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Abstract 

The Multidimensional Knapsack Problem (MKP) is a challenging combinatorial 

optimization problem that extends the classical knapsack problem by introducing multiple 

capacity constraints across various dimensions. This problem has significant practical 

applications, including resource allocation in supply chain management, portfolio 

optimization in finance, and cargo loading in logistics, where the goal is to maximize the total 

profit of selected items while adhering to these constraints. In this research, the CPLEX solver 

was applied to address the MKP using a set of complex instances from the OR-Library, 

specifically the ORX Benchmarks. The study focuses on 270 MKP instances characterized 

by varying numbers of variables (n = 100, 250, 500), constraints (m = 5), and tightness ratios 

(α = 0.25). Through advanced CPLEX techniques, new results were successfully obtained by 

employing advanced CPLEX methods, contributing to the existing literature, and setting new 

benchmarks for these instances. 
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 Introduction 

Combinatorial optimization focuses on finding the best solution from a set of discrete 

choices, each bound by specific constraints. These problems are essential in theoretical studies 

and practical fields, including operations research, computing, logistics, and finance. 

Efficiently tackling these challenges can greatly enhance strategic decision-making and 

optimize how resources are managed.  

Among the most recognized combinatorial optimization problems is the Traveling 

Salesman Problem (TSP) [1-3] which aims to determine the shortest possible route that allows 

a salesman to visit each city exactly once and return to the starting point. Another notable 

example is the Traveling Tournament Problem (TTP) [4-8] which aims to schedule games in 

a sports league while minimizing travel distances and meeting various constraints. The 

Knapsack Problem [9-11] is a well-known optimization problem where the objective is to 

maximize the total value of items packed into a knapsack without exceeding its capacity. The 

0/1 Knapsack Problem is a specific case where each item can be either included (1) or 

excluded (0). This is the fundamental definition of the problem. However, several variations 

exist, including [12] the following   

 Single Knapsack Problem: All items must be packed into a single container. 

 Multidimensional Knapsack Problem (MKP): Multiple containers are available for 

item placement. 

 Multiple-Choice Knapsack Problem: Items are grouped into subsets, with at most one 

item from each subset being selected.  

 Bounded Knapsack Problem: The number of items available for selection is limited. 

  In this work, the focus is on the 0/1 MKP, a problem with practical significance due 

to its high computational complexity and numerous real-world applications. 
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The 0-1 MKP extends the classic 0-1 Knapsack Problem by introducing multiple 

constraints instead of just one. In the MKP, each item has various attributes, such as weight, 

volume, and cost, corresponding to different knapsack constraints (e.g., weight limit, volume 

limit, budget limit). The goal remains the same: to achieve the highest possible combined 

value of the selected items. However, the solution must satisfy all the constraints 

simultaneously.  

The MKP is particularly challenging due to its increased complexity [13]. Unlike the 

single-constraint knapsack problem, where the solution can be more straightforward, the MKP 

requires balancing multiple constraints simultaneously. This makes the problem much more 

challenging, especially as the number of constraints and items increases. The MKP is NP-

hard [14,15] meaning that finding an optimal solution can be computationally intensive, 

particularly for large problem instances. 

The MKP has significant practical applications in various fields: Resource Allocation 

[16]: In scenarios where resources are limited and must be allocated across multiple projects 

or departments while respecting budgetary and other constraints. Portfolio Optimization [17]: 

Selecting a portfolio of investments that maximizes returns while adhering to risk, budget, 

and other constraints. Cargo Loading [18]: Determining the optimal way to load cargo into a 

vehicle or container while considering multiple constraints like weight, volume, and stability. 

Due to the NP-hardness of the 0–1 MKP problem, several exact and heuristic 

optimization methods have been used to solve both small and large MKP instances. For exact 

or deterministic algorithms, many works have been proposed: the authors in [18] introduces 

a dynamic programming-based approach for the MKP using sparse data representation to 

reduce memory and time requirements. This study [19] explored the MKP by analyzing the 

gap between LP-relaxed and optimal solutions, introducing a new core concept, and 

evaluating collaborative approaches combining ILP and metaheuristics. Exact algorithms can 

efficiently solve small-scale instances of the MKP, but their computational time increases 

dramatically as the problem size grows, making them impractical for larger instances. In 

contrast, metaheuristic algorithms, while not guaranteeing optimal solutions, can quickly find 

high-quality approximations—often reaching near-optimal or even optimal solutions—with a 

significantly better approximation ratio. For example, in [21], the authors propose a new 
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approach using Deep Symbolic Regression and Recurrent Neural Networks to train scoring 

functions for the Multidimensional Knapsack Problem. It shows that it can outperform 

traditional human-crafted heuristics; this work [22] presents TEPSOq, an algorithm that 

merges Tabu Search with Essential Particle Swarm Optimization Queen to tackle large-scale 

MKP instances. It demonstrates superior performance compared to TEPSOq and other meta-

heuristic methods. [23] This study introduces an enhanced Teaching-Learning-Based 

Optimization (TLBO) method for the MKP. It eliminates extensive parameter tuning and 

proves effective for large-scale industrial problems, with competitive results on standard 

benchmarks from Beasley’s OR Library.  

 Multidimensional Knapsack Problem 

In MKP, a set of items is given, each with a value and multiple resource consumption 

levels across different dimensions (e.g., weight, volume). The objective is to choose a subset 

of items that maximizes the total value while adhering to the capacity limits imposed on each 

dimension.     

Consider a knapsack with M dimensions, where 𝑐𝑗 represents the capacity of the 𝑖𝑡ℎ 

dimension, for i = 1, 2, ...,m. we have 𝑛 items available. Each item 𝑗 item requires 𝑤𝑖𝑗 units 

of the 𝑖𝑡ℎ dimension of the knapsack j, j = 1, 2... n and i, =1, 2…m. The reward of including 

the item j in the knapsack is  𝑝𝑗 . The problem can be formulated as follows:    

max Z =  ∑ pjxj

n

j=1

              (1) 

                                          subject to ∑ wijxj    

n

j=1

< cj,          i = 1,2, . . , m,                        (2)  

Equations (1) and (2) represent the objective function and the constraints, respectively, 

as follows: 

•𝑥𝑗 is a binary value. Such 𝑥𝑗 = 1 if we put the item j into the knapsack and 𝑥𝑗 = 0 if 

we don’t.  



Novel Solutions to the Multidimensional Knapsack Problem Using CPLEX: New Results on ORX Benchmarks 

ISSN: 2582-337X  298 

 

 

• j refers to the item, j ≤ n.    

 CPLEX Solver to Solve MKP 

CPLEX, developed by IBM, is a widely used commercial solver designed for large-

scale optimization problems such as Linear Programming (LP), Mixed-Integer Programming 

(MIP), and Quadratic Programming. In this study, CPLEX was used to efficiently solve the 

Multidimensional Knapsack Problem (MKP) by employing its advanced Branch-and-Cut 

algorithm, which integrates various optimization techniques to improve computational 

efficiency. 

The process begins with a preprocessing phase, where CPLEX applies probing and 

symmetry detection techniques to reduce the problem size by eliminating redundant variables 

and constraints. For the ORX100 instance, the original MIP model had 100 binary variables 

(columns), 500 nonzeros, and 5 constraints. After CPLEX applied presolve and aggregation 

steps, the model was reduced to 83 binary variables, 415 nonzeros, and the same number of 

constraints. This reduction focuses the solver on the core structure of the problem, improving 

computational efficiency without altering its essential characteristics. 

After preprocessing, CPLEX employs the Branch-and-Cut algorithm, a combination 

of Branch-and-Bound and cutting-plane techniques. The first step in this process is solving 

the LP relaxation at the root node, where the binary constraints are relaxed to allow fractional 

values. For the ORX100 instance, the LP relaxation at the root node was solved in 0.18 ticks, 

providing an initial objective value of 24,538.2090. 

Once the relaxation is complete, CPLEX generates cutting planes, which are 

additional constraints that tighten the LP relaxation and help eliminate fractional solutions. In 

the ORX100 instance, CPLEX applied several types of cuts, including 52 cover cuts, 5 mixed-

integer rounding cuts, 4 zero-half cuts, and 2 Gomory fractional cuts. These cuts reduced the 

objective value at the root node to 24,505.5560, with the gap between the best integer solution 

(24,190.0000) and the LP bound narrowing to 1.30%. 

Following the application of cutting planes, CPLEX proceeds with the branching 

phase, where the solver explores fractional variables and creates sub-problems by branching 
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on those variables. This divides the solution space into smaller regions. For the ORX100 

instance, after the relaxation and cuts, CPLEX dynamically explored fractional variables 

across 4,239 nodes. At each node, further cuts were applied to tighten the solution space. 

CPLEX also employed symmetry detection multiple times during this phase, identifying and 

eliminating equivalent solutions to reduce the search space, leading to faster processing. 

A critical feature of CPLEX is its ability to utilize parallel processing, which allows 

for simultaneous exploration of multiple nodes in the search tree. For the ORX100 instance, 

CPLEX used 8 threads in parallel mode, completing the Branch-and-Cut process in 0.77 

seconds. This parallel processing significantly accelerates the computation for large-scale 

problems like the MKP by allowing the solver to explore several regions of the solution space 

concurrently. 

The final solution for the ORX100 instance had a gap of 0.66%, indicating that the 

solution was near-optimal. This result demonstrates the effectiveness of the Branch-and-Cut 

algorithm, combined with cutting-plane generation, preprocessing, aggregation, and dynamic 

search methods. These techniques, along with CPLEX’s parallel processing capabilities 

played a crucial role in efficiently solving the MKP by reducing the problem size, improving 

computational efficiency, and ensuring faster convergence to an optimal or near-optimal 

solution. 

To evaluate the performance of CPLEX on the MKP, tests were conducted on various 

benchmark instances, including the ORX suite. For instance, in the OR5x100 instance, 

CPLEX reduced the problem’s dimensionality by 95%, effectively solving the problem within 

a few seconds. The empirical analysis demonstrated CPLEX’s ability to handle large-scale 

MKP instances with a high degree of accuracy, consistently achieving near-optimal solutions 

while maintaining low computational time. The detailed results from these benchmarks 

highlighted the solver's ability to exploit the structural properties of the MKP, validating its 

suitability for solving such complex combinatorial problems. 

The steps of the CPLEX algorithm applied to the ORX instances are summarized as 

follows: 
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Step 1: Initialization of the MKP Model 

 n: Number of items 

 m: Number of knapsack constraints 

 𝑝: Profit of item 𝑖 

 𝑤𝑖𝑗: Weight of item 𝑖 in constraint 𝑗 

 𝑐𝑗: Capacity of knapsack 𝑗 

 𝑥𝑖: Binary decision variable, 𝑥𝑖=1  if item i is selected, otherwise 𝑥𝑖=0 

The Objective Function: max Z =  ∑ pjxj
n
j=1  

The Constraints: ∑ wijxj    
n
j=1 < cj,          i = 1,2, . . , m, 

                                                       𝑥𝑖 ∈ {0,1} ∀ 𝑖 = 1, … , 𝑛 

Output: 

 Optimal solution x∗ 

 Optimal objective value z* 

Set Initial Bounds: 

𝑧𝑏𝑒𝑠𝑡 = −∞ (𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 

𝑧𝑢𝑏 = +∞ (𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑) 

Step 2: Presolve and Preprocessing 

 Identifies constraints that are not active and can be removed to simplify the problem: 

if any constraint 𝑗 is dominated by another (i.e., if for all items i, 𝑤𝑖𝑗 > 𝑤𝑖𝑘, and 𝑐𝑗 <

𝑐𝑘, then constraint 𝑗 can be removed). 

 Variable Fixing: If an item 𝑖 has a weight 𝑤𝑖𝑗  in any knapsack 𝑗 that exceeds the 

knapsack's capacity  cj,, then 𝑥𝑖  can be immediately fixed to 0. 
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 Constraint Aggregation: if certain items have identical weights across several 

knapsacks), CPLEX aggregates these constraints into one. 

 Symmetry Detection: In MKP, symmetry arises when some items have identical 

profits and weights across all knapsacks. CPLEX adds lexicographical ordering 

constraints to ensure the problem does not explore redundant symmetric solutions (i.e., 

selecting the same items in different orders).   

Step 3: Root Node Initialization (LP Relaxation) 

 Relaxing the Binary Constraints: CPLEX first solves the Linear Programming (LP) 

relaxation of the MKP by allowing 𝑥𝑖 ∈ [0,1]  to take continuous values between 0 

and 1. This relaxation provides an initial bound for the objective. 

 Check Feasibility of Relaxed Solution: If the LP solution is already integer feasible 

(i.e., all 𝑥𝑖  values are binary), CPLEX will skip further branching and cuts.  

Step 4: Cut Generation 

If the LP relaxation yields a fractional solution (some 𝑥𝑖 's are not 0 or 1), CPLEX adds 

cuts to exclude these fractional solutions. 

 Cover Inequality Cut: A cover inequality is generated when a subset of items exceeds 

the capacity of the knapsack. Example: If the fractional solution selects items whose 

combined weight exceeds the capacity, CPLEX will add a constraint that excludes 

such a solution. 

 Gomory Fractional Cuts: These cuts are based on the fractional values from the 

simplex tableau. If an MKP solution contains fractional weights, CPLEX cuts off the 

fractional part by generating Gomory cuts. 

 Mixed Integer Rounding (MIR) Cuts: MIR cuts are used to round fractional 

coefficients in the knapsack constraints. For instance, if an item 𝑥𝑖 contributes 

fractionally to the constraint but exceeds a rounding threshold, CPLEX adds a cut. 
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 Zero-Half Cuts: CPLEX identifies zero-half cuts, which apply when the sum of 

fractional variables is either close to 0 or 1. This helps eliminate fractional solutions 

in MKP. 

 Cut Pool Management: After adding a cut, CPLEX re-solves the LP relaxation, 

refining the solution. If the new solution is still fractional, CPLEX continues 

generating cuts until the solution becomes integer feasible or no more effective cuts 

can be found. 

Step 5: Branching Procedure 

After generating cuts, CPLEX begins the branch-and-cut phase, where it explores the 

solution space by branching on fractional decision variables. 

 Branching on Fractional Variables: If the solution after cuts is still fractional, 

CPLEX selects a decision variable 𝑥𝑖 with the largest fractional value and creates two 

subproblems: 

-One subproblem with 𝑥𝑖 (item selected).   

-Another subproblem with 𝑥𝑖 = 0  (item not selected). 

 Exploring the Branch-and-Cut Tree: CPLEX dynamically explores the branch-and-

cut tree, selecting the most promising nodes to explore further 

 Dynamic Search Method: CPLEX uses a dynamic search method for node 

exploration, balancing between depth-first and best-first strategies to efficiently 

explore nodes. 

 Subproblem Processing and Pruning: 

      -Each subproblem is solved, and infeasible or non-promising nodes are pruned 

(cut off from the tree). 

     -If a subproblem yields a feasible integer solution, the incumbent is updated. If not, 

it is pruned from further consideration. 

 Node Logging: As CPLEX explores the tree, the best integer solution improves. 
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Step 6: Restarts and Further Optimization 

 Restarts: To improve the solution process, CPLEX can perform restarts by clearing 

the current search tree while retaining useful information about the problem. This 

strategy can lead to faster convergence after cuts are reapplied. 

 Presolve After Restarts: After each restart, CPLEX reapplies presolve to further 

reduce the problem size. 

Step 7: Convergence and Solution Improvement 

 Improving the Best Integer Solution: Throughout the process, CPLEX improves the 

best integer solution as it explores new nodes and applies cuts.  

 Optimality Gap Reduction: CPLEX continuously reduces the optimality gap 

between the current best integer solution and the bound obtained from the LP 

relaxation.  

Step 8: Termination and Solution Output 

 Termination Condition: The algorithm terminates when all nodes are pruned or 

processed, and no further improvement is possible. The final solution is provided 

along with the total time and ticks used 

 

 

 

 

 

 

 

Figure 1. CPLEX Process Curves based on OR5x100-0.25_2 Dataset 
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Figure 1 represents the CPLEX process curves obtained by applying the solver to the 

OR5x100-0.25_2 data. These curves visually represent how CPLEX optimizes the solution 

over time through different strategies, such as applying cuts and exploring nodes. 

Objective Value vs. Iterations (Figure 1a): This curve shows how the objective value 

improves over iterations as CPLEX progresses. The y-axis represents the objective value, and 

the x-axis represents the number of iterations. The curve's upward trend indicates how CPLEX 

refines the solution by applying cutting planes and branching strategies, gradually moving 

towards an optimal or near-optimal solution. 

Optimality Gap Reduction (Figure 1b): This curve illustrates the reduction of the 

optimality gap over iterations, highlighting how close the current solution is to the optimal 

one. The y-axis shows the percentage gap, while the x-axis represents the iterations. A 

downward-sloping curve indicates that the gap is narrowing, reflecting CPLEX's 

effectiveness in improving the solution quality over time.  

Number of Cuts Applied vs. Iterations (Figure 1c): This curve highlights the role of 

cutting planes, such as cover cuts and mixed integer rounding cuts, in tightening the solution 

space. The y-axis displays the number of cuts applied, and the x-axis represents the iterations. 

Peaks in the curve suggest critical moments where cuts were particularly effective in 

enhancing the solution quality by reducing the feasible region. 

Node Exploration Over Time (Figure 1d): This curve demonstrates how CPLEX 

explores nodes in the search tree during the branch-and-cut process. The y-axis shows the 

number of nodes explored, while the x-axis represents the iterations. The upward trend reflects 

bursts of node exploration, which align with significant changes in the objective value and the 

overall progress toward an optimal solution. 

 Benchmarks 

The experimental data utilized in this study are derived from the well-known Chu & 

Beasley benchmarks available in the OR-Library [14], which is frequently referenced in the 

literature. The focus was on 270 instances of the MKP, characterized by n=100, 250, and 500 

variables, m = 5, 10, and 30 constraints, and tightness ratios α=0.25. For each combination of 
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(m_n_α). Each problem is labelled as ORmxn-α_r, where m indicates the number of 

constraints, n is the number of variables, α the tightness ratio and r is the instance number. 

 The Numerical Results 

The research utilized CPLEX Optimization Studio 20.1.0, running on an Intel(R) 

Core(TM) i5-10210U CPU @ 1.60 GHz with 8 GB of RAM. 

Tables 1 and 2 provide a summary of the overall measurement results. The 'Best 

Known Results' column lists the best-known values from the literature for the instances 

considered [24-27], [20]. The proposed results' column shows the outcomes obtained using 

the CPLEX solver, while the 'Gap' column highlights the difference between the best-known 

results and the new results achieved in this study. 

The findings demonstrate that the CPLEX solver significantly improved the best 

solutions for almost all OR5x500-0.25 instances, achieving an average gap of 1.22%. 

Tables 1. Numerical Results for OR5x500-0.25 Instances 

Instances The Best-

Known 

Results 

Proposed 

Results 

Gap Execution 

Time 

(seconds) 

Memory 

Usage 

(MB) 

OR5x500-

0.25_1.dat 

117811 120148 +1,83% 80 748.328 

OR5x500-

0.25_2.dat 

117879 117879 0% 89 812.221 

OR5x500-

0.25_3.dat 

119215 121131 +1,58% 94 678.456 

OR5x500-

0.25_4.dat 

120804 120804 0% 101 987.111 

OR5x500-

0.25_5.dat 

122319 122319 0% 75 754.345 

OR5x500-

0.25_6.dat 

119504 122024 +2,06 104 868.409 
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OR5x500-

0.25_7.dat 

119127 119827 0% 123 711.398 

OR5x500-

0.25_8.dat 

118329 120568 +1,85% 67 799.987 

OR5x500-

0.25_9.dat 

121575 121649 +0,07% 55 654.432 

OR5x500-

0.25_10.dat 

120717 121398 +0,58% 92 766.298 

 

For the OR5x250-0.25 instances, the comparison in Table 2 is made with the HLMS 

(Hybrid Learning Moth Search Algorithm) method [28]. The proposed approach shows an 

Table 2. Numerical Results for OR5x250-0.25 and OR30x100-0.25 Instances 

Instances 

OR5x250-

0.25 

1.dat 2.dat 3.dat 4.dat 5.dat 6.dat 7.dat 8.dat 9.dat 10.dat 

Proposed  

results 

59243 61472 62130 59404 59463 60007 60342 61440 61870 58869 

HLMS [28] 59063 61295 61767 59140 58605 - - - - - 

Gap +0.30% +0.28% +0.58% +0.44% +1.46%      

Execution 

Time 

(seconds) 

50 44 32 67 23 15 36 70 22 54 

OR30x100-

0.25 

1.dat 2.dat 3.dat 4.dat 5.dat 6.dat 7.dat 8.dat 9.dat 10.dat 

Proposed 

results 

21946 21716 20754 21464 21844 22176 21799 21397 22525 20983 

SSTSA 

[29] 

21835 21716 20675 21464 21767 22121 21699 21397 22450 20983 

Gap +0.50% 0% +0.38 0% +0.33% +0.24% +0.46% 0% +0.33 0% 
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improvement over HLMS, achieving an average gap reduction of 0.61%. Similarly, for the 

OR30x100-0.25 instances, the proposed results were compared with the SSTSA (Scatter 

Search and Tabu Search Algorithms) approach [29].  The proposed method outperformed 

SSTSA with an average gap reduction of 0.24%.   

 Conclusion 

In summary, the investigation into the 0/1 Multidimensional Knapsack Problem 

(MKP) using the CPLEX solver has led to noteworthy advancements in solving challenging 

instances from the OR library, particularly within the OR5x500-0.25 benchmarks. The results 

demonstrate the efficacy of the CPLEX approach in navigating the MKP's complex landscape, 

yielding significant improvements in solution quality across a diverse range of instances.         
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