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Abstract 

Data centers are the core of any organization. They house its data, host its services, 

ensure business continuity, and serve as the bedrock of decision-making. Therefore, round-

the-clock operation is essential to maintaining the continuity of services provided by an 

organization. This requires robust, standardized security systems to restrict exposure to threats 

to infrastructure and data. Yet, existing data center alarm systems do not have robust 

monitoring and reporting capabilities that generate premature action on high-priority alerts. 

In this research paper, we propose a data-driven automated method to optimize fire detection 

in data centers through the use of machine learning algorithms and sensor networks to inspect 

large amounts of data and detect patterns of fires. The installation of the proposed system 

includes the employment of an ESP32 development board to handle real-time data and 

wireless communication with different sensors, such as smoke detectors, temperature, gas, 

and motion sensors, in order to facilitate end-to-end monitoring. We have achieved an 

intelligent monitoring system through the employment of machine learning for handling 

sensor data, adaptively setting thresholds, and initiating corresponding actions ranging from 

sending alerts to alarm sounds. The system is highly accurate (≈97–98%) with strong 

confidence-based filtering and minimal computational cost, which renders it ideally suited for 

real-time indoor use. The method provides consistent detection through diversified materials 

(carton, cloth, electrical), filling the gap in situations where visual information is not 

necessarily accurate or reliable. Experimental results demonstrate the efficiency of the system 
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in the timely notification of fire cases, bearing witness to its practical application over vision-

based or simulation-based approaches. 

Keywords: Ubiquitous, Early Fire Detection, Data Center, Logistic Regression, Machine 

Learning, Fire Detection Systems. 

 Introduction 

Unlike open flames, smoldering fires progress slowly and release less heat, making 

them harder for conventional alarms to detect in time. For this reason, it has become crucial 

to develop fire extinguishing systems that can provide reliable early detection of fires [1]. 

Because of their critical role, data centers demand specialized protection strategies that go 

beyond traditional fire alarms. Therefore, these centers are designed with the highest levels 

of protection and ensure continuity of service, in accordance with agreed-upon security 

systems and standards, including continuous monitoring and strong encryption to protect 

sensitive data from falling into unauthorized hands [1][2]. 

Due to the vital importance of data centers, it is crucial to emphasize safeguarding 

against hazards like fires, floods, and extreme temperatures. Consequently, data centers 

employ sophisticated systems to identify these hazards, such as smoke detectors, heat sensors, 

and energy monitors. Protection systems are created to provide early alerts and implement the 

required actions to control and extinguish fires. This entails establishing efficient fire 

prevention protocols and adequately prepared emergency response strategies [3][4]. 

Data centers use fire alarm systems that utilize a network of various sensors designed 

to monitor different aspects of a fire and enable continuous monitoring and data collection 

related to environmental conditions or specific phenomena in the area. This system is typically 

used to monitor temperature levels and trigger an immediate alarm in the event of a sudden 

or abnormal rise, indicating a potential fire.  

Recent advances in IoT and ubiquitous computing have made it possible to embed 

sensors directly into infrastructure, enabling continuous monitoring and smarter fire detection. 

When context awareness is built into a data centers fire alarm system, operators and 

responders can better understand the exact conditions inside the facility. This leads to 

improvement in overall safety. 
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Fire alarm systems in data centers are typically integrated with server and equipment 

monitoring systems, enabling the performance and health of servers, power distribution units, 

and other critical equipment to be monitored. This integration enables appropriate safety 

measures to be taken immediately upon detection of abnormalities, such as overheating or 

electrical faults, that could lead to a fire. 

This research focuses on developing effective fire detection systems that can provide 

early and accurate detection while minimizing false alarms. Different approaches, including 

chemical gas sensors, machine learning, fuzzy logic, and multi-sensor systems, are being 

explored to improve the reliability and performance of fire detection technologies.  

The subsequent sections of this paper are structured as follows: The following section 

focuses on the literature review, starting with a discussion of the problem statement, then 

proceeding to an examination of related studies. Next, we explore the methodology, beginning 

with the suggested concept and subsequently introducing the proposed algorithm. The section 

on experiments and results displays the findings of our study. In conclusion, we summarize 

the main findings and contributions of our research, while also emphasizing possible avenues 

for future investigation. 

 Background 

Applying machine learning to sensor grids leads to smart systems that enhance fire 

and smoke detection. Algorithms analyze data, recognize patterns, and differentiate incidents 

from normal variations by allowing dynamic threshold adjustments for an efficient and 

effective alarm system. This improves alarm triggering, detection accuracy, and reliability.  

The ESP32 enhances fire alarm systems by overcoming connectivity challenges and 

enabling effective real-time detection. It supports wireless communication, integrates with 

various sensors, and performs on-board data processing. With its versatile GPIO pins and 

ADC, the ESP32 seamlessly interfaces with different sensor types. It can analyze sensor data 

using machine learning algorithms, promptly detecting fire or smoke incidents and triggering 

appropriate response actions such as activating alarms or notifying authorities. This context-

aware system improves the overall reliability and responsiveness of fire alarm systems. 

To overcome the communication management of the overall system, ESP-NOW is 

initialized as the main protocol. It offers a lightweight, low-power, and efficient 
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communication solution for local area network applications involving ESP32 devices. It 

enables direct peer-to-peer communication between ESP32 devices without the need for a 

traditional Wi-Fi network infrastructure. This is particularly useful in scenarios where sensors 

need to communicate quickly and efficiently within a limited range. 

To ensure that data center supervisors are fully aware of any unusual events, a 

redundant alerting mechanism has been activated. This can include a combination of audible 

alarms, visual indicators (such as flashing lights), and electronic notifications sent to 

designated personnel via email, SMS, or push notifications on their mobile devices. 

Redundant alerting mechanisms help ensure that fire incidents are communicated promptly to 

the necessary individuals. 

As a first step, data preprocessing of the collected data performs necessary operations 

and transformations on the raw sensor data to prepare it for further analysis and interpretation. 

Data cleaning involves handling missing values, outliers, and erroneous data. Missing values 

can be imputed or removed depending on the context, outliers can be identified and dealt with 

appropriately, and any erroneous data can be corrected or discarded. The temperature sensor 

(LM35 & DHT11) operates based on the fundamental principle of voltage measurement 

across its terminals. As the temperature increases, the voltage across the sensor also increases 

accordingly. Specifically, for every one-degree change in temperature while the sensor is in 

operation, there is a corresponding voltage change of approximately 10 millivolts. This 

relationship between temperature and voltage variation forms the basis of the temperature 

sensor's functionality, formula (1) converts the raw analog value from the temperature sensor 

into a temperature value in Celsius degrees considering the reference voltage used. 

Temreture_Value= Sensor_Value*1100/ (1024*10)   (1) 

Logistic regression is used to classify data points; the model learns the coefficients or 

parameters that best fit the training data using a maximum likelihood estimation method. 

These coefficients are then used to make predictions on new, unseen data by calculating the 

log-odds of the outcome and transforming them into probabilities using the logistic function. 

Each sensor reading is represented as a feature vector or input data point. Let's denote the 

feature vector as x, where x = [x1, x2, x3, ..., xn] represents n sensor readings (e.g., smoke, 

temperature, flame intensity). Each xi corresponds to a specific sensor measurement. A 

labeled dataset is needed to train the machine learning model. The dataset consists of pairs (x, 



Belal K. ELFarra, Mamoun A. A. Salha 

Journal of Ubiquitous Computing and Communication Technologies, September 2025, Volume 7, Issue 3 276 

 

y), where x is the input feature vector, and y is the corresponding label indicating whether it 

represents a fire (y = 1) or a non-fire (y = 0) condition. 

The logistic regression equation models the relationship between predictor variables 

(x1, x2, x3, ..., xn) and the log-odds (logit) of the binary outcome (y). 

logit(p) = β0 + β1x1 + β2x2 + ... + βnxn   (2) 

where logit(p) represents the log-odds of the probability (p) of the outcome, and β0, 

β1, β2, ..., βn are the coefficients or weights associated with each predictor variable, and x1, x2, 

..., xn are the corresponding values of the predictor variables. 

To obtain the probability (p) of the binary outcome based on the logit, the logistic 

function (sigmoid function) is applied: 

p = 1 / (1 + exp(-logit(p)))    (3) 

In binary classification, a decision threshold is used to determine the boundary 

between the two classes. If the predicted probability (p) exceeds the threshold, the outcome is 

classified as the positive class (fire incident); otherwise, it is classified as the negative class 

(non-fire incident). 

2.1 Problem Statement 

Data centers face serious threats from fires, which can result in infrastructure damage 

and data loss. Traditional alarm systems in data centers lack comprehensive monitoring and 

suffer from manual calibration issues, leading to delayed responses and false alarms. We 

propose an automated, data-driven approach to calibrate alarm systems and monitor 

environmental conditions in data centers. Our goal is to enhance fire detection, provide early 

alerts, and minimize damage. 

 Literature Review  

Lately, there has been increasing interest in offering fire systems capable of delivering 

dependable early fire detection [1]. Nevertheless, the majority of traditional fire science 

research relies on numerical experiments like CFD simulations [2][3][4] rather than on real 

experimentation. 
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Numerous studies regarding early fire detection have been published in the literature. 

Solorazano et al. suggested employing chemical gas sensors for fire detection rather than 

smoke-based systems to enable early fire identification [6][7]. This method primarily relies 

on the observation that certain fire types emit volatiles prior to smoke [8]. 

Moreover, there has been a growing interest in creating machine learning solutions 

utilizing actual fire datasets [9][10]. Nonetheless, the overwhelming majority of publicly 

accessible datasets concerning early fire detection research rely entirely on image data 

[11][12][13][14]. L. Wu et al. utilized temperature, smoke levels, and carbon dioxide data to 

create an early warning algorithm based on a back-propagation neural network that predicts 

the likelihood of fire occurrence, employing the National Institute of Standards and 

Technology (NIST) dataset for their research [10]. 

A fire detection algorithm utilizing fuzzy logic has been developed, applying 

temperature sensors to assess the direction of a fire emergency [15]. Although the utilized 

sensor nodes can regularly gather ambient temperature, interact with neighboring sensors, and 

retain information about neighbors such as Node ID and coordinates, the temperature sensor 

alone is insufficient for detecting fire outbreaks [16]. A smart Fire Monitoring and Warning 

System (FMWS) utilizing Fuzzy Logic is introduced to detect the actual presence of 

hazardous fire and notify the Fire Management System (FMS). The research explores the 

creation and implementation of a fuzzy logic fire monitoring system that transmits a 

notification message, a fascinating phenomenon that can be observed by WSN is fire 

occurring indoors or outdoors [16]. 

 A study examines two fuzzy logic methods, incorporating temporal aspects, for 

overseeing and assessing fire confidence to enhance and decrease the quantity of rules 

necessary for making accurate decisions [17]. The research posits that this decrease might 

diminish sensor operations without significantly affecting operational quality and enhance 

battery longevity, thereby improving the efficiency, resilience, and cost-effectiveness of the 

sensing network. It utilizes fuzzy logic on the data gathered from sensors by transmitting it to 

the cluster head through an event detection mechanism. Several sensors are employed to 

identify the likelihood of fire and its direction. Every sensor node comprises several sensors 

that detect temperature, humidity, light, and CO levels to assess fire probability and the 

azimuth angle to determine the fire's direction [17][18][19]. 
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An experiment is conducted utilizing the prototype fire detection equipment integrated 

with an IoT link to enhance the monitoring of fire hotspots. Employing fuzzy logic reduces 

the occurrence of false alarms from fire detection systems. The prototype serves as a learning 

tool for high school students specializing in computer engineering and networking [21]. It 

creates a WiFi ESP8266 board that is compatible with Arduino IDE [22]. 

Currently, the primary fire alarm systems depend on smoke detection, which entails 

recognizing airborne solid and liquid particles as well as gases emitted during pyrolysis or 

combustion [23]. Smoke detectors primarily utilize two methods: ionization sensors and 

photoelectric sensors. Ionization detectors utilize a radioactive material that emits alpha 

particles to ionize air molecules. When smoke is detected, the ions engage with smoke 

particles, diminishing the intensity of the electric circuit and activating the alarm. 

Photoelectric sensors, conversely, employ a light source and receiver to gauge light scattering 

triggered by smoke particles within the chamber. No matter the detection principle, the alarm 

triggers when the signals surpass set thresholds 

Research analyzing photoelectric and ionization fire alarms under controlled settings 

has shown variations in sensitivity, response time, and dependability [24]. Ionization alarms 

usually react more quickly to open flame fires, whereas photoelectric alarms show quicker 

responses and greater sensitivity to smoldering fires. Different elements, like particle size, 

affect how well the detectors’ function. For instance, photoelectric sensors quickly capture 

larger particles from smoldering fires, whereas ionization sensors detect smaller particles 

from flaming fires more rapidly. The tests further showed that smoldering fires produce more 

smoke particles compared to flame fires, and photoelectric alarms are capable of sensing 

certain smoldering fires that ionization alarms miss. 

Nonetheless, smoke detectors encounter difficulties in differentiating between 

combustion particles and non-combustion particles, including water vapor, dust, and specific 

actions like cooking or cigarette smoke [25][26]. As a result, both photoelectric and ionization 

alarms can produce false alarms, causing occupants to disregard or deactivate the alarm alerts. 

To improve the accuracy of fire detection, extra sensors can be added. For example, detecting 

carbon monoxide (CO) can assist in eliminating false alarms triggered by common nuisance 

situations where CO is not produced [27]. Gas-based systems, in contrast to smoke-based 

alarms, necessitate several sensors or multi-criteria methods, as well as advanced data 

processing algorithms, to reduce false alarms and effectively identify fires. 
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 Methodology 

The goal of this paper is to identify signs of fire at an initial stage before they become 

critical or dangerous. This is done by simulating early fire detection using logistic regression. 

Logistic regression was selected for its simplicity, interpretability, and low computational 

overhead, enabling real-time processing on low-cost embedded platforms like the ESP32. 

Despite its linear nature, careful multi-sensor feature fusion allows it to achieve high accuracy 

across multiple materials, while its probabilistic outputs support robust confidence-based 

alerting. Compared to complex models like CNNs or LSTMs, logistic regression provides 

comparable performance on structured sensor data without requiring large datasets, high-end 

hardware, or extensive hyperparameter tuning, making it well-suited for practical deployment 

in indoor data center fire detection. 

 The study utilizes a real Indoor Laboratory dataset [28] which is composed of 8 CSV 

files, each corresponding to different experimental scenarios and materials such as carton, 

clothing, and electrical components. To build a unified dataset, all individual files were 

merged into a single structured DataFrame. This ensured that the model was trained and 

evaluated on the complete distribution of fire and non-fire conditions across different 

materials. The selected features for analysis included humidity, temperature, the MQ135 gas 

sensor, TVOC, and eCO2 level (see figure 1), while the target variable was the binary fire 

class (0 = no fire, 1 = fire). Prior to model training, the feature values were standardized using 

the StandardScaler technique to normalize variations in scale across different sensors. This 

preprocessing step ensured that no single feature dominated the learning process and 

improved the stability of the logistic regression model. 

Our algorithm involves loading and preprocessing the data, splitting it into training 

and testing sets, creating a logistic regression model, fitting the model to the training data, 

predicting the target variable for the test set, and evaluating the model's performance using 

appropriate metrics. The logistic regression model is trained on the provided datasets to detect 

and predict fire incidents. The paper emphasizes the importance of early fire detection in 

preventing the spread of fire and minimizing damage, highlighting the role of advanced 

sensors, intelligent algorithms, and real-time monitoring in early fire detection systems. A 

practical system is developed after constructing the model, showcasing its effectiveness in 

real-world scenarios and validating its performance for accurate early fire detection. The 

methodology handled multicollinearity by normalizing all sensor features with 
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StandardScaler to prevent any single correlated sensor from dominating, by leveraging 

multiple sensor inputs rather than depending on one predictor, and by applying confidence-

based filtering to minimize the impact of uncertain predictions caused by overlapping or 

correlated sensor data. 

  This system utilizes the same components as the dataset and leverages the model's 

insights to provide timely warnings and interventions, effectively preventing fire escalation 

and minimizing damage. This system works by setting up two levels of fire alerts. The first 

level is triggered when the model detects unusual conditions in the data center. At this stage, 

the system immediately sends a warning to the supervisor via mobile and email. If the 

situation worsens and crosses to the second level, a loud alarm is activated inside the data 

center, prompting quick action to reduce fire risks. By using this dual threshold approach, the 

system provides early warnings as well as critical alerts, making fire detection and response 

faster and more effective. The following pseudocode illustrates the process procedures. This 

pseudocode assumes that we have already imported the required libraries, loaded the training 

data into variables X and Y, and performed any necessary preprocessing steps. In this work, 

the dataset was divided into training and testing subsets using scikit-learn’s built-in 

train_test_split function, ensuring proper evaluation of the model. It then creates an instance 

of the logistic regression model using LogisticRegression(). 

Pseudocode 

1. Import the necessary libraries:  

sklearn.linear_model, LogisticRegression, sklearn.model_selection, train_test_split, 

sklearn.metrics, accuracy_score, recision_score, confusion_matrix, and numpy. 

2. Load the training data (features and target variables) into variables X and Y: 

X = # load the feature data 

Y = # load the target variable 

3. Preprocess the data: 

Perform feature scaling and handle missing values 

4. Split the data into training and testing sets: 

X_trn, X_ tst, Y_ trn, Y_tst = train_test_split(X, Y, test_size=0.2, random_state=42) 

5. Create an instance of the logistic regression model: 

model = LogisticRegression() 
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6. Fit the model to the training data: 

model.fit(X_ trn, Y_ trn) 

7. Predict the target variable for the test set: 

Y_pred = model.predict(X_ tst) 

8. Evaluate the model's performance using appropriate metrics: 

accuracy = accuracy_score(Y_ tst, Y_pred) 

precision = precision_score(Y_ tst, Y_pred) 

confusion_mat = confusion_matrix(Y_ tst, Y_pred) 

The model is trained on the training data using the fit method, and the target variable 

is predicted for the test set using the predict method. Finally, the model's performance is 

evaluated using a metric such as accuracy. A confidence threshold of 0.7 was applied, 

meaning that model predictions were only considered reliable when the highestclass 

probability exceeded 70%. Predictions below this threshold were treated as uncertain, 

ensuring that the system minimizes false alarms and prioritizes high-confidence fire detection. 

We can tune hyperparameters and save the trained model for future use. 

An algorithm that outlines the steps involved in communication between a transmitter 

and a receiver using the ESP-NOW protocol: 

1. Initialize the required libraries for the ESP-NOW protocol and Wi-Fi. 

2. Specify the MAC address of the receiver device. 

3. Define a structure that represents the data to be sent. Include fields for the 

necessary data types. 

4. Implement a callback function that is triggered when data is sent. This function 

can handle the status of packet delivery. 

5. Set up the ESP-NOW protocol by initializing it and registering the callback 

function for data sent events. 

6. Add the receiver device as a peer using its MAC address. 

7. Read the analog value from the temperature sensor or any other relevant 

sensor. 

8. Prepare the data structure with the necessary data to be sent. 

9. Send the data to the receiver device using the ESP-NOW protocol. 
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10. Handle the result of the data sending process. Print a success or failure message 

based on the result. 

11. Introduce a delay before sending the next set of data. 

 Experimental and Results 

To validate our concept, we developed a prototype of the system. Our efforts were 

divided into three phases: hardware implementation, software coding, and integration. 

5.1 Indoor Laboratory Fire Dataset 

The Real Indoor Laboratory Fire Dataset by [28] includes time-series data recorded in 

8 controlled fire tests conducted under laboratory settings. All the experiments utilised various 

fire sources, i.e., 4 runs with electric fire, 2 runs with cardboard boxes, and 2 runs with clothes. 

The temperature, humidity, MQ139, TVOC, and eCO2 readings for every experiment were 

recorded from the start of the fires until the alarms started or rang for the fire. Hardware and 

software requirement 

The experiments were conducted using a Windows 10 Education OS with an Intel 

Core i5-10500H processor speed of 2.50GHz and 16 GB of RAM, along with Python version 

3.8. The datasets used for testing were synthetic, two-dimensional in nature and of varying 

sizes according to real clusters. 

The following parameters were employed to generate the dataset: 

• Two ESP32 Development Boards: These were the main microcontrollers of the 

system and established a communication channel with an ESP-NOW-based Wi-Fi 

module. 

• DHT11 Sensor: This was used to detect temperature and humidity. 

• LM35 Sensor: It provided the analog output proportional to the temperature. 

• MQ139 Gas Sensor: This was utilized to detect specific gases in the air through 

changes in electrical conductivity. It is commonly used in air quality monitoring 

and gas detection in various applications. 

• TVOC: This refers to the total concentration of volatile organic compounds in the 

air. Volatile organic compounds can originate from various sources and may affect 

indoor air quality. 
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• eCO2: This is an equivalent air concentration of carbon dioxide. It provides a 

general overview of the air quality and may be used to investigate indoor levels of 

contamination. 

 

Figure 1. Implementation of System Prototype 

• Audible Alarm Buzzer: The fire alarm controller generated audible alarm buzzers 

to create a loud signal, which notified the occupants of a fire and prompted them to 

undertake remedial actions, such as evacuation. 

• Visual Signals: Strobe lights or flashing lights were used as visual signals to 

complement the sound alarms and achieve maximum visibility, particularly in cases 

with noisy conditions or for hearing-impaired persons. 

• Text Messages: Text messages were utilized to alert those not on the premises but 

who were required to be notified of the activation of fire alarms. Off-site facility 

managers, remote monitoring systems, or emergency response teams may be 

among them. 

5.2 Training System  

We utilize supervised datasets as training data to construct a logistic regression model. 

The dataset is divided into a training set (90% of the data) and a test set (10% of the data). 

The training set is used to train the logistic regression model by adjusting its parameters 
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through iterative optimization. This process aims to minimize the error between the predicted 

outputs and the actual target values. After training, the model is evaluated using the test set, 

which contains unseen data. Predictions are made using the trained model, and the accuracy 

metric is commonly used to assess its performance. The results may vary based on factors 

such as the quality and size of the specific experiment in the dataset, problem complexity, 

choice of hyperparameters, and evaluation metrics employed. The performance of the logistic 

regression model on the Indoor Laboratory Fire dataset is presented in Table 1. 

Table 1. Logistic Regression Indoor Laboratory Fire Dataset 

Data set (Experiment) #of records Accuracy 

Carton_1            330 93.94% 

Carton_2 456 98.91% 

Clothing_1 918 97.28% 

Clothing_2 2299 97.39% 

Electrical_1 1140 96.77% 

Electrical_2 991 97.99% 

Electrical_3 2689 99.26% 

Electrical_4 2974 99.22% 

The accuracy of the logistic regression model is evaluated by comparing the predicted 

outputs to the actual target values in the test set. We evaluated performance using accuracy, 

which reflects the percentage of correct classifications made by the model on unseen test data. 

It provides an indication of how well the model performs in accurately classifying the data. 

The results indicate that the model achieved high accuracy rates for most categories, ranging 

from 93.94% to 99.26%, demonstrating its effectiveness in accurately classifying instances 

within each category. 

The heatmap in Figure 2 shows a consolidated view of the model’s performance using 

key evaluation metrics accuracy, precision, recall, and F1-score across different material 

types. The heatmap clearly shows that the model maintains consistently high performance 

across all material categories. Carton achieves the highest overall metrics (accuracy = 98.1%), 

followed closely by cloth (accuracy = 97.5%) and electrical fires (accuracy = 97.4%). The 

minimal variation between the categories indicates that the model generalizes well to different 

materials without significant bias. 
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While the heatmap provides a high-level overview, Figure 3 presents the confusion 

matrices for the carton, electrical, and cloth datasets to give a more detailed breakdown of 

predictions. For the carton dataset, the model achieved an accuracy of 98.1%, with most 

samples correctly classified and only a small number of false negatives in Class 1. The 

electrical dataset showed slightly lower performance with an accuracy of 97.4%, particularly 

strong in Classes 0 and 2, but with a relatively higher number of false negatives in Class 1, 

where some cases were misclassified as Class 0. This suggests the need for fine-tuning to 

improve sensitivity for Class 1. The cloth dataset also performed very well, reaching an 

accuracy of 97.5%, with large numbers of correct predictions across all classes and only a few 

misclassifications in Classes 0 and 1. Overall, these results highlight the strong effectiveness 

of the model, while pointing to Class 1 in the electrical dataset as the primary area requiring 

further improvement. 

 

Figure 2. Performance Metrics Heatmap Across Materials 

Regarding the eCO2 sensor, it did not detect significant amounts of particles in the air 

during the electrical-based fire incident. This can be attributed to the fact that the eCO2 sensor 

may not be specifically designed to detect particles or gases associated with electrical fires. 

It's important to consider that the lack of detection by the eCO2 sensor in this context does 

not necessarily indicate a fault or limitation of the sensor itself. 

The dataset provided contains approximately 1.5% indication of early fire, suggesting 

that there are certain features or patterns within the data that can be associated with the early 

stages of a fire. The correlation analysis shown in Figure 6 confirms that temperature alone is 

not the dominant indicator of fire incidents. As shown in the correlation matrix, the strongest 
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relationship with fire status was observed for the MQ139 gas sensor (r = 0.75), followed by 

eCO2 (r = 0.64) and TVOC (r = 0.59). While temperature showed a moderate correlation (r = 

0.58), it was not the sole predictor of fire. Interestingly, humidity exhibited a negative 

correlation with fire status (r = -0.39), indicating a reduction in humidity during fire events. 

These findings demonstrate that the proposed model effectively leverages multiple sensor 

inputs rather than relying exclusively on temperature, which enhances its robustness and 

reliability in early fire detection. 

The probability analysis in Figure 7 revealed that most predictions were made with 

high confidence. For electrical and cloth samples, over 95% of test cases exceeded the 0.7 

confidence threshold, with average confidence values above 0.95 for correct predictions. 

Carton samples achieved lower stability (86.7% above the threshold), mainly due to the 

smaller dataset size. Importantly, misclassified samples consistently exhibited lower 

confidence levels (around 0.6), suggesting that confidence-based filtering can be applied in 

practice to reject uncertain predictions and further reduce errors. This demonstrates not only 

the accuracy but also the reliability of the logistic regression model in real-world fire detection 

scenarios. In the dataset, each sensor produces readings in very different ranges—for example, 

humidity is measured in percentages, temperature in degrees Celsius, gas concentrations in 

ppm, and eCO₂ in parts per million. If these raw values were fed directly into the logistic 

regression model, the features with larger numerical ranges (such as gas concentrations) could 

dominate the model coefficients, leading to biased weight assignments and reduced accuracy. 

By applying Standard Scalar, each feature was standardized to have a mean of zero and a 

standard deviation of one. This transformation placed all sensor readings on a comparable 

scale, ensuring that no single feature disproportionately influenced the learning process. In 

addition, it helped stabilize the training process, improved the numerical efficiency of logistic 

regression, and reduced issues related to multicollinearity among correlated sensor variables. 

5.3 Performance of Model Training  

Accuracy and loss during training and validation were measured to assess the 

performance of material-specific models, with each model trained and evaluated on distinct 

material types. The results demonstrate exceptional performance across all materials, with 

carton achieving 98.10% accuracy, electrical 97.42% accuracy, and cloth 97.52% accuracy 

mentioned in figure 6. This specialized approach yielded superior performance compared to 
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the unified model, with an average improvement of 2-3% in classification accuracy across 

material types. 

The loss curves shown in Figure 7 shows excellent generalization capabilities, with 

carton exhibiting the remarkable characteristic of validation loss (0.1275) being lower than 

training loss (0.1434), indicating perfect generalization. Similarly, electrical and cloth models 

maintained minimal gaps between training and validation losses (0.0618 vs 0.0717 and 0.0736 

vs 0.0721 respectively), confirming effective learning without overfitting. 

These comprehensive results validate the effectiveness of the material-specific 

approach, demonstrating that specialized models can capture material-specific patterns more 

effectively while maintaining robust generalization capabilities. The consistent high 

performance across diverse materials confirms the methodology’s suitability for real-world 

deployment where material type can be predetermined. 

5.4 Practical System Validation 

To validate the effectiveness of our trained model, a practical experiment was conducted 

using the same sensors employed in the dataset collection. In this setup, the output value of 

Class = 0 indicates no fire detected, whereas Class = 1 represents fire detected. 

As shown in Table 2, all temperature values remained within a normal operating range, 

confirming that the environment was stable during the test. Despite this stability, the system 

was still able to identify potential fire risks based on abnormal readings from the gas 

(MQ139), TVOC, and eCO2 sensors. This demonstrates the added value of a multi-sensor 

approach, where detection does not rely solely on temperature but instead integrates multiple 

indicators of fire conditions. 

Specifically, rows 3–6, 8, and 14 of Table 2 were correctly classified as fire events (Class 

= 1), while all other rows were identified as no-fire conditions (Class = 0). Out of the 14 

collected samples, the system accurately detected every case, resulting in 100% detection 

accuracy in this small-scale validation experiment. 

Furthermore, the alarm system was successfully triggered in response to detected fire 

events, providing clear evidence of the system’s reliability and real-world functionality. These 

findings reinforce both the validity of the trained logistic regression model and the robustness 

of the integrated sensing framework. Future work will focus on extending these tests to larger-
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scale and more diverse environments to further validate the system’s performance under real 

operational conditions. 

  

 

Figure 3. Confusion Matrix Heatmaps for the Three Material Categories (Carton, 

Clothing, Electrical) 
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Figure 4. The Correlation Heatmap of Features vs Fire Status 

5.5 Comparative Overview 

Table 3 presents a comparative overview of our multi-sensor fusion and logistic 

regression approach against selected state-of-the-art fire detection methods. The comparison 

highlights methodology, dataset type, key results, and practical relevance. Unlike most prior 

studies, which rely on image- or simulation-based data, our approach uses real sensor signals 

across multiple materials (carton, cloth, electrical), achieving high accuracy (≈97–98%) with 

robust confidence filtering and low computational complexity, making it suitable for real-

time indoor fire monitoring. 

While the studies employ diverse datasets (from images and videos to simulations), 

the comparison remains meaningful, emphasizing methodological advances, accuracy 

benchmarks, and real-time applicability. Our work focuses on sensor-based data and logistic 

regression for early-stage indoor fire detection, addressing scenarios where visual data may 

be unavailable or impractical. This complements vision-based (e.g., CNN and segmentation) 

and simulation-based (e.g., LSTM-Kriging) approaches, illustrating that integrating multiple 

modalities can enhance fire safety and emergency response. 
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(a) 

 

(b) 

 

(c) 

Figure 5. Accuracy with Different Thresholds (0.5–0.9) for the Evaluated Datasets 
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Figure 6. Training and Validation Accuracy for Carton, Electrical, and Cloth Materials 

  

 

Figure 7. Training and Validation Loss for Carton, Electrical, and Cloth Materials 
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 Table 2. Fire Detection Outputs 

Humidity% Temp. MQ139 TVOC eCO2 Class 

69 24.9 342 1134 5260 0 

71 24.3 159 14 401 0 

68 24.9 362 1665 7566 1 

74 21.6 184 1478 4956 1 

73 21.6 200 2124 7956 1 

76 24.7 274 2168 6356 1 

68 22.7 78 244 489 0 

70 22.3 128 7144 6100 1 

66 22.1 86 959 841 0 

74 22.9 94 974 983 0 

66 22.9 121 3785 3468 0 

70 21.8 68 11 423 0 

66 22.2 78 286 524 0 

75 22.3 131 5130 4572 1 

Table 3. Comparison of our Multi-Sensor Fire Detection Approach with Existing 

Methods 

Paper Method Dataset Key Results Comparison to 

Proposed Work 

Proposed 

Work 

Multi-sensor 

fusion + Logistic 

Regression 

Real sensor 

data (carton, 

cloth, 

electrical) 

Accuracy ≈ 97–

98%; robust 

confidence 

filtering; low 

computational 

complexity; real-

time indoor fire 

detection 

Operates on low-

cost sensors rather 

than images; high 

accuracy across 

multiple materials; 

suitable for indoor 

deployment 

[29] Fine-tuned CNN 

with adaptive 

prioritization and 

dynamic channel 

selection 

Fire image 

datasets from 

surveillance 

cameras 

High accuracy in 

fire detection; 

validated for real-

world disaster 

management 

Vision-based 

approach; sensor-

free; highlights 

advantage of using 

multi-sensor data in 

indoor scenarios 
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[30] LeNet5 CNN 

with L2 

regularization 

Fire/non-fire 

images 

Train accuracy ≈ 

87%, validation ≈ 

71%, test ≈ 70% 

Lower accuracy 

compared to our 

method; image-

based CNN 

approach; 

demonstrates the 

benefit of sensor 

fusion for multi-

material indoor fires 

[31] Hybrid Adaboost 

+ MLP + CNN 

Image/video 

fire datasets 

≈ 99% accuracy 

with low false 

alarm rate 

High-performing 

hybrid model; 

image/video data vs. 

real sensors; 

emphasizes 

computational 

efficiency advantage 

of logistic 

regression 

[32] Fire-Net 

(Landsat-8, 

optical + thermal 

modalities) 

Satellite 

imagery of 

active fires 

97.35% accuracy, 

including small 

fires 

Remote sensing and 

large-scale 

detection; contrasts 

with indoor, multi-

material sensor-

based detection 

[33] Lightweight 

MobileNetV3, 

anchor-free 

structure 

Self-built + 

public fire 

datasets 

90.2% accuracy; 

29.5 f/s real-time 

inference 

Lightweight, real-

time image-based 

model; allows direct 

comparison of 

efficiency vs. 

sensor-based multi-

material approach 

 Conclusion 

Data centers play an important role in data collection, processing, and decision-

making. A variety of security measures have been implemented, including early warning 

systems, considering the need for their continuous functioning. This proposed work uses 

machine learning to interact with the sensor network and demonstrates the effectiveness of 

early fire detection using the logistic regression model and sensor data integration. In real-

time monitoring, using innovative algorithms enables and improves fire detection by 

providing timely warnings that can reduce fire spread and damage. The research should be 

further developed to improve the parameter model by detecting modification techniques and 
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optimizing the performance of the logistic regression model. These results lead to improved 

efficiency and dependability in fire detection. When logistic regression is suitable for current 

indoor fire detection using structured sensor data, future work could examine advanced 

models such as DNNs to improve detection in challenging conditions or with more 

complicated implementations. Future research should focus on improving these models, 

testing them using modern technologies, and performing major evaluations to verify their 

durability and dependability in real-world fire detection cases. This system is continuously 

improving to reduce fire accidents, safeguard people and properties, and contribute to overall 

safety and security. 

References 

[1] Gaur, Anshul, Abhishek Singh, Ashok Kumar, Kishor S. Kulkarni, Sayantani Lala, 

Kamal Kapoor, Vishal Srivastava, Anuj Kumar, and Subhas Chandra 

Mukhopadhyay. "Fire sensing technologies: A review." IEEE Sensors Journal 19, 

no. 9 (2019): 3191-3202.  

[2] Fernández-Alaiz, Florencio, Ana Maria Castañón, Fernando Gómez-Fernández, 

Antonio Bernardo-Sánchez, and Marc Bascompta. "Determination and fire analysis 

of gob characteristics using CFD." Energies 13, no. 20 (2020): 5274. 

[3] Maragkos, Georgios, and Tarek Beji. "Review of convective heat transfer 

modelling in cfd simulations of fire-driven flows." Applied sciences 11, no. 11 

(2021): 5240.  

[4] Kolaitis, Dionysios, Eleni Asimakopoulou, and Maria Founti. "CFD simulation of 

fire spreading in a residential building: the effect of implementing phase changing 

materials." In European Combustion Meeting. 2011. 

[5] Sesseng, Christian. Mapping of gas concentrations, effect of deadair space and 

effect of alternative detection technology in smouldering fires. 2016. 

[6] Fonollosa, Jordi, Ana Solórzano, and Santiago Marco. "Chemical sensor systems 

and associated algorithms for fire detection: A review." Sensors 18, no. 2 (2018): 

553.  

[7] Solórzano, Ana, Jordi Fonollosa, and Santiago Marco. "Improving calibration of 

chemical gas sensors for fire detection using small scale setups." In Proceedings, 

vol. 1, no. 4, p. 453. MDPI, 2017.  



 Ubiquitous Monitoring and Alert Fire Detection System in Data Center using Logistic Regression 

ISSN: 2582-337X  295 

 

[8] Fleming, Joseph M., and Fire Marshal. "Smoke detector technology and the 

investigation of fatal fires." Fire and Arson Investigator 50, no. 3 (2000): 35-40. 

[9] Andrew, A. M., A. Y. M. Shakaff, A. Zakaria, R. Gunasagaran, E. Kanagaraj, and 

S. M. Saad. "Early stage fire source classification in building using artificial 

intelligence." In 2018 IEEE Conference on Systems, Process and Control (ICSPC), 

IEEE, (2018): 165-169. 

[10] Wu, Lesong, Lan Chen, and Xiaoran Hao. "Multi-sensor data fusion algorithm for 

indoor fire early warning based on BP neural network." Information 12, no. 2 

(2021): 59.  

[11] Maheen, Jubeena B., and R. P. Aneesh. "Machine learning algorithm for fire 

detection using color correlogram." In 2019 2nd international conference on 

intelligent computing, instrumentation and control technologies (ICICICT), vol. 1, 

IEEE, (2019): 1411-1418. 

[12] Khan, Rubayat Ahmed, Jia Uddin, Sonia Corraya, and J. Kim. "Machine vision 

based indoor fire detection using static and dynamic features." International Journal 

of Control and Automation 11, no. 6 (2018): 87-98. 

[13] Saponara, Sergio, Abdussalam Elhanashi, and Alessio Gagliardi. "Real-time video 

fire/smoke detection based on CNN in antifire surveillance systems." Journal of 

Real-Time Image Processing 18, no. 3 (2021): 889-900.  

[14] Li, Pu, and Wangda Zhao. "Image fire detection algorithms based on convolutional 

neural networks." Case Studies in Thermal Engineering 19 (2020): 100625. 

[15] Sarwar, Barera, Imran Sarwar Bajwa, Shabana Ramzan, Bushra Ramzan, and 

Mubeen Kausar. "Design and application of fuzzy logic based fire monitoring and 

warning systems for smart buildings." Symmetry 10, no. 11 (2018): 615. 

[16] Maksimović, Mirjana, Vladimir Vujović, Branko Perišić, and Vladimir Milošević. 

"Developing a fuzzy logic based system for monitoring and early detection of 

residential fire based on thermistor sensors." Computer Science and Information 

Systems 12, no. 1 (2015): 63-89. 

[17] Muralidharan, Aiswarya, and Fiji Joseph. "Fire detection system using fuzzy logic." 

Int. J. Eng. Sci. Res. Technol 3, no. 4 (2014): 6041-6044. 



Belal K. ELFarra, Mamoun A. A. Salha 

Journal of Ubiquitous Computing and Communication Technologies, September 2025, Volume 7, Issue 3 296 

 

[18] Necsulescu, D., and Xuqing Le. "Type-2 Fuzzy Logic Sensor Fusion for Fire 

Detection Robots." In Proceedings of the 2 nd International Conference of Control, 

Dynamic Systems, and Robotics Ottawa, Ontario, Canada. 2015. 

[19] Listyorini, Tri, and Robbi Rahim. "A prototype fire detection implemented using 

the Internet of Things and fuzzy logic." World Trans. Eng. Technol. Educ 16, no. 

1 (2018): 42-46. 

[20] Arduino. (2018, November 18). Arduino Basics.html. Retrieved April 20, 2018, 

from Arduino: http://www.arduino.cc 

[21] Robot-r-us, WeMos D1 R2 WiFi ESP8266 Board Compatible with Arduino IDE 

(2018), 18 October 2017, https://www.robot-r-us.com/wireless_wifi/wemos-d1-r2-

wifi-esp8266-development-boardcompatible-with-ardui.html 

[22] ASTM Standard Terminology of Fire Standards; ASTM: West Conshohocken, PA, 

USA, 2004. 

[23] Fleming, Joseph M. "Photoelectric and Ionization Detectors—A Review of The 

Literature Re–Visited." Retrieved Dec 31 (2004): 2010. 

[24] Fabian, T.Z.; Gandhi, P.D. Smoke Characterization Project—Technical Report; 

Underwriters Laboratories: Northbrook, IL, USA, 2007. [Google Scholar] 

[25] Keller, Alejandro, M. Rüegg, Martin Forster, Markus Loepfe, Rolf Pleisch, P. 

Nebiker, and Heinz Burtscher. "Open photoacoustic sensor as smoke detector." 

Sensors and Actuators B: Chemical 104, no. 1 (2005): 1-7. 

[26] Meacham, Brian J. "The use of artificial intelligence techniques for signal 

discrimination in fire detection systems." Journal of Fire Protection Engineering 6, 

no. 3 (1994): 125-136. 

[27] Liu, Zhigang, and Andrew K. Kim. "Review of recent developments in fire 

detection technologies." Journal of Fire Protection Engineering 13, no. 2 (2003): 

129-151. 

[28] Nazir, Amril, Husam Mosleh, Maen Takruri, Abdul-Halim Jallad, and Hamad 

Alhebsi. "Early fire detection: a new indoor laboratory dataset and data distribution 

analysis." Fire 5, no. 1 (2022): 11. 



 Ubiquitous Monitoring and Alert Fire Detection System in Data Center using Logistic Regression 

ISSN: 2582-337X  297 

 

[29] Muhammad, Khan, Jamil Ahmad, and Sung Wook Baik. "Early fire detection using 

convolutional neural networks during surveillance for effective disaster 

management." Neurocomputing 288 (2018): 30-42. 

[30] Roy, Sanjiban Sekhar, Vatsal Goti, Aditya Sood, Harsh Roy, Tania Gavrila, Dan 

Floroian, Nicolae Paraschiv, and Behnam Mohammadi-Ivatloo. "L2 regularized 

deep convolutional neural networks for fire detection." Journal of Intelligent & 

Fuzzy Systems 43, no. 2 (2022): 1799-1810. 

[31] Saeed, Faisal, Anand Paul, P. Karthigaikumar, and Anand Nayyar. "Convolutional 

neural network based early fire detection." Multimedia Tools and Applications 79, 

no. 13 (2020): 9083-9099.  

[32] Seydi, Seyd Teymoor, Vahideh Saeidi, Bahareh Kalantar, Naonori Ueda, and 

Alfian Abdul Halin. "Fire‐Net: A Deep Learning Framework for Active Forest Fire 

Detection." Journal of Sensors 2022, no. 1 (2022): 8044390. 

[33] Li, Yuming, Wei Zhang, Yanyan Liu, and Yao Jin. "A visualized fire detection 

method based on convolutional neural network beyond anchor." Applied 

Intelligence 52, no. 11 (2022): 13280-13295. 

 


