Journal of Ubiquitous Computing and Communication Technologies (ISSN: 2582-337X) /\
www.irojournals.com/jucct/ Ubiquitous Comp
NS

LLM Driven Unit Test Case Generation
Using Agentic Al

Baskaran S.!, Pradeepta Mishara?, Rashmi Agarwal®
13REVA Academy for Corporate Excellence, REVA University, Bangalore, India

2Al Innovation, Beghou Consulting, Bangalore, India

E-mail: 'haskaran.ai06@race.reva.edu.in, 2pradeeptamishra@race.reva.edu.in, ®rashmi.agarwal@reva.edu.in

Abstract

Unit testing plays a crucial role in application software development by validating
module functionality in isolation before system integration. Manually writing and reviewing
unit test cases is time-consuming and defect-prone. Complex logic and boundary conditions
are not tested thoroughly, leading to higher rework costs. Automated test generation using
Large Language Models (LLMs) reduces development effort but faces challenges such as
ensuring meaningful test coverage, handling invalid inputs, and addressing missing imports.
This study aims to leverage LLMs in combination with the Autogen Agentic Al framework
to generate high-quality Python unit tests by effectively prompting them, fixing failed test
cases, validating them through test execution, analyzing results, and improving code coverage
and mutation score. For experiments conducted on the Insurance Management Application,
branch coverage improved from 98% to 99%, and the mutation score improved from 83.9%
to 95.8%. The proposed approach significantly reduces manual effort while improving test

suite effectiveness and software quality.

Keywords: Unit Testing, Large Language Models, Agentic Al, Test Automation, Al-Driven
Testing, Test Case Effectiveness, Code Coverage, Mutation Testing.

1. Introduction

During application development, individual modules must undergo thorough testing

in isolation before being integrated into the system. Unit test execution helps to verify that all

Journal of Ubiquitous Computing and Communication Technologies, December 2025, VVolume 7, Issue 4, Pages 358-374 358
DOI: https://doi.org/10.36548/jucct.2025.07.003

Received: 02.10.2025, received in revised form:03.11.2025, accepted: 18.11.2025, published: 28.11.2025
© 2024 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-Non-commercial International (CC BY-NC 4.0) License

Baskaran S, Pradeepta Mishara, Rashmi Agarwal

boundary conditions and module functions are working correctly. However, manually
creating unit test cases is time-consuming and error-prone, increasing review time and rework

Ccosts.

Large language models, such as OpenAl's GPT, Google's Gemini, and Meta's Llama,
represent a new generation of algorithms that can synthesize unit test cases for code modules.
As such, this new generation can greatly reduce development effort. Some of the challenges
in test case generation involve meaningful test coverage, invalid inputs, and missing imports.
Jain and Le Goues present feedback-driven and agentic approaches to improve test suite
quality and reduce human effort using large language models [1]. Writing unit test cases by
hand is slow, laborious, and error-prone, resulting in incomplete test coverage and defects that
are more expensive to fix later. Although LLM-based automation is in its heyday, it tends to
fail with complex scenarios where multiple classes and invalid inputs may be involved, with
no guarantee of achieving comprehensive coverage. There is, therefore, an urgent need for
more innovative methods of automated testing capable of reducing manual effort while
guaranteeing thorough and reliable quality. This research aims to apply the Agentic Al
AutoGen framework with LLMs toward the automation of unit test case generation in Python
programs via effective prompting. Besides generating test cases, this study also investigates
refining test cases to improve branch coverage and mutation scores, such as MuTAP [2]
proposed by Dakhel et al., in order to highlight defects in test logic and further harden the

robustness of tests.

The rest of the paper is organized as follows: Section 2 reviews the related research
and literature; Section 3 explains the proposed methodology and system design, while Section
4 describes the implementation; Section 5 discusses the analysis and results, and finally
Section 6 presents the conclusion and discusses some possible future research directions.

2. Literature Review

Large language models generate unit test cases that overcome traditional challenges
such as test case thoroughness and code coverage. Wang et al. [3] proposed a method for
slicing complex methods into smaller units and generating comprehensive unit test cases
using large language models. Zhang et al. [4] introduced property-based retrieval mechanisms

within Retrieval-Augmented Generation (RAG) frameworks to enhance the relevance of

Journal of Ubiquitous Computing and Communication Technologies, December 2025, Volume 7, Issue 4 359

LLM Driven Unit Test Case Generation Using Agentic Al

generated tests. Meta's industrial-scale implementation with TestGen-LLM by Alshahwan et
al. [5] demonstrated the practical feasibility of LLM-based testing to improve human-written
test cases, eliminate hallucinations, and attain superior coverage metrics in production

environments.

Chen et al. [6] introduced ChatUniTest, which combines adaptive focal context
mechanisms with generation, validation, and repair processes to ensure the quality of unit test
cases. Pizzorno and Berger [7] developed CoverUp, a coverage-guided approach to iteratively
improve test case generation using real-time code coverage feedback. Recent advances by Gu
et al. [8] have introduced hybrid program analysis techniques that combine static control flow
analysis with dynamic code coverage to improve unit test case generation for untested

execution paths

Building on these advancements, Ryan et al. [9] introduced Code-Aware Prompting,
a coverage-guided approach to regression test generation. This method uses large language
models to enhance test coverage and improve defect detection. Their work demonstrates how
combining code understanding with real-time coverage feedback can make LLM-based test

generation more effective and reliable in practical development environments.

In addition to these core contributions, several studies further expand the scope of
LLM-assisted testing. Storhaug and Li [10] showed that parameter-efficient fine-tuning
improves the accuracy and stability of LLM-generated tests. Pan et al. [11] introduced
ASTER, a multilingual, NL-driven testing framework supporting various programming
ecosystems. Zhang et al. [12] proposed CITYWALK, which uses project-level dependency
structures to improve C++ unit test accuracy. Bhatia et al. [13] compared generative Al test-
generation tools, while Zhong et al. [14] and Bayri & Demirel [15] demonstrated the
effectiveness of LLMs in enhancing defect detection and modernizing testing workflows.

Despite significant advancements in utilizing large language models for unit test
generation, current research does not present a comprehensive end-to-end system that
seamlessly integrates code chunking, prompting, test creation, execution, coverage analysis,
mutation feedback, and automated repair within a unified pipeline. Many existing approaches
also encounter consistency challenges due to their reliance on probabilistic outputs from large
language models, which lack adequate validation mechanisms. Moreover, the potential of

mutation testing to verify tests generated by large language models remains underexplored.

ISSN: 2582-337X 360

Baskaran S, Pradeepta Mishara, Rashmi Agarwal

A multi-agent, feedback-driven methodology has been proposed to address these limitations.
The methodology provides an integrated framework intended to overcome the highlighted

deficiencies.

3. Methodology and System Design

The CRISP-DM framework has been chosen for its iterative and structured approach,
fitting the requirements of automated unit test case generation workflows. Indeed, all its
different phases map directly to the various stages of Large Language Model-based testing:
Business Understanding corresponds to identifying target code modules; Data Preparation
involves source code extraction and chunking; Modeling encompasses generating test by
creating appropriate prompts; evaluation covers test execution and coverage analysis; and
Deployment involves validated tests execution via Continuous Integration/Continuous
Deployment pipelines. A crucial reason for CRISP-DM's effectiveness is its inherently
cyclical nature, allowing for continuous improvement of this process by incorporating

feedback from test results and coverage gaps.

The system is a network of interconnected modules: automating the construction of
test cases, execution, measurement of coverage, and improvement of the mutation score. The
key components involved in the system are a Streamlit interface, a test-generation agent,
chunking and prompt modules, a test-execution agent, a coverage agent, a mutation-testing
agent, an auto-fix agent, and tools for managing mutations and files. Figure 1 illustrates a

detailed diagram of this system.

- Agentic Unit Test Enhancement Framework (AUTEF)

file_utils.py

v Utility Modules

chunking_utils.py

B Streamlit Web Interface = AutoGen Agents 1l Results Dashboard
| Source Code Uploa | A I | ! o |
i 2} ¢}
_ @PFile) T . Coverage Report
- Analyze o —
| <’ Generate Tests ‘ K' I
Generate
| 1l CoverageAgent }-le" AutoFixingAgent | Reports 4+ Mutation Report
_ —
-‘Mutate
‘ < MutationTestAgent ~ Test Results
,‘7777”/7

-+ mutation_utils.py

Figure 1. High-Level Design Diagram

Journal of Ubiquitous Computing and Communication Technologies, December 2025, Volume 7, Issue 4

361

LLM Driven Unit Test Case Generation Using Agentic Al

Unlike a single-agent workflow, it is shared among multiple agents in the multi-agent
architecture: the generation of unit test cases, execution, code coverage analysis, mutation
score evaluation, and fixing unit test case failures. This clear division reduces the cognitive
load on individual agents, enables iterative improvements, and enhances coverage and

mutation scores through coordinated inter-agent effort processes.

Figure 2 depicts the overall workflow of the automated unit test-generation pipeline.
The approach starts with source code analysis and chunks the code into meaningful pieces.
The LLM generates some initial unit test cases based on suitable prompts and input code
chunks. The generated tests are executed and their results are analysed via code coverage
assessment, which identifies the branches that remain untested. In cases where coverage gaps
are identified, the model is provided with a suitable prompt to generate new tests that increase
coverage. Failing or incomplete tests are automatically fixed through an iterative fixing

process.

LLM-based Test Creation

Source Code }—»‘ Chunking }—»‘ Prompting }—»

. ‘ | Improve Coverage-
E t A
Test on ‘ | Co 9 > Generate Additional Tests
J \ / I
Automated Fixing of Failed Tests }—D‘ Mutation Testing }—’ Ge:—?;‘;:;‘;EA'ﬂ:;Z?:i’g::r'rI:sts

+

{ Fully Optimized Test Suite J

Figure 2. LLM-Based Test Generation Workflow

The reason mutation testing has been selected as the main validation method is that it
provides a direct and quantitative measure of the fault-detection ability of a test suite. Property-
based testing, on the other hand, requires domain-specific invariants, which in general are
lacking for business-oriented applications. The proposed approach based on mutation testing
represents a language-agnostic, specification-independent assessment method. In this respect,
it is much better suited to LLM-generated tests. Mutation testing measures the capability of
tests to detect changes in program behavior. Stronger test cases are developed to kill the
surviving mutants and increase the mutation score. This create-run-analyze-fix cycle results in
a fully optimized and reliable test suite. While the natural tendency of an LLM is to be non-

deterministic, this framework fosters deterministic output by using fixed decoding parameters,

ISSN: 2582-337X 362

Baskaran S, Pradeepta Mishara, Rashmi Agarwal

such as a temperature of 0; it enforces strict formats for output, controls test structure by using
templates, and validates generated tests by execution and performing mutation analysis. Only

tests that always pass, over multiple runs, are retained, ensuring stability in the final test suite.

The following sections explain the key components of the proposed framework.

3.1 Unit Test Case Generation Agent

The Unit Test Generation Agent uses prompts and the source code to auto-generate
unit test cases for all functions and classes. Cases are also generated for testing boundary

conditions, positive scenarios, and error conditions.

3.2 Unit Test Execution Agent

The unit test agent executes unit tests and returns test results in both HTML and JSSON
formats. The test report includes test cases, test execution status (success/failure), and reasons
for failure to quickly help developers fix the defects. These test executions can also be

integrated with CI/CD pipelines to ensure automated testing.

3.3 Coverage Agent

The coverage agent measures the test coverage for lines, functions, and branches,
showing a detailed coverage report that includes metrics like line coverage and branch
coverage. Areas where improvement is required are highlighted in the report as well. It also

generates additional test cases to improve the coverage of areas that require improvement.
3.4 Auto Fixing Agent

It auto-detects test failures and fixes them on its own, reducing developers' efforts by
requiring minimal manual intervention.

3.5 Mutation Testing Agent

The mutation testing agent introduces small mutations in the codebase and verifies
whether the current test suite detects them. It provides a comprehensive report, showing the

number of mutants killed, survived, and incompetent, along with the respective mutation

Journal of Ubiquitous Computing and Communication Technologies, December 2025, Volume 7, Issue 4 363

LLM Driven Unit Test Case Generation Using Agentic Al

score. The agent presents reports in HTML and YAML formats. It further enhances test

effectiveness by adding new test cases based on the surviving mutants.

3.6 Utility Modules

The Chunking Utils module splits large source code files into smaller, manageable
chunks for LLM processing. This ensures each chunk is within max_chunk_size, which is by
default 512 characters, and maintains context during unit test generation. File Utils provides
helper functionality for managing files throughout the test generation process. These include
listing, reading, and writing files; creating necessary directories for processing; unzipping ZIP
files uploaded for batch processing by a user; and associating source files with their
corresponding test files. Mutation Utils assists in creating and applying mutations to the
source code to evaluate unit test effectiveness. This supports multiple types of mutations and

provides visual reports to help developers improve the mutation score of unit test results.

3.7 Template Prompts

The Template Prompts module includes prompts for unit test case generation,
measuring and improving branch coverage, fixing test case failures, and measuring and
improving mutation scores. The test case generation prompt creates comprehensive unit test
cases for a given chunk of code, including necessary imports to ensure corner cases are
covered. The branch coverage prompt identifies missing branches or execution paths in your
test cases and generates test cases for these missing branches, helping to improve the branch
coverage of your test suite. The test case failure fix prompt is used when a test case fails. Its
primary objective is to restore the broken unit test based on the functionality of the source
code and the reasons for the associated failure of a test. By analyzing both the source code
and the failing test function, the prompt applies fixes directly to the test cases. The mutation
coverage improvement prompt enhances the mutation score by generating additional test

cases around any surviving cases.

4. Implementation

This work presents a case study of an Insurance Management System with numerous
modules and complex business logic to demonstrate our approach. The AutoGen Agentic Al

framework automatically generates unit tests, executes the generations, and refines them using

ISSN: 2582-337X 364

Baskaran S, Pradeepta Mishara, Rashmi Agarwal

coverage, mutation, and auto-fixing agents. Structured prompts direct the LLM to generate
accurate and meaningful test cases while automated analysis identifies coverage gaps and
failing tests for resolution. This section discusses the system modules, the AutoGen

framework, prompt templates, test case generation, execution, and coverage enhancement.

4.1 Insurance Management System

The system consists of about 75 lines of Python code, divided into four classes and 12
methods. The architecture includes API handlers, business logic modules, repository
components, and persistence utilities. This forms a nice multi-layer environment where unit
test generation, improvement of branch coverage, and mutation testing can be realistically
assessed. Its various modules collectively handle policy management, input validation, data
storage, and enforcement of business rules, making the application quite suitable for
validating both functional and structural aspects. APl Layer - policy_handler: provides
RESTful operations and input validation on incoming requests to add policies. Service Layer
- policy_service: encapsulates business logic for special conditions, rules, validation of inputs
for policies, and cancellation logic. Repository Layer - policy_repository: responsible for
accessing and managing policy data in memory or through a storage abstraction. The
Persistence Layer - database: provides a thin interface that supports insert, delete, and fetch
operations along with error handling corresponding to duplicate entry, invalid 1D, and record

not found.

4.2 AutoGen Agentic Al Framework

The unit test cases are generated using the agentic framework of AutoGen. It performs
the enhancement through different agents, which include coverage, mutation, and auto-fixing.

The test execution agent executes the generated test cases and provides test execution reports.

4.3 Prompt Templates

The framework uses targeted prompt engineering with well-designed prompt
templates including unittest structures, appropriate imports, assertions, and exception
handling. Rules being path-aware allow for proper relative imports. Error feedback prompts

support the auto-correction of failing unit tests. Mutation-aware prompts are used in creating

Journal of Ubiquitous Computing and Communication Technologies, December 2025, Volume 7, Issue 4 365

LLM Driven Unit Test Case Generation Using Agentic Al

tests that can reach the surviving mutants. For that, the Prompt Template Module crafts clear,
factual prompts to guide the LLM in generating, refining, and optimizing unit test cases. It
selects an appropriate prompt based on the testing objective that may range from creating
initial tests to improving branch coverage or enhancing robustness through mutation testing.
The module ensures that each prompt is complete, accurate, and tuned for the specific test-
generation task by extracting essential details like code snippets, file paths, function names,
and existing tests.

Depending on the goal, the module uses a specific prompt builder. It uses get_prompt()
to create a complete test. It uses generate_branch_coverage_prompt()to target unreachable
branches. It uses generate_mutation_prompt() for mutation testing. Metadata such as
discovered branches, test failure logs, or mutation descriptions are also included in the
prompts in this module. Prompts are formatted to follow the rules: keeping imports, mocking,
handling exceptions, and ensuring syntax correctness. After the language model produces or
updates code, this module processes it and adds it to the right test files. This ensures tests are

accurate and complete, matching the goals.

4.4 TestCase Generation

The test generation agent will utilize Open Al's language model via the Agentic Al
framework to generate unit tests from code using the autogen feature. It supports large
codebases by chunking the files into pieces. Each piece is fed into the model along with a
prompt, and the model produces a test script. Following test generation, system tokens and
other unnecessary details will be removed from the output, so only the cleaned test files are

saved to the given test folders and are ready to run.

45 TestCase Execution

It automatically detects and executes unit tests. Feedback will be provided in JSON
and HTML formats. Setup files and environment variables are loaded by the agent. The agent
sets up the configuration with an inserted OpenAl API key. The agent looks for test files,
typically named test_*.py, and executes them all. Tests are executed using Python's unittest
framework. Results are marked as PASS, FAIL, or ERROR. Next, it creates a JSON file
containing timestamps for tracking. It also generates an HTML report styled with Pandas and

presents the results clearly.

ISSN: 2582-337X 366

Baskaran S, Pradeepta Mishara, Rashmi Agarwal

4.6 Coverage Improvement

The Coverage Agent measures and improves code coverage. It helps ensure that unit
tests have thoroughly covered all parts of the code. The agent runs the existing unit tests and
produces a coverage report by using the module coverage.py. This report also indicates which
parts of the code have not yet been tested. The agent analyzes the report in order to identify
untested code sections that need more testing. Next, the agent designs new test methods using
an appropriate prompt provided to the Large Language Model in order to fill these gaps and
therefore increase the coverage of untested code. The prompt would include coverage data,
missing code sections and the current source and test files. These are then added to the
corresponding test classes. The agent again reruns the unit tests and issues an updated report
on coverage analysis. The revised coverage results are shown in the terminal and HTML
format. This helps the developers see the improvements made and increases confidence that

the code is well tested.

4.7 Fix Failing Unit Tests

The AutoFixing Agent minimizes the manual effort required to find and fix failing
unit tests. It runs all the unit tests and saves the results in an easy-to-parse JSON format. The
agent then parses these results to identify any tests that failed or threw errors. The agent
locates the corresponding test files in the project by class name. Once the relevant test methods
have been identified, the agent uses rules to fix simple problems. For other failures, it retrieves
the related source code. It sends a context-aware prompt to the LLM with the request to
propose a fixed version of the test method. It replaces the broken test method with a new one
in the test file and reruns the tests to verify the fix. Therefore, this automated process supports
the quick resolution of failing tests, while maintaining consistency in the test suite.

4.8 Mutation Coverage Improvement

The Mutation Testing Agent automates mutation testing. It checks the unit tests and
finds surviving mutants. Then, it creates new tests to catch faults not currently tested. The
agent finds the source and test files in the project folder. It uses mut.py to generate mutants
by making minor changes, such as changing operators or flipping conditions. The agent runs

the current tests against these mutants. It sees which mutants survive, revealing gaps in the

Journal of Ubiquitous Computing and Communication Technologies, December 2025, Volume 7, Issue 4 367

LLM Driven Unit Test Case Generation Using Agentic Al

tests. Details about each surviving mutant, such as the type of mutation, lines affected, and
surrounding code, are used by the agent to compose a prompt for the Large Language Model.
Based on this prompt, it generates new or improved test cases to identify the surviving
mutants. These are added to the test classes of the code. The agent reruns the mutation tests,

after which the results show whether test coverage is sufficient.

5. Test Results and Analysis

This section presents the test results along with the analysis of improvements in code

coverage and mutation scores.

5.1 Test Results

The test cases were executed using Python's unittest framework, and the results were
analyzed. Initial test execution showed forty-two passing tests. Table 1 presents a sample test
case result of the HTML output from the test execution. From the execution results, all
expected outputs matched the actual results, indicating correct functionality. The application
correctly raised ValueError and TypeError for invalid input types. The framework

successfully captured and validated exception handling for erroneous test cases.

Table 1. Unit Test Case Results

Test Case Status Reason

InsuranceApp_Modified.app.api.test_policy _handler 0.T PASS None
estPolicyHandler.test_add_policy high_id_low_coverage
_holder_a

InsuranceApp_Modified.app.api.test_policy_handler_0.T PASS None
estPolicyHandler.test_add_policy high_id_valid_coverag
e_holder_a

InsuranceApp_Modified.app.api.test_policy handler 0.T PASS None
estPolicyHandler.test_add_policy_high_id_valid_coverag
e_holder_b

InsuranceApp_Modified.app.api.test_policy_handler_0.T PASS None
estPolicyHandler.test_add_policy_invalid_coverage_amo
unt_negative

InsuranceApp_Modified.app.api.test_policy _handler 0.T PASS None
estPolicyHandler.test_add_policy_invalid_coverage_amo
unt_zero

ISSN: 2582-337X 368

Baskaran S, Pradeepta Mishara, Rashmi Agarwal

Subsequent improvements focused on increasing test coverage, particularly for
modules with conditional logic not fully exercised by the original tests. After enhancements,
the number of test cases rose to forty-four, and all tests passed successfully. Table 2

summarizes the number of test cases executed before and after the enhancements.

Table 2. Unit Test Results Analysis Results

Test Class Initial Test Enhanced Test
Cases Cases
Test Policy Handler 11 11
Test Database 10 10
Test Policy Service 13 15
Test Policy Repository 8 8
Total 42 44

Adding two test cases to the TestPolicyService class strengthens the validation of

service-level logic, specifically addressing previously uncovered branches and conditions.

5.2 Code Coverage Analysis

Coverage report: 98% fiter..
Files | Functions Classes U hide covered

coverage.py v7.7.1, created at 2025-04-22 19:31 +0530

File A statements missing excluded branches partial coverage
source_files\InsuranceApp_Modified\app\api\policy_handler.py 17 0 0 12 o logk
source_files\InsuranceApp_Modified\app\data\database.py 21 0 0 1o o 1o0%
source_files\InsuranceApp_Modified\app\data\policy_repository.py 17 0 0 8 o 100%
source_files\InsuranceApp_Modified\app\services\policy_service.py 19 0 0 16 2 94%
Total 74 0 0 4% 2 98

Figure 3. Initial Code Coverage(Screenshot)

The initial code coverage analysis showed an overall branch coverage of 98%,
indicating good but incomplete test coverage across all source files. Figure 3 shows the code

coverage for the individual modules.

Journal of Ubiquitous Computing and Communication Technologies, December 2025, Volume 7, Issue 4 369

LLM Driven Unit Test Case Generation Using Agentic Al

Additional analysis identified that some branches in the PolicyService class were not
adequately tested, as shown in Figure 4. This figure highlights the uncovered branches at the
methods create_policy and cancel_policy.

Coverage for source_files\InsuranceApp_Modified\app\services\policy service.py: 94% —

19 statements | 19run | Omissing | O excluded | 2 partial

class Policyservice:
def create_policy(self, policy_id, holder_name, coverage_amount):

<= 0:

if policy id X 2 == @ or policy id % 5 == @:

Figure 4. Missing Branches -Policy Service -Initial (Screenshot)

Following the test enhancement phase, the improved coverage report showed a
measurable increase in code coverage, with total coverage reaching 99%. The updated

module-level coverage distribution is presented in Figure 5.

Coverage report: 99% fier...
Files | Functions Classes O hide covered

coverage.py v7.7.1, created at 2025-04-22 19:37 +0530

File A statements missing excluded branches partial coverage
source_files\InsuranceApp_Modified\app\api\policy_handler.py 1 0 o 12 8 loek
source_files\InsuranceApp_Modified\app\data\database py A e e le o loek
source_files\InsuranceApp_Modified\app\data\policy_repository.py 17 e e 8 0 leek
source_files\InsuranceApp_Modified\app\services\palicy_service.py 1 e e 16 1 9Tk
Total 74 0 0 % 1 9

Figure 5. Improved Code Coverage (Screenshot)

The additional test cases' impact on the PolicyService class is evident in the reduction
of missing branches, as shown in Figure 6. The enhanced test cases successfully targeted
previously untested control paths, improving the verification of decision-making logic within

the service layer.

ISSN: 2582-337X 370

Baskaran S, Pradeepta Mishara, Rashmi Agarwal

Coverage for source_files\InsuranceApp_Modified\app\services\policy_service.py: 97%

19 statements | 19run | Omissing Oexcluded | 1 partial

1, created at 2025-04-22 19:21 +0530

class Policyservice:
def create_policy(self, policy id, holder name, coverage amount):
if not isinstance(pelicy_id, int) or policy_id < @:
raise ValueError(“Invalid policy ID.")

if not holder_name or not isinstance(holder_name, str):
raise ValueError(“Invalid policy holder name."}

if not isinstance(coverage_amount, (int, float)) er coverage_amount <= 8:
raise ValueError("Invalid coverage amount.")

Example of nested if conditions
if coverage_amount > 10000:
if policy id < 560 or holder_name.endswith("Z"):
raise ValueError(“Special conditions apply for high coverage amounts.”)

return True
def cancel policy(self, policy id):

if not isinstance(policy id, int) or policy id < @:
raise ValueError("Inva

id policy ID."}

Nested if conditions for special cancellation rules
if policy id > 500:

if policy id % 2 == @ or policy_id % 5 == @:

Figure 6. Missing Branches-Policy Service-Updated (Screenshot)

5.3 Mutation Score Analysis

The initial mutation testing achieved a score of 83.9%, showing a strong test suite. Of

the ninety-seven mutants introduced, seventy-eight were killed, and fifteen survived,

revealing logic paths not entirely validated by existing tests; four were marked as

incompetent. After adding targeted test cases to cover gaps, analyzing surviving mutants, and

updating source files, the mutation tests were rerun. This resulted in the death of eleven more

mutants. No incompetent mutants remained, indicating better test accuracy, and the mutation

score increased from 83.9% to 95.9%. Figure 7 and Figure 8 provide the mutation report for

the initial and improved mutation scores.

MutPy mutation report

© 22.04.2025 19:31
Target

Tests [44]

© [0.007 5]
- test 0s]

tory_o [0.002 5]
y_service o [0.001s]

Result sumi Y

= all Score - 83.9%
- OTime-16s

Mutants [97]

- EIxp-78
pl =urvived R
-4
-0
80 4%
" Module Operator Tests run Duration
1 coD (9] 1
coD [12] 1

15.5%

Result

=
[iiod]

Figure 7. Mutation Coverage-Initial (Screenshot)

Journal of Ubiquitous Computing and Communication Technologies, December 2025, Volume 7, Issue 4

371

LLM Driven Unit Test Case Generation Using Agentic Al

MutPy mutation report

@ 22.04.2025 19:34
Target

Tests [61]
- tests.l

Result summary
« il Score - 95.9%
«- OTime-13s

Mutants [97]
93

Module Operator Tests run Duration Result

Figure 8. Mutation Coverage-Improved (Screenshot)

The proposed approach includes a comprehensive feedback loop that involves
chunking, structured prompting, execution validation, coverage analysis, mutation-score
improvement, and fixing failed tests. It develops more thorough, maintainable test suites,
resulting in test quality metrics that match or exceed those of leading automated testing
frameworks. Besides code coverage and mutation score, metrics such as assertion density,
unique path exploration, oracle strength, flakiness rate across repeated runs, redundancy
removal, and defect detection ability can be used to evaluate the effectiveness of LLM-

generated test cases.

6. Conclusions and Future Work

Testing with large language models will improve test quality and enable earlier defect
detection. Agentic Al can combine with LLMs to find many boundary test cases that might
be missed in manual testing. These tools, when integrated with code coverage and mutation
testing, provide objective feedback on test effectiveness. Greater coverage and mutation
scores mean stronger test suites with earlier defect detection, less rework, and more reliable
software. Clearly and concisely, reports are provided for faster resolution by the developer.
There are several methods for enhancing LLM-based unit testing. Agentic Al may find test
failures during test runs and then fix both the test cases and the application code. Additionally,
it can improve mutation scores by running additional tests or by updating the code to
implement required functionality changes. Testing more of the code requires clear prompt
instructions and may necessitate trying different LLMs, such as those from OpenAl,
DeepSeek, Cohere, or Google. Improving tools to support multiple programming languages,

ISSN: 2582-337X 372

Baskaran S, Pradeepta Mishara, Rashmi Agarwal

like Java, JavaScript, and C#, and integrating agents with development tools and build

systems also enables teams to create, review, and continuously improve the test cases

throughout software development. It also accelerates software development and enhances

quality.

References

[1].

[2].

[3].

[4].

[5].

[6].

[71.

[8].

Jain, Kush, and Claire Le Goues. "TestForge: Feedback-Driven, Agentic Test Suite
Generation." arXiv preprint arXiv:2503.14713 (2025).

Dakhel, Arghavan Moradi, Amin Nikanjam, Vahid Majdinasab, Foutse Khomh, and
Michel C. Desmarais. "Effective Test Generation using Pre-Trained Large Language
Models and Mutation Testing.” Information and Software Technology 171 (2024):
107468.

Wang, Zejun, Kaibo Liu, Ge Li, and Zhi Jin. "Hits: High-Coverage LLM-Based Unit
Test Generation via Method Slicing." In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, pp. 1258-1268. 2024.
Zhang, Zhe, Xingyu Liu, Yuanzhang Lin, Xiang Gao, Hailong Sun, and Yuan Yuan.
"LLM-Based Unit Test Generation via Property Retrieval." arXiv preprint
arXiv:2410.13542 (2024).

Alshahwan, Nadia, Jubin Chheda, Anastasia Finogenova, Beliz Gokkaya, Mark
Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta, and Eddy Wang.
"Automated Unit Test Improvement using Large Language Models at Meta.” In
Companion Proceedings of the 32nd ACM International Conference on the
Foundations of Software Engineering, 185-196. 2024.

Chen, Yinghao, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei Yin.
"Chatunitest: A Framework for LLM-Based Test Generation." In Companion
Proceedings of the 32nd ACM International Conference on the Foundations of
Software Engineering, 572-576. 2024.

Pizzorno, Juan Altmayer, and Emery D. Berger. "Coverup: Coverage-Guided LLM-
Based Test Generation." arXiv preprint arXiv:2403.16218 5 (2024).

Gu, Siqgi, Quanjun Zhang, Kecheng Li, Chunrong Fang, Fangyuan Tian, Liuchuan
Zhu, Jianyi Zhou, and Zhenyu Chen. "Testart: Improving LLM-Based Unit Testing

Journal of Ubiquitous Computing and Communication Technologies, December 2025, Volume 7, Issue 4 373

LLM Driven Unit Test Case Generation Using Agentic Al

[9].

[10].

[11].

[12].

[13].

[14].

[15].

via Co-Evolution of Automated Generation and Repair Iteration.” arXiv preprint
arXiv:2408.03095 (2024).

Ryan, Gabriel, Siddhartha Jain, Mingyue Shang, Shigi Wang, Xiaofei Ma, Murali
Krishna Ramanathan, and Baishakhi Ray. "Code-Aware Prompting: A Study of
Coverage-Guided Test Generation in Regression Setting using LLM." Proceedings of
the ACM on Software Engineering 1, no. FSE (2024): 951-971.

Storhaug, André, and Jingyue Li. "Parameter-Efficient Fine-Tuning of Large
Language Models for Unit Test Generation: An Empirical Study.” arXiv preprint
arXiv:2411.02462 (2024).

Pan, Rangeet, Myeongsoo Kim, Rahul Krishna, Raju Pavuluri, and Saurabh Sinha.
"Multi-Language Unit Test Generation using LLMs." arXiv e-prints (2024): arXiv-
2409.

Zhang, Yuwei, Qingyuan Lu, Kai Liu, Wensheng Dou, Jiaxin Zhu, Li Qian, Chunxi
Zhang, Zheng Lin, and Jun Wei. "Citywalk: Enhancing LLm-Based C++ Unit Test
Generation via Project-Dependency Awareness and Language-Specific Knowledge."
ACM Transactions on Software Engineering and Methodology (2025).

Bhatia, Shreya, Tarushi Gandhi, Dhruv Kumar, and Pankaj Jalote. "Unit Test
Generation using Generative Al: A Comparative Performance Analysis of Auto
Generation Tools." In Proceedings of the 1st International Workshop on Large
Language Models for Code, 54-61. 2024.

Zhong, Zhiyuan, Sinan Wang, Hailong Wang, Shaojin Wen, Hao Guan, Yida Tao, and
Yepang Liu. "Advancing Bug Detection in Fastjson2 with Large Language Models
Driven Unit Test Generation." arXiv preprint arXiv:2410.09414 (2024).

Bayri, Vahit, and Ece Demirel. "Al-Powered Software Testing: The Impact of Large
Language Models on Testing Methodologies." In 2023 4th International Informatics
and Software Engineering Conference (IISEC), 1-4. IEEE, 2023.

ISSN: 2582-337X 374

