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Abstract 

Unit testing plays a crucial role in application software development by validating 

module functionality in isolation before system integration. Manually writing and reviewing 

unit test cases is time-consuming and defect-prone. Complex logic and boundary conditions 

are not tested thoroughly, leading to higher rework costs. Automated test generation using 

Large Language Models (LLMs) reduces development effort but faces challenges such as 

ensuring meaningful test coverage, handling invalid inputs, and addressing missing imports. 

This study aims to leverage LLMs in combination with the Autogen Agentic AI framework 

to generate high-quality Python unit tests by effectively prompting them, fixing failed test 

cases, validating them through test execution, analyzing results, and improving code coverage 

and mutation score. For experiments conducted on the Insurance Management Application, 

branch coverage improved from 98% to 99%, and the mutation score improved from 83.9% 

to 95.8%. The proposed approach significantly reduces manual effort while improving test 

suite effectiveness and software quality. 

Keywords: Unit Testing, Large Language Models, Agentic AI, Test Automation, AI-Driven 

Testing, Test Case Effectiveness, Code Coverage, Mutation Testing. 

 Introduction 

During application development, individual modules must undergo thorough testing 

in isolation before being integrated into the system. Unit test execution helps to verify that all 



                                                                                                                                                                                                                                     

Baskaran S, Pradeepta Mishara, Rashmi Agarwal 

 

Journal of Ubiquitous Computing and Communication Technologies, December 2025, Volume 7, Issue 4 359 

 

boundary conditions and module functions are working correctly. However, manually 

creating unit test cases is time-consuming and error-prone, increasing review time and rework 

costs. 

Large language models, such as OpenAI's GPT, Google's Gemini, and Meta's Llama, 

represent a new generation of algorithms that can synthesize unit test cases for code modules. 

As such, this new generation can greatly reduce development effort. Some of the challenges 

in test case generation involve meaningful test coverage, invalid inputs, and missing imports. 

Jain and Le Goues present feedback-driven and agentic approaches to improve test suite 

quality and reduce human effort using large language models [1]. Writing unit test cases by 

hand is slow, laborious, and error-prone, resulting in incomplete test coverage and defects that 

are more expensive to fix later. Although LLM-based automation is in its heyday, it tends to 

fail with complex scenarios where multiple classes and invalid inputs may be involved, with 

no guarantee of achieving comprehensive coverage. There is, therefore, an urgent need for 

more innovative methods of automated testing capable of reducing manual effort while 

guaranteeing thorough and reliable quality. This research aims to apply the Agentic AI 

AutoGen framework with LLMs toward the automation of unit test case generation in Python 

programs via effective prompting. Besides generating test cases, this study also investigates 

refining test cases to improve branch coverage and mutation scores, such as MuTAP [2] 

proposed by Dakhel et al., in order to highlight defects in test logic and further harden the 

robustness of tests. 

The rest of the paper is organized as follows: Section 2 reviews the related research 

and literature; Section 3 explains the proposed methodology and system design, while Section 

4 describes the implementation; Section 5 discusses the analysis and results, and finally 

Section 6 presents the conclusion and discusses some possible future research directions. 

 Literature Review 

Large language models generate unit test cases that overcome traditional challenges 

such as test case thoroughness and code coverage. Wang et al. [3] proposed a method for 

slicing complex methods into smaller units and generating comprehensive unit test cases 

using large language models. Zhang et al. [4] introduced property-based retrieval mechanisms 

within Retrieval-Augmented Generation (RAG) frameworks to enhance the relevance of 
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generated tests. Meta's industrial-scale implementation with TestGen-LLM by Alshahwan et 

al. [5] demonstrated the practical feasibility of LLM-based testing to improve human-written 

test cases, eliminate hallucinations, and attain superior coverage metrics in production 

environments. 

Chen et al. [6] introduced ChatUniTest, which combines adaptive focal context 

mechanisms with generation, validation, and repair processes to ensure the quality of unit test 

cases. Pizzorno and Berger [7] developed CoverUp, a coverage-guided approach to iteratively 

improve test case generation using real-time code coverage feedback. Recent advances by Gu 

et al. [8] have introduced hybrid program analysis techniques that combine static control flow 

analysis with dynamic code coverage to improve unit test case generation for untested 

execution paths 

Building on these advancements, Ryan et al. [9] introduced Code-Aware Prompting, 

a coverage-guided approach to regression test generation. This method uses large language 

models to enhance test coverage and improve defect detection. Their work demonstrates how 

combining code understanding with real-time coverage feedback can make LLM-based test 

generation more effective and reliable in practical development environments. 

In addition to these core contributions, several studies further expand the scope of 

LLM-assisted testing. Storhaug and Li [10] showed that parameter-efficient fine-tuning 

improves the accuracy and stability of LLM-generated tests. Pan et al. [11] introduced 

ASTER, a multilingual, NL-driven testing framework supporting various programming 

ecosystems. Zhang et al. [12] proposed CITYWALK, which uses project-level dependency 

structures to improve C++ unit test accuracy. Bhatia et al. [13] compared generative AI test-

generation tools, while Zhong et al. [14] and Bayri & Demirel [15] demonstrated the 

effectiveness of LLMs in enhancing defect detection and modernizing testing workflows. 

Despite significant advancements in utilizing large language models for unit test 

generation, current research does not present a comprehensive end-to-end system that 

seamlessly integrates code chunking, prompting, test creation, execution, coverage analysis, 

mutation feedback, and automated repair within a unified pipeline. Many existing approaches 

also encounter consistency challenges due to their reliance on probabilistic outputs from large 

language models, which lack adequate validation mechanisms. Moreover, the potential of 

mutation testing to verify tests generated by large language models remains underexplored. 
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A multi-agent, feedback-driven methodology has been proposed to address these limitations. 

The methodology provides an integrated framework intended to overcome the highlighted 

deficiencies. 

 Methodology and System Design 

The CRISP-DM framework has been chosen for its iterative and structured approach, 

fitting the requirements of automated unit test case generation workflows. Indeed, all its 

different phases map directly to the various stages of Large Language Model-based testing: 

Business Understanding corresponds to identifying target code modules; Data Preparation 

involves source code extraction and chunking; Modeling encompasses generating test by 

creating appropriate prompts; evaluation covers test execution and coverage analysis; and 

Deployment involves validated tests execution via Continuous Integration/Continuous 

Deployment pipelines. A crucial reason for CRISP-DM's effectiveness is its inherently 

cyclical nature, allowing for continuous improvement of this process by incorporating 

feedback from test results and coverage gaps.  

The system is a network of interconnected modules: automating the construction of 

test cases, execution, measurement of coverage, and improvement of the mutation score. The 

key components involved in the system are a Streamlit interface, a test-generation agent, 

chunking and prompt modules, a test-execution agent, a coverage agent, a mutation-testing 

agent, an auto-fix agent, and tools for managing mutations and files. Figure 1 illustrates a 

detailed diagram of this system. 

 

Figure 1. High-Level Design Diagram 
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Unlike a single-agent workflow, it is shared among multiple agents in the multi-agent 

architecture: the generation of unit test cases, execution, code coverage analysis, mutation 

score evaluation, and fixing unit test case failures. This clear division reduces the cognitive 

load on individual agents, enables iterative improvements, and enhances coverage and 

mutation scores through coordinated inter-agent effort processes. 

Figure 2 depicts the overall workflow of the automated unit test-generation pipeline. 

The approach starts with source code analysis and chunks the code into meaningful pieces. 

The LLM generates some initial unit test cases based on suitable prompts and input code 

chunks. The generated tests are executed and their results are analysed via code coverage 

assessment, which identifies the branches that remain untested. In cases where coverage gaps 

are identified, the model is provided with a suitable prompt to generate new tests that increase 

coverage. Failing or incomplete tests are automatically fixed through an iterative fixing 

process. 

 

Figure 2.  LLM-Based Test Generation Workflow 

The reason mutation testing has been selected as the main validation method is that it 

provides a direct and quantitative measure of the fault-detection ability of a test suite. Property-

based testing, on the other hand, requires domain-specific invariants, which in general are 

lacking for business-oriented applications. The proposed approach based on mutation testing 

represents a language-agnostic, specification-independent assessment method. In this respect, 

it is much better suited to LLM-generated tests. Mutation testing measures the capability of 

tests to detect changes in program behavior. Stronger test cases are developed to kill the 

surviving mutants and increase the mutation score. This create-run-analyze-fix cycle results in 

a fully optimized and reliable test suite. While the natural tendency of an LLM is to be non-

deterministic, this framework fosters deterministic output by using fixed decoding parameters, 
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such as a temperature of 0; it enforces strict formats for output, controls test structure by using 

templates, and validates generated tests by execution and performing mutation analysis. Only 

tests that always pass, over multiple runs, are retained, ensuring stability in the final test suite. 

The following sections explain the key components of the proposed framework. 

3.1  Unit Test Case Generation Agent 

The Unit Test Generation Agent uses prompts and the source code to auto-generate 

unit test cases for all functions and classes. Cases are also generated for testing boundary 

conditions, positive scenarios, and error conditions. 

3.2  Unit Test Execution Agent  

The unit test agent executes unit tests and returns test results in both  HTML and JSON 

formats. The test report includes test cases, test execution status (success/failure), and reasons 

for failure to quickly help developers fix the defects. These test executions can also be 

integrated with CI/CD pipelines to ensure automated testing. 

3.3  Coverage Agent 

The coverage agent measures the test coverage for lines, functions, and branches, 

showing a detailed coverage report that includes metrics like line coverage and branch 

coverage. Areas where improvement is required are highlighted in the report as well. It also 

generates additional test cases to improve the coverage of areas that require improvement. 

3.4  Auto Fixing Agent 

It auto-detects test failures and fixes them on its own, reducing developers' efforts by 

requiring minimal manual intervention. 

3.5  Mutation Testing Agent 

The mutation testing agent introduces small mutations in the codebase and verifies 

whether the current  test suite detects them. It provides a comprehensive report, showing the 

number of mutants killed, survived, and incompetent, along  with the respective mutation 
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score. The agent presents reports in HTML and YAML formats. It further enhances test 

effectiveness by adding new test cases based on the surviving mutants. 

3.6  Utility Modules 

The Chunking Utils module splits large source code files into smaller, manageable 

chunks for LLM processing. This ensures each chunk is within max_chunk_size, which is by 

default 512 characters, and maintains context during unit test generation. File Utils provides 

helper functionality for managing files throughout the test generation process. These include 

listing, reading, and writing files; creating necessary directories for processing; unzipping ZIP 

files uploaded for batch processing by a user; and associating source files with their 

corresponding test files. Mutation Utils assists in creating and applying mutations to the 

source code to evaluate unit test effectiveness. This supports multiple types of mutations and 

provides visual reports to help developers improve the mutation score of unit test results. 

3.7  Template Prompts 

The Template Prompts module includes prompts for unit test case generation, 

measuring and improving branch coverage, fixing test case failures, and measuring and 

improving mutation scores. The test case generation prompt creates comprehensive unit test 

cases for a given chunk of code, including necessary imports to ensure corner cases are 

covered. The branch coverage prompt identifies missing branches or execution paths in your 

test cases and generates test cases for these missing branches, helping to improve the branch 

coverage of your test suite. The test case failure fix prompt is used when a test case fails. Its 

primary objective is to restore the broken unit test based on the functionality of the source 

code and the reasons for the associated failure of a test. By analyzing both the source code 

and the failing test function, the prompt applies fixes directly to the test cases. The mutation 

coverage improvement prompt enhances the mutation score by generating additional test 

cases around any surviving cases. 

 Implementation 

This work presents a case study of an Insurance Management System with numerous 

modules and complex business logic to demonstrate our approach. The AutoGen Agentic AI 

framework automatically generates unit tests, executes the generations, and refines them using 
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coverage, mutation, and auto-fixing agents. Structured prompts direct the LLM to generate 

accurate and meaningful test cases while automated analysis identifies coverage gaps and 

failing tests for resolution. This section discusses the system modules, the AutoGen 

framework, prompt templates, test case generation, execution, and coverage enhancement. 

4.1  Insurance Management System 

The system consists of about 75 lines of Python code, divided into four classes and 12 

methods. The architecture includes API handlers, business logic modules, repository 

components, and persistence utilities. This forms a nice multi-layer environment where unit 

test generation, improvement of branch coverage, and mutation testing can be realistically 

assessed. Its various modules collectively handle policy management, input validation, data 

storage, and enforcement of business rules, making the application quite suitable for 

validating both functional and structural aspects. API Layer - policy_handler: provides 

RESTful operations and input validation on incoming requests to add policies. Service Layer 

- policy_service: encapsulates business logic for special conditions, rules, validation of inputs 

for policies, and cancellation logic. Repository Layer - policy_repository: responsible for 

accessing and managing policy data in memory or through a storage abstraction. The 

Persistence Layer - database: provides a thin interface that supports insert, delete, and fetch 

operations along with error handling corresponding to duplicate entry, invalid ID, and record 

not found. 

4.2  AutoGen Agentic AI Framework 

The unit test cases are generated using the agentic framework of AutoGen. It performs 

the enhancement through different agents, which include coverage, mutation, and auto-fixing. 

The test execution agent executes the generated test cases and provides test execution reports. 

4.3  Prompt Templates 

The framework uses targeted prompt engineering with well-designed prompt 

templates including unittest structures, appropriate imports, assertions, and exception 

handling. Rules being path-aware allow for proper relative imports. Error feedback prompts 

support the auto-correction of failing unit tests. Mutation-aware prompts are used in creating 
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tests that can reach the surviving mutants. For that, the Prompt Template Module crafts clear, 

factual prompts to guide the LLM in generating, refining, and optimizing unit test cases. It 

selects an appropriate prompt based on the testing objective that may range from creating 

initial tests to improving branch coverage or enhancing robustness through mutation testing. 

The module ensures that each prompt is complete, accurate, and tuned for the specific test-

generation task by extracting essential details like code snippets, file paths, function names, 

and existing tests. 

Depending on the goal, the module uses a specific prompt builder. It uses get_prompt() 

to create a complete test. It uses generate_branch_coverage_prompt()to target unreachable 

branches. It uses generate_mutation_prompt() for mutation testing. Metadata such as 

discovered branches, test failure logs, or mutation descriptions are also included in the 

prompts in this module. Prompts are formatted to follow the rules: keeping imports, mocking, 

handling exceptions, and ensuring syntax correctness.  After the language model produces or 

updates code, this module processes it and adds it to the right test files. This ensures tests are 

accurate and complete, matching the goals. 

4.4  TestCase Generation 

The test generation agent will utilize Open AI's language model via the Agentic AI 

framework to generate unit tests from code using the autogen feature. It supports large 

codebases by chunking the files into pieces. Each piece is fed into the model along with a 

prompt, and the model produces a test script. Following test generation, system tokens and 

other unnecessary details will be removed from the output, so only the cleaned test files are 

saved to the given test folders and are ready to run. 

4.5  TestCase Execution 

It automatically detects and executes unit tests. Feedback will be provided in JSON 

and HTML formats. Setup files and environment variables are loaded by the agent. The agent 

sets up the configuration with an inserted OpenAI API key. The agent looks for test files, 

typically named test_*.py, and executes them all. Tests are executed using Python's unittest 

framework. Results are marked as PASS, FAIL, or ERROR. Next, it creates a JSON file 

containing timestamps for tracking. It also generates an HTML report styled with Pandas and 

presents the results clearly. 
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4.6  Coverage Improvement 

The Coverage Agent measures and improves code coverage. It helps ensure that unit 

tests have thoroughly covered all parts of the code. The agent runs the existing unit tests and 

produces a coverage report by using the module coverage.py. This report also indicates which 

parts of the code have not yet been tested. The agent analyzes the report in order to identify 

untested code sections that need more testing. Next, the agent designs new test methods using 

an appropriate prompt provided to the Large Language Model in order to fill these gaps and 

therefore increase the coverage of untested code. The prompt would include coverage data, 

missing code sections and the current source and test files. These are then added to the 

corresponding test classes. The agent again reruns the unit tests and issues an updated report 

on coverage analysis. The revised coverage results are shown in the terminal and HTML 

format. This helps the developers see the improvements made and increases confidence that 

the code is well tested. 

4.7  Fix Failing Unit Tests 

The AutoFixing Agent minimizes the manual effort required to find and fix failing 

unit tests. It runs all the unit tests and saves the results in an easy-to-parse JSON format. The 

agent then parses these results to identify any tests that failed or threw errors. The agent 

locates the corresponding test files in the project by class name. Once the relevant test methods 

have been identified, the agent uses rules to fix simple problems. For other failures, it retrieves 

the related source code. It sends a context-aware prompt to the LLM with the request to 

propose a fixed version of the test method. It replaces the broken test method with a new one 

in the test file and reruns the tests to verify the fix. Therefore, this automated process supports 

the quick resolution of failing tests, while maintaining consistency in the test suite. 

4.8  Mutation Coverage Improvement 

The Mutation Testing Agent automates mutation testing. It checks the unit tests and 

finds surviving mutants. Then, it creates new tests to catch faults not currently tested. The 

agent finds the source and test files in the project folder. It uses mut.py to generate mutants 

by making minor changes, such as changing operators or flipping conditions. The agent runs 

the current tests against these mutants. It sees which mutants survive, revealing gaps in the 



LLM Driven Unit Test Case Generation Using Agentic AI 

ISSN: 2582-337X  368 

 

tests. Details about each surviving mutant, such as the type of mutation, lines affected, and 

surrounding code, are used by the agent to compose a prompt for the Large Language Model. 

Based on this prompt, it generates new or improved test cases to identify the surviving 

mutants. These are added to the test classes of the code. The agent reruns the mutation tests, 

after which the results show whether test coverage is sufficient. 

 Test Results and Analysis 

This section presents the test results along with the analysis of improvements in code 

coverage and mutation scores. 

5.1  Test Results 

The test cases were executed using Python's unittest framework, and the results were 

analyzed. Initial test execution showed forty-two passing tests. Table 1 presents a sample test 

case result of the HTML output from the test execution. From the execution results, all 

expected outputs matched the actual results, indicating correct functionality. The application 

correctly raised ValueError and TypeError for invalid input types. The framework 

successfully captured and validated exception handling for erroneous test cases. 

Table 1. Unit Test Case Results 

Test Case Status Reason 

InsuranceApp_Modified.app.api.test_policy_handler_0.T

estPolicyHandler.test_add_policy_high_id_low_coverage

_holder_a 

PASS None 

InsuranceApp_Modified.app.api.test_policy_handler_0.T

estPolicyHandler.test_add_policy_high_id_valid_coverag

e_holder_a 

PASS None 

InsuranceApp_Modified.app.api.test_policy_handler_0.T

estPolicyHandler.test_add_policy_high_id_valid_coverag

e_holder_b 

PASS None 

InsuranceApp_Modified.app.api.test_policy_handler_0.T

estPolicyHandler.test_add_policy_invalid_coverage_amo

unt_negative 

PASS None 

InsuranceApp_Modified.app.api.test_policy_handler_0.T

estPolicyHandler.test_add_policy_invalid_coverage_amo

unt_zero 

PASS None 
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Subsequent improvements focused on increasing test coverage, particularly for 

modules with conditional logic not fully exercised by the original tests. After enhancements, 

the number of test cases rose to forty-four, and all tests passed successfully. Table 2 

summarizes the number of test cases executed before and after the enhancements. 

Table 2. Unit Test Results Analysis Results 

Test Class Initial Test 

Cases 

Enhanced Test 

Cases 

Test Policy Handler 11 11 

Test Database 10 10 

Test Policy Service 13 15 

Test Policy Repository 8 8 

Total 42 44 

 

Adding two test cases to the TestPolicyService class strengthens the validation of 

service-level logic, specifically addressing previously uncovered branches and conditions. 

5.2  Code Coverage Analysis 

 

Figure 3.  Initial Code Coverage(Screenshot) 

The initial code coverage analysis showed an overall branch coverage of 98%, 

indicating good but incomplete test coverage across all source files. Figure 3 shows the code 

coverage for the individual modules. 
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Additional analysis identified that some branches in the PolicyService class were not 

adequately tested, as shown in Figure 4. This figure highlights the uncovered branches at the 

methods create_policy and cancel_policy. 

 

Figure 4.  Missing Branches -Policy Service -Initial (Screenshot) 

Following the test enhancement phase, the improved coverage report showed a 

measurable increase in code coverage, with total coverage reaching 99%. The updated 

module-level coverage distribution is presented in Figure 5. 

 

Figure 5. Improved Code Coverage (Screenshot) 

The additional test cases' impact on the PolicyService class is evident in the reduction 

of missing branches, as shown in Figure 6. The enhanced test cases successfully targeted 

previously untested control paths, improving the verification of decision-making logic within 

the service layer. 
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Figure 6.  Missing Branches-Policy Service-Updated (Screenshot) 

5.3  Mutation Score Analysis 

The initial mutation testing achieved a score of 83.9%, showing a strong test suite. Of 

the ninety-seven mutants introduced, seventy-eight were killed, and fifteen survived, 

revealing logic paths not entirely validated by existing tests; four were marked as 

incompetent. After adding targeted test cases to cover gaps, analyzing surviving mutants, and 

updating source files, the mutation tests were rerun. This resulted in the death of eleven more 

mutants. No incompetent mutants remained, indicating better test accuracy, and the mutation 

score increased from 83.9% to 95.9%. Figure 7 and Figure 8 provide the mutation report for 

the initial and improved mutation scores. 

 

Figure 7.  Mutation Coverage-Initial (Screenshot) 
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Figure 8.  Mutation Coverage-Improved  (Screenshot) 

The proposed approach includes a comprehensive feedback loop that involves 

chunking, structured prompting, execution validation, coverage analysis, mutation-score 

improvement, and fixing failed tests. It develops more thorough, maintainable test suites, 

resulting in test quality metrics that match or exceed those of leading automated testing 

frameworks. Besides code coverage and mutation score, metrics such as assertion density, 

unique path exploration, oracle strength, flakiness rate across repeated runs, redundancy 

removal, and defect detection ability can be used to evaluate the effectiveness of LLM-

generated test cases. 

 Conclusions and Future Work 

Testing with large language models will improve test quality and enable earlier defect 

detection. Agentic AI can combine with LLMs to find many boundary test cases that might 

be missed in manual testing. These tools, when integrated with code coverage and mutation 

testing, provide objective feedback on test effectiveness. Greater coverage and mutation 

scores mean stronger test suites with earlier defect detection, less rework, and more reliable 

software. Clearly and concisely, reports are provided for faster resolution by the developer. 

There are several methods for enhancing LLM-based unit testing. Agentic AI may find test 

failures during test runs and then fix both the test cases and the application code. Additionally, 

it can improve mutation scores by running additional tests or by updating the code to 

implement required functionality changes. Testing more of the code requires clear prompt 

instructions and may necessitate trying different LLMs, such as those from OpenAI, 

DeepSeek, Cohere, or Google. Improving tools to support multiple programming languages, 
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like Java, JavaScript, and C#, and integrating agents with development tools and build 

systems also enables teams to create, review, and continuously improve the test cases 

throughout software development. It also accelerates software development and enhances 

quality. 
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