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Abstract 

The Internet of Things refers to the growing trend of embedding ubiquitous and 

pervasive computing capabilities through sensor networks and internet connectivity. The 

growth and expansion of newly evolved cyberattacks, network patterns and heterogenous 

nature of cyberattacks trend become the warfare across the globe and challenges to apply 

single layer cyberattacks detection techniques to the Internet of Things. This research work 

identified the lack of cyberattacks detection framework as the major gap for detection of 

multiple cyberattacks such as denial of services, distributed denial of services, and multiple 

attacks while it includes multiple parameters at the same time The proposed framework 

contains three primary modules;  the first module  is responsible for capturing and pre-

processing the captured data  and construction of the model, then the core engine moule 

orchestrates the detection of cyberattacks. The third module, notifies and displays the results 

in a dashboard. This research study used multiple parameters including multiple attack 

classes, network packet patterns, and three scalar types namely no scaler, MinMax, and 

Standard. Regardless of the defined parameters used minmax scaler followed by standard 

scaler gives better detection performance than models trained with no scaler. The proposed 

framework is trained and evaluated with different models including Convolutional Neural 

Network (CNN), Hybrid, Feed Forward Neural Networks (FFNN), and Long Short-Term 

Memory (LSTM) that provides a result of 91.42%, 82.75%, 78.38%, and,74.83% detection 

accuracy respectively where it is observed that CNN model outperforms the optimal results 

among followed by hybrid and FFNN. 

Keywords: IoT Environments, Cyberattacks, Multiple Attack Detection, CNN, LSTM, 

FFNN 
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 Introduction 

The Internet of Things (IoT) is becoming a new approach that incorporates the Internet 

into objects, as well as personal and even social life.  The Internet of Things (IoT) refers to 

the growing trend of embedding ubiquitous and pervasive computing capabilities through 

sensor networks and internet connectivity. IoT devices are growing rapidly, making a big 

difference in daily lives, helping industries, manufacturing, transportation, healthcare, 

agriculture, consumers and retailers make important decisions. Despite the significant benefit 

of IoT to human lives still, the technology is not mature enough to provide secure 

communication whereas increased connected devices launch large security attacks. The 

existing research studies' attack detection frameworks are limited to flow which will have a 

drawback to be identified as an attack, it is necessary to wait for it to be terminated first 

Additionally, the proposed frameworks [1,2] have been concentrated on identifying a 

limited number of cyberattacks. Research studies such as [3,4] exclusively focus on one or a 

small number of pre-trained models in their approaches. Consequently, their attack detection 

techniques experienced a decline in accuracy, along with a fall in their resilience. The novel 

proposed solution aims to design a novel framework for detecting multiple (i.e. using network 

packet patterns or window sizes, one or more machine learning models, multiple scaler types, 

and applying at least two or more attack categories) application-layer cyberattacks in IoT 

environments.   

This research study has a significant contribution, primarily the proposed framework 

can be integrated into IoT application-layer attack detection solutions. Secondly, the 

framework has the potential to be adapted for real-time cyberattacks detection, improving 

defence against evolving IoT threats and finally, supporting future researchers as an input for 

further optimization and improvement. In this research, the literature review on attack 

detection in IoT is given in Section 2. The overall Related Work is discussed in Section 3. 

Under section 4 the proposed architecture framework is described. Section 5 specifies the 

performance evaluation and result and analysis. In the end, the conclusion and future of this 

study is depicted in Section 6. 
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 Literature Review  

2.1 Elements of IoT  

Enabling technologies for the Internet of Things considered in [5] can be grouped into 

three categories: i) technologies that enable “things” to acquire contextual information, ii) 

technologies that enable “things” to process contextual information, and iii) technologies to 

improve security and privacy. The first two categories can be jointly understood as functional 

building blocks required to build “intelligence” into “things”, which are indeed the features 

that differentiate the IoT from the usual Internet. The third category is not a function but rather 

a requirement, without which the penetration of the IoT would be severely reduced.  

2.2 Benefits of IoT  

IoT by generating actionable data, in turn, can improve efficiency, productivity, 

management, and quality control regardless of industry [6]. The IoT technologies promise a 

wide range of benefits across various industries such as manufacturers, agriculture, and 

infrastructure that benefited significant value from enterprise IoT-enabled applications [7,8]. 

Furthermore, IoT technologies hold an immense advantage from a medical services 

perspective an array from wearable fitness, and health monitoring devices to network-enabled 

medical devices that are expected to transform healthcare systems [9-11].   

2.3 IoT Characteristics and Key Factors of IoT Security 

Some of the common essential features and characteristics of IoT mentioned [12,13] 

are, interconnectivity, things-related services, heterogeneity, dynamic change, and economic 

scale. Implementing IoT is not without its difficulties, there are various factors to IoT security 

flaws both technical and non-technical, which can be broadly classified into four categories 

which are technology, system interoperability, dependability, and market readiness [14,15]. 

2.4 IoT Attacks and Detection Techniques 

The fundamental foundational layer of IoT includes the physical, networks, and 

application layers whereby various attacks are happening across those layers and this study 

discusses those attacks in each layer as follows.  
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● Physical Layer 

The authors [16] discuss the three-level architecture that satisfies IoT's core principles 

and includes application, network, and perception layers. Under the physical layer, spoofing 

security issues occurs in SDIoT controllers for which the authors [17] proposed a hybrid 

countermeasure, which combines initiative-taking and reactive methods to find and stop 

attacks. The issue of jamming detection [18] within the broader perspective of communication 

channels. The author [19] proposes a secure cross-device networking protocol to link IoT 

devices with software and hardware resources. 

● Network Layer  

The research introduces a novel approach to detecting Sybil attacks in wireless sensor 

networks using Traffic Monitoring (SDTM). The method uses traffic volume and statistical 

techniques to find malicious nodes using K-means and averaging algorithms [20].   

● Application Layer 

The study aims to analyse major risks for web applications and internet-based services 

that are universal to multiple web applications of various organizations [21]. An enhanced 

IoT architecture considers the environment and other factors affecting sensor operation by the 

researcher [22]. The goal is to improve the architecture by finding or monitoring items and 

environmental conditions. 

2.5 Machine Learning-Based Detection  

Some of the common machine learning approaches used in attack detection, as 

proposed and used by many researchers including in this research study, are: Supervised 

Learning, which is based on labeled data in a certain way [23]; Unsupervised Learning, where 

this approach makes use of unlabeled data, and the model marks them on its own depending 

on the characteristics of the data [24]; and in addition, Semi-Supervised Learning, which 

combines both supervised and unsupervised methods [25]. Reinforcement Learning is used 

in an environment that is constantly changing [26], where it follows an environment-driven 

approach in such a way that it may assist in the correction of errors and behavior in response 

to changes in the environment [27]. Deep Learning, a machine learning method, may be 

defined as an approach involving many layers to go through to achieve high-level feature 

learning from a training set. It is a specific type of feedforward neural network that can convert 
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the extracted features into models with the utmost accuracy, where the output of the final layer 

becomes the input of the subsequent layer [28]. 

Machine Learning Method FFNN is a widely used ANN that uses a hidden layer to 

decide the number of neurons in the input and output layers. In real-world scenarios, a network 

with numerous neurons generates a network, and the output of the FFNN model determines 

whether an attack is occurring in IoT datasets [29]. LSTMs are a type of RNNs used for 

collecting data from multiple layers, unlike FFNNs. RNNs are more effective at modelling 

sequences but face challenges like gradient vanishing and exploding. LSTMs use hidden unit 

connections to generate output and weight models. This approach is more effective than 

reinforcement neural networks (RNNs) due to their ability to handle gradient vanishing and 

exploding issues [29]. A hybrid model used is based on the combination of one or more 

models such as combination of FFNN, LSTM and/or CNN and LSTM or any other 

combination of models.  

2.6 Machine Learning Methods 

Authors [30] propose a method to show security vulnerabilities on IoT devices by 

integrating both CEP and ML. The accuracy, precision, recall, and F1-score were some of the 

metrics used to assess the suggested architecture on a dataset of botnet-generated network 

traffic. When compared to other approaches, the results showed that the suggested 

architecture was superior at identifying security breaches in IoT. However, the study's unique 

emphasis is on single   attack class type where it might miss other kinds of attacks. Using an 

ensemble method and distributed JRip (Repeated Incremental Pruning to Produce Error 

Reduction) and Super-Vector Machine algorithms, this study [4] provides security 

architecture for IoT devices based on machine learning. The evaluation was conducted using 

the NSL-KDD dataset. Even though the detection rate and accuracy of 99.71% are high, it 

may not adhere to network and system signatures or standard interfaces, resulting in incorrect 

AI decisions and sub-parameter measurements.  The author [2] presents a machine learning 

and stateful SDN architecture for identifying and preventing DDoS attacks in IoT networks 

using a decision tree technique. The proposed framework had 99.79% accurate results But the 

study does not provide or explicitly mention detailed information about the types of datasets 

used for experimentation, which may limit the generalizability of the results. Furthermore, the 

author [31] proposed a classical machine learning techniques (used Gradient Boosted decision 

tree, super vector, and random forest classifications to detect the DDoS attacks with an 
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enormous Botnet such as Mirai and the NSL-KDD dataset which provided the best accuracy 

of 85.34% of RF model.  

2.7 Deep Learning Methods 

● Deep Neural Network  

The study [1] suggests using a middleware system based on a distributed deep neural 

network framework to find malware attacks on Internet of Things (IoT) devices. These models 

encompass a wide range of options, such as SVMs, DTs, GBs, NBs, and DNNs, as well as 

random forests, decision trees, and GBs. With 93% detection accuracy and a 92% f1-score, 

the results reveal the DNN model performs well, writing down its usefulness for IoT security. 

However, the study only focuses on physical and perception layer attack detection and does 

not address application layer attack detections.  Additionally, the dataset sample distribution 

is not balanced and has limited features that create an overfit and need direction to investigate 

the data imbalance problem.  

An IoT intrusion detection system based on a Dense Random Neural Network is 

described in this study [32]. The aim is to use artificial intelligence and big data analytics to 

create security solutions for IoT networks that are lightweight, quick, and adaptable. 

Researchers used the ToN-IoT security dataset and the Dense Random Neural Network 

algorithm to evaluate the proposed framework and the detection accuracy gives of 99.14% in 

binary class assessment. The research, however, does not deal with user profiles or 

behavioural analysis but rather concentrates on IDS traffic analysis and attack detection.  

● Convolutional Neural Network 

The study [33] proposed a framework called Intelligent Intrusion Detection 

Framework for Multi-Clouds and IoT Environments. The proposed solution keeps a higher 

true positive rate (TPR) and higher accuracy with less effort, measuring a 95.20% accuracy 

detection rate. The framework is not flexible enough to oversee multiple attack types.  

●  Hybrid Deep Learning Techniques  

The authors [3] offer a method that utilizes multiple deep-learning models to predict 

damaging attacks on IoT backbone networks using the open-source UNSW-NB15 and NSL-

KDD99 datasets. The models formed a convolutional autoencoder (CAE), a hybrid CNN-



A Framework for Detecting Multiple Cyberattacks in IoT Environments 

ISSN: 2582-337X  42 

 

LSTM, a long short-term memory, and a convolutional neural network were employed to 

evaluate the effectiveness of the framework that gives a 98.96% high-value accuracy, MLP, 

which is part of the suggested framework on finding malicious activity in IoT networks. 

However, the framework lacks a specified design flow, which means it does not explain how 

detection works or define the properties necessary to find attacks. In addition, it can be 

difficult to know what kinds of attacks to look out for because the framework does not specify 

them.  

 Proposed Work 

This section presents a detailed description of the proposed framework for the 

detection of multiple application-layer cyberattacks in IoT environments. Figure 1 shows the 

block diagram of the proposed framework mainly three main modules and submodules 

underneath are designed.  The primary module which is data acquisition and pre-processing 

module is mainly responsible for gathering all necessary data both offline and real-time from 

the IoT application environment then once data is collected the data pre-processing module 

cleans up the data, making sure it is consistent, and fills in the gaps if any. For data 

preparation, this study utilized ML pipeline stages such as the groups of functions like label 

and/or Indexer. The core engine of the framework, which is the application-layer detection 

module, mainly focuses on the detection of cyberattack threats in the application layer. The 

submodules within this engine construct the model: training the framework with selected 

feature values is the core of the solution, achieved by using different models. Then, the Threat 

Intelligence module constructs the detection of multiple attacks according to the defined 

algorithm. The Detection and Analysis module is responsible for the detection of various 

application-layer attacks, such as botnets, DDoS, DoS, and Mirai; these are the emphasis of 

this module. The attack simulation module will transmit a simulated attack on the IoT 

environment when generated. 

The final main module is the alert and notification module where shows the results 

that come from the detection module where it notifies an alert based on the inputs below are 

the sub-categories that provide further notification in real-time. 
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Figure 1.  Multiple IoT Cyberattacks Detection Framework 

3.1 Methodology  

In this research study design science research [34] is applied. The reason behind 

choosing DSR method is because it focuses on solving real-world problems through the 

creation of innovative artifacts (the framework in this case). The DSR methodology allows 

for a more structured approach to both designing and evaluating the artifact which is as 

important as experimental analysis that provides a solid framework for the iterative process 

of designing and refining the artifact through continuous testing and evaluation, which is 

essential to the research. Data is collected based on CICIoT2023 labeled datasets with various 

application-layer attacks such as DoS, DDoS, Recon, Mirai in real-time, and from the 

collected a pre-processing technique of null and duplicate values are eliminated, insufficient 

packet sizes are dropped, constant values and missing values are handled based on mean 

imputation detail are mentioned in Table 1. Additionally, a feature engineering process is 

done by extracting important and stable features for effective attack detection. Furthermore, 

the proposed model trained with several models including CNN, FFNN, LSTM, and Hybrid 

to capture complex attack patterns with various hyperparameter values are used for the better 

performance of the results described in Table 1. The simulation platform was developed in 

Python using libraries such as TensorFlow and Keras for each of the model implementations 

with their own inputs and parameters. 
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Table 1. Optimal Hyperparameter Values 

Inputs Models 

FFNN CNN LSTM Hybrid 

Max Trials 10 

Tuner & Train Epoch 10,25 

Dense Units  (64, 256, step=64) 

Dropout (0.2, 0.5, step=0.1) 

Hidden Layer Activation ReLU 

tanh 

ReLU 

tanh 

 ReLU 

Tanh 

Hidden Layer Count (1, 3) 3 3 3 

Output Method Dropout Dense Dense Dense 

Output Unit 1 (64, 256, step-64) 

Output Activation Softmax, Sigmoid 

Optimizer (adam, rmsprop, sgd, dadam, adadelta, adagrad) 

Pool Size L2  2 

Kernal size L1  7 

Attention Layer & Dimention  96, 2 

Num heads   6 

Finally, the performance of the attack detection models was evaluated. Given that TP 

represents True Positives, TN True Negatives, FP False Positives, and FN False Negatives, 

the matrices used were recall, accuracy, F1-score, and precision-based parameters. 

Additionally, the models were also evaluated using cross-validation to achieve near-perfect 

discrimination for selected attacks using the selected model. In this research study, the key 

summary of qualitative and evaluation metrics used includes 

Accuracy: used to measure the overall correctness of the predictions 

 

Recall: measure the proportion of true positives among actual positives. 

   

Precision: Measure the proportion of true positives among predicted positives. 

         

F1-Score: measure the balance between precision and recall. 
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Cross-validation: involves the process of splitting the dataset to ensure no overfitting 

happened  

Hyperparameter Tuning: Techniques are used to find the best combination 

Confusion Matrix: Offers insights into the model's performance by visualizing results. 

3.2 Dataset  

The proposed framework was trained and evaluated based on the CICIoT2023 original 

dataset, as well as an 18-version final dataset created using six window sizes (5, 10, 20, 50, 

100, and 200) and three scaler types (no scaler, min-max scaler, and standard scaler for each 

window size), resulting in a total size of 60GB. A 1.1 million balanced dataset was used and 

divided into an 80% training set, 10% testing set, and 10% validation set, with the following 

specific sample sizes: train shape: X_train = (879989, 33), y_train = (879989); test shape: 

X_test = (109990, 33), y_test = (109990); and validation: X_val = (110008, 33), y_val = 

(110008). The primary reason for the 80/10/10 split is to ensure that the test set adequately 

represents the data distribution, which helps assess the model's performance on unseen data. 

3.3 Data Features and Class Information’s 

The study utilize features that are categorized as described in Table 2 and identified 

as raw features, device-specific features (are features that are not relevant for training of 

model but used for notification purpose only), non-scale features (features that are not be able 

to scaled), train features ( features that are used for training of the model), and scale features 

( features that are used for scaling purpose). Again, a total of 18 individual attack class 

information is used which is categorized into DDoS, DoS, Mirai and Recon main categories.  

Table 2. Dataset Feature Categories 

S. No Feature 

Categories 

Lists of features 

1 Device specific 

features (7)  

Timestamp, src_mac, dst_mac, src_ip, dst_ip, src_port, 

dst_port 

2 Train Features (33)  Protocol_type, fin_flag, syn_flag, rst_flag, psh_flag, 

ack_flag, urg_flag, icmp, tcp, other, udp, header_length, ttl, 

duration, sum_packet_size, max_packet_size, 

avg_packet_size, std_packet_size, min_duration, 

max_duration, sum_duration, avg_duration, std_duration, 

fin_count, syn_count, rst_count, psh_count, ack_count, 

urg_count, tcp_count, udp_count, icmp_count, other_count 
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3 Scale feature (22)  Train features except (Protocol_type, fin_flag, syn_flag, 

rst_flag, psh_flag, ack_flag, urg_flag, icmp, tcp, other, udp,) 

4 Non-scale features 

(15)  

Timestamp, encoded_label, protocol_type, fin_flag, 

syn_flag, rst_flag, psh_flag, ack_flag, urg_flag, src_port, 

dst_port, icmp, tcp, udp, others. 

3.4 Model  

The proposed model construction uses a different model including CNN, FFNN, 

LSTM, and Hybrid to represent data for training structured datasets found on the Internet of 

Things. The model is trained and evaluated with multiple parameter values 18 attack classes, 

three scaler types namely no scaler, MinMax scaler, and Standard scaler, and multiple 

network packet patterns /window sizes (seven categories of window sizes range from 

5,10,15,20,50,100, and 200). The Algorithm 1 illustrates the Pseudocode for the multiple IoT 

cyberattacks  

Algorithm 1. Pseudocode of  Multiple IoT Cyberattacks Detection 

Pseudocode Algorithm-1: Multiple IoT Cyberattacks Detection 

Input:  

• DSnormal = {DS1, DS2, ..., DSn) // Set of IoT Normal Datasets 

• Datai                               // Training data for each dataset Di 

• Nadv                              // Adversarial/attack Count 

• A                                   // Attack Method 

• D                                  // Detection Mechanism 

Output:  

• M                                 // Trained Detection Model 

Procedures: 

1. Sample Generation:        // Generate adversarial samples 

For i = 1 to Nadv: 

        x = Select a Normal IoT sample from DSnormal 

        xadv = Apply adversarial attack A on x // xadv = A(x) 

        Add (xadv, label(x)) to D_adv          // Add to adversarial dataset 

2. Model Training  

TrainedModel ← EmptyTrainedModel   //   Initialize the model 

     For each IoT dataset Di in DS: 

    D_combined = DSnormal ∪ D_adv // Combine normal and adversarial 

datasets 

    FFNNModeli ← TrainFFNN (Datai)   // Train FFNN for dataset Di 

    CNNModeli ← TrainCNN (Datai)     // Train CNN for dataset Di 

    LSTMModeli ← TrainLSTM (Datai) // Train DLSTM for dataset Di 

    M ← TrainHybrid (CNN+LSTM)      // Train Hybrid Model 

3. Detection 

                   For each IoT dataset Di in DS: 
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 M_detection = ApplyDetection (M, Di)  // Apply detection mechanism to the 

dataset          

4.  Model Evaluation: //Evaluate the performance of the detection model 

                   Evaluate the hybrid model M_detection using the evaluation dataset 

D_eval 

                   Compute metrics (Accuracy, Precision, Recall, F1-score)  

5. Model Tunning: 

• Add the new adversarial samples to D_adv 

       D_combined ← DSnormal ∪ D_adv     // Retrain the model with the 

updated dataset 

• M_detection ← TrainModel(D_combined) // Retrain model 

•  M_detection = ApplyDetection (M, D) // Apply detection to the 

updated model 

3.5 Experimentation and Development Setup  

● Emulator Environment  

In this research study, we chose docker composer emulator environment for three main 

reasons initially for ease of simulation of  multiple IoT devices at a time, second is for resource 

optimization; and finally for simplicity of cloning and running the attack simulations in docker 

environment.  

In the emulator environment, all virtual image-based devices are created and ensured 

to be up and running to simulate the complete cyberattack detection. The process begins with 

capturing packets from sensor networks. This captured data is then converted to raw data 

(human-readable format) through a packet processing module, which processes and generates 

the final version dataset (containing different window sizes and scaler types). Subsequently, 

this data is used for pre-processing and analysis. The final version dataset is then passed 

through the model training phase and model tuning for redefinition before being input into 

the model. Finally, the model makes its predictions, and the inference produces the results.  

● Development Topology  

This research study utilizes a Docker Compose platform to manage diverse types of 

containerized nodes, as described in Figure 2 below, as an emulator environment based on 

Ubuntu OS with the following hardware requirements: 16 GB of RAM, Core i7 octa-core 

processor, and a 1TB SSD. Furthermore, the research employed various methods; for 

example, MQTT was used for messaging and streaming, a Cassandra database for data 

storage, and Fast API methods for orchestration and alerts. As shown in Figure 2, the 

development environment has three sections: the internal network, the external network, and 
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the communication network. The Internal Network Components consist of the IoT devices, 

which are directly connected to the external network through the router using the MQTT 

protocol standard. Communication Network Components: The router is the central 

communication component between the internal and external networks, utilizing two defined 

network interfaces: eth0 towards the external network and eth1 towards the internal network. 

Network Address Translation is configured on the router emulator container to ensure smooth 

communication among the connected devices. 

 

Figure 2. Attack Topology Emulator Setup 

External Network Components: Here the external network shows various IoT attack 

scenarios that inject an attack to the environment which categorized into various categories. 

A low-level design topology described in Figure 3. 

 

Figure 3. Attack Topology Low-Level Design 
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● Tools   

This research study is using a prominent machine learning development framework 

and tools for large-scale data preparation and model creation shown in Table 3.  

Table 3. Tools and Libraries 

Library Purpose Library Purpose 

Pandas For tabular, time series 

etc. data manipulation 

and analysis 

Joblib Provide lightweight 

pipelining 

Scikit Learn Provide supervised and 

unsupervised learning 

algorithms model 

evaluation and data 

preprocessing. 

Multiprocessi

ng 

For the creation of 

processes that can run 

concurrently, leveraging 

multiple CPU cores. 

Numpy For large, multi-

dimensional arrays and 

matrices. 

 Tqdm Monitor the progress of 

computationally intensive 

tasks. 

Dask For the efficient 

parallelization of tasks 

 Zarr For working with large, 

compressed, N-

dimensional arrays 

Pytorch For developing and 

deploying deep 

learning models. 

 Logging Allowing for the 

recording of events, 

errors, and other relevant 

information. 

Conda For managing Python 

packages and their 

dependencies 

 H5py Allowing for efficient 

storage and manipulation 

of large, heterogeneous 

data. 

 Results and Discussion 

This section aims to explore and present a novel proposed framework performance 

evaluation and analysis of the outcomes based on CICIoT2023 dataset, and its results are 

compared and discussed in terms of accuracy. 

4.1 Detection of Model Performance 

Table 4. Model Performance Result 

S.

No 

Algorithm Window  

Size 

Scaler Accuracy 

 Score 

Precision  

Score 

Recall 

 Score 

F1 

 Score 

1 CNN 200 Minmax 0.914245 0.897778 0.914245 0.901111 

2 CNN 200 Standard 0.896845 0.911978 0.896845 0.890753 
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3 CNN 100 Standard 0.856714 0.856623 0.856714 0.855165 

4 CNN 100 Minmax 0.840831 0.883632 0.840831 0.820334 

5 Hybrid 100 Standard 0.827475 0.82688 0.827475 0.812218 

When comparing the detection results described in Figure 4  and Table 4 for a window 

size of 200 with the min-max scaler to the same window size with the standard scaler, the 

min-max detection results increased by 1.74%. However, these results decreased by 4.01% 

when compared to a window size of 100. In addition, when comparing a window size of 100 

with the standard scaler to a window size of 200 with the min-max scaler, the results show an 

increased accuracy detection of 5.75%. Conversely, when comparing the same min-max 

scaler but with different window sizes (100 and 200), the result drastically decreased by 

7.34%. In other words, while increasing the window size generally increased detection 

accuracy, applying different scaler types within the same window size of 200 showed that the 

min-max scaler type achieved an accuracy of 0.9142 compared to the standard scaler type's 

accuracy of 0.8968, representing an increase of 1.74% 

 

 

 

 

 

Figure 4. Model Performance Results 

4.2 Model Comparison based on Algorithm, Window Size, and Scaler Types 

● CNN and FFNN Model Comparison 

Comparing the individual performance shown in Figure 5, for instance with window 

sizes of 100 and 200, the average accuracy of the FFNN results is 77.55% and 79.46%, 

respectively, representing an increase of 1.91% in accuracy. On the other hand, the average 

accuracy of the CNN model yields 80.46% and 80.60%, respectively, showing a 0.14% 

increase within the same window size comparison. Furthermore, comparing the detection 

results between the two algorithms, CNN performs with 2.90% higher detection accuracy than 

FFNN for a window size of 100 and 1.14% higher for a window size of 200. 
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Figure 5. FFNN and CNN Performance with No Scaler 

When compared with no scaler type and the min-max scaler within the same window 

sizes of 100 and 200, the detection score results for the CNN model increased by 3.63% and 

10.83%, respectively, and for the FFNN model, the increase was 2.0% and 0.71%, 

respectively. 

As shown below in Figure 6, when comparing the Min-Max and Standard Scalers for 

the CNN algorithm with window sizes of 100 and 200, the Min-Max detection accuracy 

decreased by 1.59% and increased by 1.74%, respectively. Similarly, for the FFNN model, 

the accuracy increased by 0.90% for a window size of 100 and by 1.78% for a window size 

of 200. 

 

 

 

 

 

 

Figure 6. CNN and FFNN model with all Scalers 

● LSTM and FFNN Model Comparison 

When comparing the performance results of the FFNN and LSTM models across all 

window sizes without applying a scaler, the performance of the FFNN model increased 
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compared to the LSTM model, as described in Figure 7 below. Considering individual 

performance, for instance with window sizes of 100 and 200, the average accuracy of the 

FFNN model yielded 77.55% and 79.46%, respectively, representing a 1.91% increase in 

accuracy. On the other hand, the accuracy of the LSTM model was 66.56% and 71.06%, 

respectively, showing a 4.45% increase within the same window size comparison. 

Furthermore, comparing the detection results between the two algorithms, FFNN achieved 

10.99% higher detection accuracy than LSTM for a window size of 100 and 8.4% higher for 

a window size of 200. 

 

 

 

 

 

Figure 7. FFNN and LSTM Performance with No Scaler 

As shown below in Figure 8, compared to MinMax and Standard Scaler LSTM 

algorithm the MinMax detection accuracy decreased by -6.43% for window size 100 and 

increased by 2.26% for window size 200. Again, for FFNN model it increased by 0.90% for 

window size 100, and 0.78% for a window size of 200. From the overall results analysis of 

the two models (FFNN and LSTM)  it can be concluded that when the window size increases 

the detection accuracy results in better performance. Applying a scaler type such as MinMax 

and Standard scaler has a better performance than non-scaler (even if exceptionally LSTM 

model with no scaler  shows better performance with  3.06% increase), the MinMax scaler 

has better detection accuracy than Standard Scaler and finally, with all parameters FFNN 

model has a better result than LSTM model which has 0.45% increase, 7.33% increase within 

MinMax and NS of 100, and MinMax and SS of 100 WS respectively. However, -1.48% 

decrease was observed for 200 window size between MinMax and standard scaler. 
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Figure 8. LSTM and FFNN Performance with all Scaler 

● CNN and LSTM Model Comparison 

Comparing the performance results of CNN and LSTM model with all window size’s 

and without applying a scale the performance of CNN model exceeds LSTM model as 

described in Figure 9 below. 

 

Figure 9. CNN & LSTM Performance with No Scaler 

Without scaling, CNN outperformed LSTM in average accuracy for window sizes 100 

and 200. CNN's accuracy increased slightly with larger window size, while LSTM's showed 

a more significant increase. CNN also consistently achieved higher detection accuracy than 

LSTM for both window sizes. Applying the min-max scaler compared to no scaling improved 

detection scores for both LSTM and CNN across both window sizes. When comparing min-

max and standard scalers, LSTM's accuracy decreased for a window size of 100 but increased 

for 200, while CNN's accuracy increased compared to no scaling for both window sizes. 
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Figure 10. CNN & LSTM Performance with all Scaler 

The analysis of CNN and LSTM models in Figure 10 indicates that larger window 

sizes and the application of scalers (especially Min-Max) improve detection accuracy. CNN 

generally outperforms LSTM across various configurations. Specifically, CNN shows 

significant accuracy gains over LSTM with the Min-Max scaler and no scaler at larger 

window sizes, and with Min-Max and Standard Scaler at a smaller window size. However, a 

minor decrease in CNN's accuracy was noted in one specific configuration (Min-Max and 

Standard Scaler at a window size of 200) 

● Hybrid Model Comparison 

When using a standard scaler and a window size of 100, the hybrid model's detection 

accuracy was lower than CNN's, regardless of the scaler type (standard or min-max) as shown 

in Figure 11. CNN also outperformed the hybrid model when comparing a 200 window size 

for CNN against a 100 window size for the hybrid model. With a min-max scaler and a 200 

window size, CNN demonstrated superior accuracy, precision, recall, and F1-score compared 

to the hybrid model, which experienced a significant drop in accuracy but a slight increase in 

precision. 

 

Figure 11. Hybrid and CNN Performance 
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4.3 Overall Performance Results based on Multiple Attributes 

The proposed detection framework applied multiple attributes for cyberattack 

detection, and the resulting findings demonstrate promising and outperformed performance 

based on the applied attributes, which include window size, multiple attack classes, and 

different scaler types. Figure 12 below shows the overall percentage values comparison. 

 

 

 

 

 

 

Figure 12. Overall Model Performance with all Scales 

The analysis indicates that applying the Min-Max scaler generally leads to better 

detection accuracy for CNN compared to using no scaler across window sizes 100 and 200. 

CNN consistently outperformed LSTM, Hybrid, and FFNN models when using the Min-Max 

scaler. While Min-Max generally outperformed the Standard Scaler for LSTM, CNN, and 

FFNN at a window size of 200, the Standard Scaler yielded better performance than Min-Max 

for the Hybrid model at the same window size. 

4.4 Individual Attack Class Performance Results 

From the individual attack detection point of view, with window sizes of both 100 and 

200 (as shown in the Table 5 below) and using both min-max and standard scalers, the CNN 

and hybrid models outperformed, achieving almost 100% detection precision for attack 

classes 1 to 4, which are Ddos_ack_fragmentation, Ddos_icmp_flood, 

Ddos_icmp_fragmentation, Ddos_pshack_flood, and Ddos_rstfin_flood 
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                                      (a)                                                          (b)  

Table 5. (a) (b) Attack Class Performance 

While DoS attack detection performed relatively well, it was still less accurate than 

individual DDoS attack detection. Mirai and Recon attack detection generally performed 

poorly, except for the hybrid model achieving perfect precision for a specific Mirai UDP flood 

attack with a 100 window size and both scalers. This variability in performance is attributed 

to the size of the datasets for each individual attack class. Figure 13 illustrates the detailed 

classification performance of the CNN model under specific conditions (200 window size, 

standard scaling). 

 

 

 

 

 

 

 

Figure 13. CNN WS_200 Individual Attack Class Representation 

 



                                                                                                                                                                                                            Yonas Mekonnen, Mesfin Kifle 

Journal of Ubiquitous Computing and Communication Technologies, March 2025, Volume 7, Issue 1 57 

 

 Conclusion  

Recognizing the challenges in cyberattack detection within heterogeneous IoT 

environments due to diverse devices, evolving threats, and varied data, this research proposes 

a novel framework employing multiple parameters like attack classes and scalers. Evaluation 

across CNN, Hybrid, FFNN, and LSTM models revealed that using Min-Max and Standard 

scalers improved detection, with CNN achieving the highest accuracy (91.42%). Future work 

will focus on tuning the framework with more deep learning models and parameters, 

incorporating additional attack types such as, web attacks, and integrating multiple IoT 

datasets to enhance its ability to detect a broader range of threats.  
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