prototype. This paper tries to achieve an algorithm that can run on any user

generated base image. In this paper, freedom of selecting the base piano is provided to the

user. By manually affixing the anchor points, one can create a virtual base image for their

template piano, and are free to hover over their preferred base image/templates.

Hence, by combining techniques to improve finger detection by HSV on a lightweight

application, while still providing flexibility to user for an easier template, this paper tries to

achieve the various complexity of a virtual piano.

 Proposed Work

The paper divides the Python program into different modules that solve different

tasks. The following shows the modular division of the program where piano.py acts as the

entry point with a main function. It imports built-in modules like Pygame, OpenCV and

Numpy. Pygame is a platform to play notes and show a sample of the keyboard. OpenCV

uses the module to enable HSV recognition.

Numpy is the medium for data processing of each frame of the image.

VIRTUAL MUSICAL INSTRUMENTS WITH PYTHON AND OPENCV

ISSN: 2582-337X 4

Figure 1. Module Division

3.1 Main Module - piano.py

The piano.py imports two files called as set_up.py and sounds.py. Moreover, piano.py

contains the main() function. Built-in Modules like OpenCV, Pygame and Numpy are

imported. The main() function runs a while loop indefinitely to get the frames from the

camera via OpenCV. It calls the various functions under sounds.py and set_up.py. The reason

it runs an indefinite loop is so as to capture the frames from the camera again and again.

The main() is responsible for finger detection via HSV recognition and if the finger of

the prescribed contour size is chosen, then play() function in sounds.py is fired. The main()

function under its indefinite while loop, which runs till camera stops feed, also calls the

draw_base(), draw_cor(), click_event() functions under the set_up.py module.

3.2 Module to Play Notes- sound.py

The sound.py module has all the essential methods and algorithms to run the

corresponding wav file of each key, when the key is detected by the main() function. The

reason to choose wav files (Waveform Audio Files) is because they retain quality during

compression and if these files are chosen losses in quality will be minimal. To expand this

project via multithreading to play various files in many channels, compression is essential,

and combining the waveforms are common. Hence, in applications of expanding this paper

the wav files remain suitable to scale up.

 This module makes sure to load all Sound objects or the wav files of all the Piano

notes from C1 scale to C6 Scale. Moreover, it has play() function which receives the note as

input and selects them from loaded Sound Objects and passes it to play_note(). If another

note is being played it calls the stop_play_note().

 Isaac Abraham Thottathil, S. Thivaharan

Journal of Ubiquitous Computing and Communication Technologies, March 2023, Volume 5, Issue 1 5

The play_note() function ensures that mixed sound of the Pygame.mixer property is

free and allows loading of wav files. The get() function is called initially whenever play() is

called. It is to ensure that the global constants are set. These global variables are 7 integers

(representing C,D,E,F,G,A,B) that change value to 1 when the corresponding key is being

played.

3.3 Module to For Initial Setup of the Blueprint- set_up.py

The set_up.py has three functions that are called under main(). The draw_base() sets

up the Pygame frame with a Keyboard. If a note has been detected, over the detected note

there will be a circle to reassure the user that the correct note is detected.

The draw_cor() is a function that draws out the x and y coordinates of the blueprint

onto the camera. This draws the coordinates indefinitely over the OpenCV, after a new frame

is received.

The click_event() handles all the left and right clicks on the OpenCV window. A left

click can set up a new end point of a key. The user will have a blueprint over which he will

play the piano. A camera opposite to the user’s hand, tracks the movement of his fingers over

the blueprint. The blueprint contains all the keys of the pianos.

The vertex of each of the keys when seen from the camera is added using the left

click. By right clicking all the previous vertices are removed and can be added from start.

This refresh will be essential in perfectly pinpointing the vertices.

 Setting Up the Device

To ease the mobility of studying a Piano/Keyboard with an authentic experience and

providing an inexpensive option, a Piano is created that uses the help of a desktop or

Smartphone affixed with a Camera. This innovation has been developed entirely on a

Desktop with the help of an old camera that has basic colour recognition hardware

specifications. An A4 Sheet or a Paper is laid out on a Table. This acts as a blueprint for the

player to move their fingers on a set of keys. Laying the paper in landscape, the C Scale of

Piano is drawn (the White Keys of the Keyboard) by spacing each key in equal intervals onto

the paper.

VIRTUAL MUSICAL INSTRUMENTS WITH PYTHON AND OPENCV

ISSN: 2582-337X 6

Place a Camera opposite your paper/blueprint, such that it is facing towards you:

making it easy to record your hand movements. Connect the Camera with a USB Cable to a

Desktop that has the developed Python file installed.

In this paper, to attain a higher image and eased finger recognition, we have used

bright colourful finger caps made with help of colorful sheets (that covers your nails), as the

Camera will be able to easily detect your finger gestures. Users can determine the colour of

the finger cap they would want to use and change the HSV value range to an appropriate

level[21][22][23]. Users can also restrict setting up the device with skin recognition by

utilizing the HSV range as follows: Hue Range (0-20), Saturation Range (30-249), and Value

Range (60-255).[14][15][16].

 This can vary based on the lighting as well as the camera’s hardware specifications.

However, it is essential to fine tune these ranges to optimize recognition of fingers without

shadows. [19][27]. Configure the program by pointing out where each key of the C scale lies

in your camera by right clicking at the desired location. By analyzing where your key starts

and ends, find the starting and ending point of each key of a scale (C,D,E,F,G,A) on the

camera. And then click its coordinates onto the OpenCV window. This will allow the

program to predetermine where the keys are placed with respect to the user's paper

(blueprint) and user’s space. Fig.2 shows a blueprint that is stuck onto a table. This blueprint

(an A4 sheet) has the keys marked for a single scale. This is the blueprint onto which the user

strikes their hand, which will be recognized by an image opposite to him. To define each key

in the 2D frame, the red points will be referred to as vertices of the Piano Keys in this paper.

These are the points on the blueprint that are being marked onto the OpenCV window, and

these can also be called as anchors for this piano.

C D E F G A B

Figure 2. Blueprint of the Keyboard

This blueprint acts as the reference points for further image detection. Increasing the

width of the blueprint and increasing the field of view of the camera, can aid in playing

multiple scales at a single time. Due to using only a single scale, the blueprint has the general

notes, without its mention of the keys.

 Isaac Abraham Thottathil, S. Thivaharan

Journal of Ubiquitous Computing and Communication Technologies, March 2023, Volume 5, Issue 1 7

Figure 3. Blueprint of the Keyboard with Vertices (Red in Colour)

In Figure 4, the left window is a Pygame window that shows a keyboard over which a

note will be struck if a finger is detected. This Pygame window is made to reflect the

blueprint. Camera View, on the right, shows a view opposite to that of where the paper is

placed. The user pinpoints the start and end of the keys (vertices of each key) to mark it onto

the Camera Window (OpenCV window).

In Figure 4, the user is seen using a pen to locate his vertices in real life and mark it

onto the OpenCV window by a left click. This camera angle requires this process. For various

other musical instruments, various angles and differences in defining anchor points are the

unique differences among various instruments.

Figure 4. Setting up the Device with Vertices

C D E F G A B

VIRTUAL MUSICAL INSTRUMENTS WITH PYTHON AND OPENCV

ISSN: 2582-337X 8

 Algorithm and Working

Figure 5. Simplified Flow of the Entire Program

The algorithmic flow between the modules has been simplified to a flowchart as in

Fig 5. The major indefinite while loop runs till no frame is being returned. This can be seen in

the jump from the step that deals with playing the wav files to the step that deals with

processing the next frame. This jump runs over and over as it processes each of the frames.

Despite this visualization, these processes run in the background. The playing of a wav file

runs continuously without any disturbance when reading and processing a frame for contours.

This is an example wherein the built-in packages efficiently take care of the running of wav

files automatically on the audio channels. Hence, this representation is the flow of how the

code is written, but its execution is not limited to it.

5.1 Initialization

The algorithm to set up the 2 windows, a Pygame window and an OpenCV window is

handled by the module set_up.py. This has functions like draw_base(), draw_cor and

 Isaac Abraham Thottathil, S. Thivaharan

Journal of Ubiquitous Computing and Communication Technologies, March 2023, Volume 5, Issue 1 9

click_event(). All these functions are called during each iteration of the while loop in main().

They are being called to draw an image onto the 2 windows, and handle functions in these

windows. The draw_base() will be called at the start of the indefinite loop, and will be used

to set up the Python Frame. Then a polygon is drawn, with several lines to create a sample

keyboard [12].

screen=pygame.display.set_mode((640, 480))

The screen object is onto which the blit() and draw methods are being called. The

blit() function writes down the key name for each of the Piano Key and its values change

when moving up and down a scale. The OpenCV window is initialized globally under the

main.py and onto that window, in each iteration the points are being drawn. The

click_event(event,x,y,flags,parm) takes care of handling events in the OpenCV window.

These handled events include left and right click. During the initial setup, it is essential for

the user to define his space or region, wherein the keys are placed with respect to his camera.

The x and y received as parameters by click_event() are the coordinates on the OpenCV

window.

if event==cv.EVENT_LBUTTONDOWN:

ifnumth==0:

 p1x,p1y=x,y

numth+=1

elifnumth==1:

 p2x,p2y=x,y

numth+=1

The sample code shows the if clause handling 2 vertices, wherein if the user pinpoints

their cursor to the appropriate vertex of a key, and then left clicks, the above code will be

executed. The variables numth, p1x, p1y, p2x, p2y are global and they are being manipulated

on a left click. If the first vertex is clicked, then p1x, p1y are assigned values of x and y and

the value of numth is incremented. Hence on the next left click, the if clause modifies the p2x

and p2y values. Since the draw_cor() function is being called along with this function, the

defined points are marked onto the OpenCV window. This idea can be extrapolated to points

8 to mark the 8 vertices on a single scale. This same function also handles the

EVENT_RBUTTONDOWN, which resets all the coordinates of points 1 to 8 and sets numth

to 0. This provision is enabled to allow users to correct their mistakes. The draw_cor(frame)

is being called along with click_event(). This function helps us visualize these vertices onto

the OpenCV window. This is done with the help of cv.cricle() method. This function redraws

all of the squares onto the frame supplied by the camera. The parameter frame refers to the

new frame received from the camera input from main.

VIRTUAL MUSICAL INSTRUMENTS WITH PYTHON AND OPENCV

ISSN: 2582-337X 10

5.2 Finger Recognition

The main aim of the Image recognition program is to approximate when a color that

suits the predetermined HSV [2][3] range crosses a threshold area.

The y coordinates of the points that decide the start and end of each key is averaged

out and around 40 pixels above the average ordinates is set to the limit where finger

recognition is possible. If a finger is noticed within the average ordinate and 40 pixels above

the average ordinate, the corresponding note is played.

cam=cv.VideoCapture(0)

ret,frame1=cam.read()

This sets cam as the Video object that reads from the 0th Camera (usually the built-in

webcam of the laptop). The cam.read() method returns ret, which is a Boolean that

determines the validity of the loop. The loop or the program runs indefinitely till ret is True

or till camera can get feed. Frame1 is an NumPy array that has an RGB value of each pixel of

each frame. The number of frames is determined implicitly or explicitly. To enable proper

HSV recognition and color recognition, a frame that consists of HSV values is created from

frame1.

frame1_hsv=cv.cvtColor(frame1,cv.COLOR_BGR2HSV)

min_b=np.array([lh,ls,lv])

max_b=np.array([uh,us,uv])

mask=cv.inRange(frame1_hsv,min_b,max_b)

Here the mask variable consists of pixels that are set to 1 if the source image has

pixels that are between the pixels of the min_b and max_bnumpy array. Their values are

determined from the lower and upper limit HSV values of the finger or the finger cap of the

user. The following formula is utilized to allocate masks within the given range [11].

dst(I) = lowerb(I)0 ≤ src(I)0 ≤ upperb(I)0 ∧ lowerb(I)1 ≤ src(I)1 ≤ upperb(I)1

Then the current frame is operated bitwise and with the mask created. The bitwise and

makes sure that each pixel if it falls under the HSV range (as defined in the mask) will only

allocate a pixel value. The HSV value in each pixel is converted to white (or value 1) while

the rest falls to 0. This is enabled by converting the thto Grayscale and then converting each

pixel value only to 0s and 1s (by Thresh_Binary) only if it falls under the given threshold.

 Isaac Abraham Thottathil, S. Thivaharan

Journal of Ubiquitous Computing and Communication Technologies, March 2023, Volume 5, Issue 1 11

th=cv.bitwise_and(frame1,frame1,mask=mask)

th=cv.cvtColor(th,cv.COLOR_BGR2GRAY)

th=cv.threshold(th,0,255,cv.THRESH_BINARY)

dilated=cv.dilate(th,kernel,iterations=3)

Figure 6. Dilation of an Image to enhance the masked regions before contour detection [8]

Moreover, to dilate the masked regions, a dilated function is iterated 3 times to

enhance the regions that are already bright. From this dilated region, it is easier to find

Contours or the keys over which the fingers hover. In a dilated image, the value of the output

pixel in a is determined as the maximum value of all pixels in its neighborhood. The reason

we convert it to a binary image, is because the pixels are set to 1 if any of the neighboring

pixels have the value 1. Hence the masked regions will be visible and performing dilation on

it creates a contour/shape. Morphological dilation fills in irregularities by covering small

holes. This allows lines to appear thicker and contours to be filled [13]. Hence it is now easier

to pinpoint and select the center of a large contour than divided up contours. However, before

dilation noise removal is necessary which is evident in the Fig.7. Dilating a noisy frame that

masked black objects, created a frame wherein the shadows are also dilated. This might prove

a hurdle to HSV recognition. This is why to obtain better results, a background that is white

in color and a high contrast color is to be used for a finger detection. This is why\ in this

paper, a finger cap is being utilized. This will provide a contrast color to the white

background, and since it is not black it doesn’t fade in with the shadows [6][7].

In Figure 7, the left window shows an example of Black Color HSV recognition. The

right frame is masked with appropriate HSV (for the range of black, that do not accept grey

shadows). Then a bitwise_and is performed between them. The result is turned into Gray

Scale, then Binary Gray Scale. This image has values that are either 1 or 0, and is easy for

VIRTUAL MUSICAL INSTRUMENTS WITH PYTHON AND OPENCV

ISSN: 2582-337X 12

contour detection. It is then dilated to produce the image. Finally contours/areas within the 2

red lines are identified and a green dot is added to show the start of the contours.

In Figure 7, the contour’s center is not considered to be the point which acts as a

reference for the contour. However, the contour is accessed by its border value that could be

found in the contours list. This would seem an inefficient way for contour detection spanning

a large region. Moreover, these edge points seem to oscillate much larger to external noise.

Figure 7. Contour Detection for a Black Object in a Playable Area

Contours [1][19] are boundaries of a shape that have the same intensity. Contours

contain the x and y coordinates of the boundaries of the shape. However, to optimize space

complexity, OpenCV removes redundant points and compresses the memory. This is taken

care of by the parameter cv.CHAIN_APPROX_SIMPLE. The second parameter is called the

contour Retrieval Mode, which is taken care of by the property cv.RETR_TREE. This ensures

that the hierarchy list contains the hierarchy of parent contours and child contours [9]

contours,hierarchy=cv.findContours(th,cv.RETR_TREE,cv.CHAIN_APPROX_SIMPLE)

In figure 8, on the left, a white contour that is in the shape of a rectangle is found by

cv.CHAIN_APPROX_NONE. This property returns a contour list that has over 729 points. On

the other hand, the white contour on the right has just 4 points. OpenCV removes the rest of

the redundant points with help of cv.CHAIN_APPROX_SIMPLE. This is how space

efficiency is attained, and can aid in faster processing [10].

Figure 8. Setting edge Points for Contours in 2 ways [9]

 Isaac Abraham Thottathil, S. Thivaharan

Journal of Ubiquitous Computing and Communication Technologies, March 2023, Volume 5, Issue 1 13

for i in contours:

M=cv.moments(i)

if M['m00']!=0 and M[‘m00’]>100:

y=int(M['m01']/M['m00'])

if y>=avg_y-40 and y<=avg_y+10:

x=int(M['m10']/M['m00'])

cv.circle(frame1,(x,y),5,(0,250,0),-1)

play(x)

Furthermore, the next step is to iterate over the list of contours, find their areas and

check if their areas cross a certain threshold, which is set as 100. If it is true, the y coordinate

of the centroid of the contour is found using the relation M[‘m01]/M[‘m00]. If this y

coordinate is within a certain region of the so called “Playable Area” in the frame, then the x

coordinate of the centroid is found. The “Playable Area”, refers to the region where if the

user moves his/her fingers will be recognized by OpenCV. If a user strikes their fingers on

the upper region of the camera frame, it will not be accepted. The region of acceptance is

defined to a “Playable Area”. The Playable Area is defined by finding the average of all the

ordinates of the edges of the keys, and extending 40 pixels to the top and bottom from this

average. This region is marked by two lines and it is within this region where the Camera

tracks movement. After this, with the centroids of each contour, a circle is plotted which is

Green in color. The abscissa of the centroid is passed to the function play(), where it is

further processed to play a note. The reason for selecting the centroids of each of the

moments is not for the reason of symmetry alone. But using the abscissa and ordinate of the

center, in real runtime, avoids the fluctuation of the coordinates. The coordinates of the

centroid chosen are more or less constant throughout the entire loop, compared to any

coordinate on the contour boundary.

The formula below is applied to find the centroid of a contour or a moment.

Accuracy and speed of the finger recognition algorithm is calculated when the fingers

are either close or far from the anchor points. Speed is relatively same as they apply same

techniques with little change. Variation in accuracy is proved due to critical changes in

lighting conditions.

Notes Played Accuracy Speed

When centroid is in

mid of the region

(>5pixels from border)

98.15% 0.00708s

VIRTUAL MUSICAL INSTRUMENTS WITH PYTHON AND OPENCV

ISSN: 2582-337X 14

When centroid is near

to borders

(<5 pixels from border)

87.23% 0.00800s

5.3 Playing the Note

Pygame’s Mixer Module is helpful for controlling playback and loading sound

objects. The mixer module must be initialized at the beginning of the sounds.py module. The

pygame.mixer.init() function is run as the first function and takes arguments to control the

playback rate and sample size. This can be decided with respect to the user's hardware

resources or audio resources. Once a user installs the wav files of some notes of the piano on

their local machine, they will have to be created as sound objects.

c1=mixer.Sound('C1.wav')

d1=mixer.Sound('D1.wav')

e1=mixer.Sound('E1.wav')

f1=mixer.Sound('F1.wav')

g1=mixer.Sound('G1.wav')

a1=mixer.Sound('A1.wav')

b1=mixer.Sound('B1.wav')

The above code shows creating Sound objects with wav files of the keys of the first

Scale. In this paper, this preliminary initialization is done for 6 scales, and each of the Sound

objects are loaded into a list. This is also extrapolated to lists c, d, e, f, g, a, b.

c=[c1,c2,c3,c4,c5]

With help of a global integer ind, that keeps track of the current scale, the user will

select a sound object from the list. The play(x) function has an if-else ladder to check if the

abscissa of the centroid is between any one of the 7 keys (C, D,E,F,G,A,B) that was already

predetermined by the user. If it falls between point 1 and point 2, the C note of the current

scale will be played. The sample if clause for catching the first key (C key of any scale) is

given below.

iftemp_X>=p1x and temp_X<p2x :

play_note(c[ind])

The function play(x) copies the abscissa of where the finger is placed into a variable

temp_X. Then the defined integers of p1x and p2x, all the way up to p8x are checked to see if

the current finger is between them. This if-clause can be extrapolated to 8 points. To play the

note wherein the current finger is placed, a play_note() user defined function is utilized. This

function checks if the Pygame mixer, a module to load Sound objects, is currently running. If

not, the current Sound object is played. The get_busy() method checks if the mixer is busy

 Isaac Abraham Thottathil, S. Thivaharan

Journal of Ubiquitous Computing and Communication Technologies, March 2023, Volume 5, Issue 1 15

mixing any channels. If the mixer is standing idle, the method returns False. This will prevent

cutting a running wav file in the background abruptly.

ifmixer.get_busy()==False:

<Sound Object>.play(0)

Else, if the current mixer is already running, which means a previous note is currently

playing. Then the mixer is stopped and the new Sound Object is played. The next block of

code comes under the else block of the previous code. The get_num_channels() returns the

total number of active playback channels. The <Sound Object> variable refers to the

parameter received for the play_note() function. There is a specific reason why there is

another if clause to avoid performing themixer.stop() if the active number of playback

channels is 1. This is because when a frame is being played in OpenCV, these functions in

sounds.py module are being called indefinitely. Hence when playing a note, if the note’s

corresponding wav file is already called, it is essential not to stop the wav file running, and to

avoid restarting. Hence the program has to check if the current Sound Object is playing or

not. If it is playing, it indicates that the user's hand is still over the key else, it shows that the

key was never played in a recent set of frames.

ifmixer.Sound.get_num_channels(<Sound Object>)==1:

pass

else:

mixer.stop()

<Sound Object>.play(0)

In Figure 9, the finger when playing/hovering over the key E1(as seen for the user in

blueprint), is being recognized as key E1 in the Pygame window. The note E1 is shown in the

Pygame window. Moreover, the corresponding wav file of E1 is being played in the

background. Notice the green circle on the center of the finger that is currently being played.

This explicitly tells that the image pre-processing, HSV recognition and contour detection

algorithms have all worked with zero errors, to point to the center of each moment.

Figure 9. Setting edge Points for Contours in 2 ways [9]

VIRTUAL MUSICAL INSTRUMENTS WITH PYTHON AND OPENCV

ISSN: 2582-337X 16

As mentioned, to move across various scales the user will have to traverse the scales

using the right and left keys. This event is being handled by Pygame in main, as it waits for

events in frame.

forev in pygame.event.get():

ifpygame.KEYDOWN==ev.type:

ifev.key==pygame.K_RIGHT:

ind+=1

ifev.key==pygame.K_LEFT:

ind-=1

The pygame.event.get() method listens for a key in the keyboard to be in down state.

If the corresponding event is the same as the right button being pressed down, then the global

variable indis incremented. Similarly, the indis decremented if the event is a left button being

pressed down. Incrementing ind will affect the values like blit() methods for the Pygame

Screen and the different sound objects will be accessed according to the ind value. Changes

in the indvalue will be reflected at the start of the next while loop.

 Conclusion

The main objective of the paper was to cultivate an environment for musical aspirants

to play virtual musical instruments with easy accessibility and affordability. This paper aimed

to solve the issue with OpenCV working to identify fingers in each frame. This is done by

HSV color conversion, masking the frame within a HSV range. Then the obtained mask is

converted to a Grayscale image, then to a frame with binary values. Finally, it is dilated. On

this dilated image, contours are found whose centroids fall within the region where the user

has defined his keys. On finding a finger hovering over a key, a note is played with help of

Pygame and by loading the wav files of keys of the piano with the help of a mixer. Hence this

continues till the user closes the window. With help of Pygame, a miniature Piano keyboard

is created that highlights a key when the key/ note is recognized by OpenCV. Numpy module

plays a major role in processing each frame and converting them to grayscale and HSV. The

numpy array is the medium or the data type utilized to process the frames for color

recognition. The major achievement of this paper is its attempt to utilize a lightweight

Computer Vision technique to allow it to be deployed on various platforms. Amongst

techniques that solely utilize HSV recognition this paper provides users to define their

template or their workspace on how their piano is set up. This independence is achieved by

allowing users to determine their anchor points, and this is crucial in extending to well

 Isaac Abraham Thottathil, S. Thivaharan

Journal of Ubiquitous Computing and Communication Technologies, March 2023, Volume 5, Issue 1 17

beyond to other instruments. This is a step towards achieving affordability and accessibility

to new aspirants.

6.1 Future Scope of Improvement

There are methods to improve this virtual musical instrument. The software can be

easily upgraded with a camera of larger aperture to track a larger field of view. This means

more keys can be tracked and at a time more scales in the Piano can be played. Currently, to

move from one scale to another, the up and down buttons are being used. To play a Grand

Piano, in an authentic sense, this can be achieved by using a camera with larger aperture and

increased clarity, by setting up two or three A4 Sheets on the Table. By freely moving across

the ends of the paper, users can play up and down the scales.

Moreover, this work can be applied to an Android application by running an image

recognition algorithm on the backend. This will definitely increase affordability for musical

aspirants in developing countries who have entered into the technological realm. Musical

Instruments need not be restricted to single instruments like a piano or a keyboard. Guitars

and other String Instruments too could be developed that require different camera angles, and

slightly modified programs to identify each note. This could be customized to various other

musical instruments. The customization for a drum might be to change the viewing angles,

and have a new anchor. A paper or a blueprint acted as an anchor for this virtual instrument.

This can be extended to a drum by having wooden plates/planar objects as anchors that when

struck, or when a stick comes to the vicinity of such a planar object, there is a wav file

played. Hence, a similar fashion of color recognition can open doors to increasing portability

of bulky instruments and efficiently improve affordability.

References

[1] A. S. Konwar, B. S. Borah and C. T. Tuithung, "An American Sign Language

detection system using HSV color model and edge detection," 2014 International

Conference on Communication and Signal Processing, 2014, pp. 743-747, doi:

10.1109/ICCSP.2014.6949942.

[2] Vladimir Vezhnevets, VassiliSazonov and AllaAndreeva, "A survey on pixel-based

skin color detection techniques", Proc. Graphicon, vol. 3, pp. 85-92, 2003.

VIRTUAL MUSICAL INSTRUMENTS WITH PYTHON AND OPENCV

ISSN: 2582-337X 18

[3] D. S. Y. Kartika and D. Herumurti, "Koi fish classification based on HSV color

space," 2016 International Conference on Information & Communication Technology

and Systems (ICTS), 2016, pp. 96-100, doi: 10.1109/ICTS.2016.7910280.

[4] A. Saxena, "VIANO-the virtual piano," 2017 3rd International Conference on

Computational Intelligence & Communication Technology (CICT), 2017, pp. 1-4,

doi: 10.1109/CIACT.2017.7977332.

[5] L. W. Campbell and A. E. Bobick, "Recognition of human body motion using phase

space constraints", Proceedings of the 5th IEEE International conference on Computer

Vision, pp. 624-630, 1995.

[6] A. Saner, A. Sharma, A. Patil, A. Soni and P. More, "Dynamic Color Recognition for

Video Game Controller," 2021 International Conference on Computing,

Communication and Green Engineering (CCGE), 2021, pp. 1-3, doi:

10.1109/CCGE50943.2021.9776403.

[7] P. Singh, B. B. V. L. Deepak, T. Sethi and M. D. P. Murthy, "Real-time object

detection and Tracking using color feature and motion," 2015 International

Conference on Communications and Signal Processing (ICCSP), 2015, pp. 1236-

1241, doi: 10.1109/ICCSP.2015.7322705.

[8] R. Hua and Y. Wang, "Skin color detection based super pixel," 2017 3rd IEEE

International Conference on Computer and Communications (ICCC), 2017, pp. 1756-

1760, doi: 10.1109/CompComm.2017.8322841.

[9] Thivaharan.S, Srivatsun.G, "Keras Model for Text Classification in Amazon Review

Dataset using LSTM", Journal of Artificial Intelligence and Capsule Networks

(IROAICN), June 2021, Vol.03, Issue.02, pp.72-89, ISSN: 2582-2012,

https://doi.org/10.36548/jaicn.2021.2.001

[10] docs.opencv.org,Contours: Getting Started, Available:

https://docs.opencv.org/3.4/d4/d73/tutorial_py_contours_begin.html , [Accessed : 15-

October-2022]

[11] docs.opencv.org: Operations on Arrays, Available:

https://docs.opencv.org/3.4/d2/de8/group__core__array.html#ga48af0ab51e36436c5d

04340e036ce98, [Accessed: 15-October-2022]

[12] pygame.org/docs: Setting Display Modes,Available : https://www.pygame.org/

docs/tut/DisplayModes.html

[13] Thivaharan.S, Srivatsun.G, "Maximizing the Prediction Accuracy in Tweet Sentiment

Extraction using Tensor Flow based Deep Neural Networks", IRO Journal of

https://doi.org/10.36548/jaicn.2021.2.001

 Isaac Abraham Thottathil, S. Thivaharan

Journal of Ubiquitous Computing and Communication Technologies, March 2023, Volume 5, Issue 1 19

Ubiquitous Computing and Communication Technologies (IROUCCT), June 2021,

Vol.03, Issue.02, pp.61-79, ISSN: 2582-337X,

https://doi.org/10.36548/jucct.2021.2.001

[14] Rehanullah Khan, Allan Hanbury, Julian Stöttinger and Abdul Bais, "Color based skin

classification", Pattern Recognition Letters, vol. 33, no. 2, pp. 157-163, 2012.

[15] RabiaJafri, Syed Abid Ali, Hamid R Arabnia and Shameem Fatima, "Computer

vision-based object recognition for the visually impaired in an indoors environment: a

survey", The Visual Computer: International Journal of Computer Graphics, vol. 30,

no. 11, pp. 1197-1222, 2014.

[16] Praveen Kakumanu, Sokratis Makrogiannis and Nikolaos Bourbakis, "A survey of

skin-color modeling and detection methods", Pattern recognition, vol. 40, no. 3, pp.

1106-1122, 2007.

[17] Siddharth S. Rautaray and Anupam Agrawal, "Vision based hand gesture recognition

for human computer interaction: a survey", Artificial Intelligence Review, vol. 43, no.

1, pp. 1-54, Jan 2015.

[18] Hui Liang, Jin Wang, Qian Sun, Yong-Jin Liu, Junsong Yuan, Jun Luo, et al.,

"Barehanded music: real-time hand interaction for virtual piano", Proceedings of the

20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 87-

94, 2016.

[19] VA Oliveira and A Conci, "Skin detection using hsv color space", H. Pedrini& J.

Marques de Carvalho Workshops of Sibgrapi, pp. 1-2, 2009.

[20] Dengsheng Zhang and Guojun Lu, "Review of shape representation and description

techniques", Pattern recognition, vol. 37, no. 1, pp. 1-19, 2004.

[21] L. Barba-Guamán, C. Calderon-Cordova and P. A. Quezada-Sarmiento, "Detection of

moving objects through color thresholding," 2017 12th Iberian Conference on

Information Systems and Technologies (CISTI), 2017, pp. 1-6, doi:

10.23919/CISTI.2017.7975755.

[22] P Lalitha Surya Kumari, C.H.Sarada devi, S. Thivaharan, K Srinivas, Avula

Damodaram, A Resilient Group Session Key Authentication Methodology for

Secured Peer to Peer Networks using Zero Knowledge Protocol, Optik, 2022, 170345,

ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.170345.

(https://www.sciencedirect.com/science/article/pii/S0030402622016035)

[23] A. S. Silva, F. M. Q. Severgnini, M. L. Oliveira, V. M. S. Mendes and Z. M. A.

Peixoto, "Object Tracking by Color and Active Contour Models Segmentation," in

VIRTUAL MUSICAL INSTRUMENTS WITH PYTHON AND OPENCV

ISSN: 2582-337X 20

IEEE Latin America Transactions, vol. 14, no. 3, pp. 1488-1493, March 2016, doi:

10.1109/TLA.2016.7459639.

[24] G. Li, H. Tang, Y. Sun, J. Kong, G. Jiang et al., "Hand gesture recognition based on

convolution neural network", Cluster Comput, vol. 22, pp. 2719-2729, 2019.

[25] A. Yilmaz, O. Javed and M. Shah, "Object Tracking: A Survey", ACM Computer

Survey, vol. 38, no. 4, pp. 1-45, 2006.

[26] F. Russo, "An image enhancement technique combining sharpening and noise

reduction", IEEE Transactions on Instrumentation and Measurement, vol. 51, no. 4,

pp. 824-828, 2002.

[27] Yuheng Song and Hao Yan, "Image segmentation techniques overview", 2017 IEEE

Asia Modelling Symposium (AMS), pp. 103-107, 2017.

[28] Susmita Sahu, Himadri Sarma and Dibya Jyoti Bora, "Image segmentation and its

different techniques: An in-depth analysis", 2018 IEEE International Conference on

Research in Intelligent and Computing in Engineering (RICE), pp. 1-7, 2018.

[29] Mr. Thivaharan S, Dr. G. Srivatsun, Mr. KARTHIKEYAN A S, Dr. R. Santhosh,

Portable assistant to read and interpret braille paper print to aid visually challenged

persons in Tamil language, Status: Published, Application No: 202241038275,

Journal No: 27/2022 (Part2), Date of Filing: 04.07.2022, Publication Date:

08.07.2022, Page No: 43144, No of pages: 8, Claims: 9, Indian patent.

[30] R. Guo, J. Cui, W. Zhao, S. Li and A. Hao, "Hand-by-Hand Mentor: An AR based

Training System for Piano Performance," 2021 IEEE Conference on Virtual Reality

and 3D User Interfaces Abstracts and Workshops (VRW), Lisbon, Portugal, 2021, pp.

436-437, doi: 10.1109/VRW52623.2021.00100.

[31] W. Qiao, R. Wei, S. Zhao, D. Huo and F. Li, "A real-time virtual piano based on

gesture capture data," 2017 12th International Conference on Computer Science and

Education (ICCSE), Houston, TX, USA, 2017, pp. 740-743, doi:

10.1109/ICCSE.2017.8085592.

