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Abstract 

This research presents a coupling nonlinear vibration control strategy for an 

underactuated wing model, characterized as a rigid link with translational and rotational springs 

that signify its structural stiffness. Stabilized by a single flap control surface, the system poses 

a complex control challenge. The control law design involves two steps: Step one employs 

coordinate transformation to create an equivalent simplified dynamic system with a new virtual 

control input through partial feedback linearization. Step two formulates a control law for this 

virtual input based on Lyapunov’s theory, ensuring stability. Unlike conventional feedback 

linearization, this approach does not require assessing the system's internal stability. Moreover, 

the control law includes coupled terms related to the generalized coordinates of the target 

system with stabilized motion. MATLAB/SIMULINK simulations confirmed the effectiveness 

of the control structure in attenuating wing oscillations, despite the controller being non-

adaptive and operating under assumed known wing model parameters. 

Keywords: Nonlinear Coupling Control, Lyapunov Theory, Underactuated Wing, Partial 

Feedback Linearization. 

1. Introduction 

Much attention has been paid to flexible aircraft structures due to their improved 

efficiency. Lightweight aircraft lead to low drag and, hence, low thrust efforts from engines. 

However, this may reduce the aircraft's stability margins because of the interaction of 
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aerodynamics, inertial forces, and elastic forces and moments. Besides, the presence of 

nonlinearities due to nonlinear geometry, elasticity of the coupled bending torsion, etc. could 

lead to different undesired scenarios such as flutter, limit cycle oscillations, and so on [1–3]. 

For the wing structure, different models are possible, such as plates or shells with complex 

cross sections or an equivalent system with a beam and flexible elements representing the 

structural stiffness and damping [4]. The work will be focused on the modeling of an aeroelastic 

wing based on an equivalent system. 

In view of the above, a control structure is necessary to be integrated to attenuate the 

wing oscillations. In effect, two control categories are possible for vibration damping of the 

wing oscillations: passive and active control [5]. The passive control includes modifications in 

wing geometry, while the active control requires actuation systems (e.g., motors) and sensors 

to measure the oscillation signals. The second category is the aim of this study. Depending on 

the types of actuation systems (control surfaces), different situations are possible. Let us 

assume that the degrees-of-freedom DOFs of the wing are two, including pitch and plunge 

oscillations. If the number of control surfaces (e.g., flap control) is one, then an underactuation 

problem is encountered. If the number of control surfaces is two, then the system is fully 

actuated, and most conventional control approaches can be used. On the other hand, if strain-

based actuation is added in line with flap control, then the system could be overactuated. This 

work is focused on the underactuated case, which can be considered the more challenging 

problem. The powerful tool to deal with this case is partial feedback linearization control; in 

the work of Strganac and his colleagues [6–8]. Partial feedback linearization is a technique that 

transforms only a subset of a system's states, allowing it to remain nonlinear while transforming 

the rest of the system into a linear one. This is useful when full linearization is not possible, 

such as in systems with strict input constraints or non-observability, where some states cannot 

be measured. By transforming the observable states, partial feedback linearization simplifies 

the design of a controller that can stabilize the system, ensuring a more stable system. Thus, 

the partial feedback linearization aims to partition the DOFs into two categories: active and 

passive DOFs. The control objective is to track and regulate the passive DOFs, while the 

internal dynamics (zero dynamics) associated with passive DOFs should be stable. In effect, 

the underactuated wing dynamics are similar to those of inverted pendulums [9], floating base 

robots [10], flexible base robots [11], and mobile robots [12]. It should be noted that the 

standard control law based on partial feedback linearization includes one set of active DOFs 

that should be controlled or regulated. Sure, exceptions are possible as made in works [11, 13]. 
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In [11], a robust time-delay base decoupling approach is used to decouple the manipulator 

dynamics from the compliant base dynamics, and then a control law is designed that includes 

fast and slow response terms associated with manipulator joints and base generalized 

coordinates, respectively. In [13], a partial feedback linearization approach is used for 

decoupling the flexible link dynamics from the rigid link dynamics, and then a Lyapunov-based 

control law is used for designing the control law. The resulted control law includes generalized 

coordinates of flexible and rigid links together. This technique coincides with the energy-based 

control described in [14]. For more details on the control of compliant base robots, see, e.g., 

[15–17] and the references therein. In [18], function approximation technique-based adaptive 

feedback linearization is used for controlling an aircraft wing considering three different 

actuation modes: full, over, and under actuation.  

This study explores a Lyapunov-based control law for damping vibrations in an 

underactuated wing. The wing is modeled as an equivalent dynamic system comprising a rigid 

link and two flexible elements that capture translational and torsional stiffness. A partial 

feedback linearization method is employed to decouple the active angular coordinate from the 

vertical passive coordinate. Subsequently, a nonlinear control law is developed based on 

Lyapunov stability to stabilize the motion of 2D wing model. The study is structured as follows: 

Section 2 discusses the dynamics and control law, while Sections 3 and 4 present simulation 

results and conclusions. 

2. Methodology 

The two primary degrees of freedom (DOF) wings experience during flutter are the 

bending mode (plunge) and the torsion mode (pitch). Flutter arises when the structure absorbs 

energy from airflow due to the interaction of elastic, inertial, and aerodynamic forces, resulting 

in various vibrational modes and instability. This phenomenon occurs when the damping ratio 

of the critical mode reaches zero at a specific airspeed. Figure 1 depicts a two-dimensional 

airfoil with two degrees of freedom (2-DOF): plunge and pitch. The wing can plunge 

downward and pitch upward around its elastic axis, while the control flap rotates downward 

around its hinge. This model forms the basis of quasi-steady aerodynamics.  The following 

assumptions are assumed [6–8]: 

1. The structural stiffness in vertical and torsional directions is linear. 
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2. The aerodynamic forces and moments are developed based on a quasi-static formula. 

3. The system is underactuated with two degrees of freedom (DOFs) controlled by a single 

input—the flap angle—affecting the airfoil's aerodynamic properties and motion. 

Consequently, the presence of one flap and two DOFs renders the equation of motion 

underdetermined. 

 

Figure 1. A Two-DOF Wing Model [18]. 

The equation of motion can be represented as follows [6-8]: 
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where mis the mass of the wing system, x
 is a dimensionless parameter, b is a semi-

chord reference length of the wing, I  is the moment of inertia of the wing, hc  is a viscous 

damping coefficient related to  the plunge coordinate, h , c
 is a viscous damping coefficient 

related to the pitch coordinate,  , hk  is a translational structural stiffness, k
 is a rotational 
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structure stiffness, U is free stream velocity, lc  and mc  are steady aerodynamic coefficients, 

and   is the control input representing the flap angle. 

Partial feedback linearization is a control strategy that stabilizes underactuated 

mechanical systems by transforming them into linear systems. This approach adjusts the 

control input to influence specific system coordinates while leaving others unchanged, 

simplifying control design and analysis. When a system cannot be fully linearized, it can be 

separated into two interconnected subsystems: one linear and one nonlinear. The goal of partial 

feedback linearization in equations. (4a) and (4b) is to create a simpler equivalent system for 

further control design of the resulting virtual control input (u). In the analysis, the study utilizes 

Lyapunov’s method to develop a suitable control law for the wing system. Using the concept 

of partial feedback linearization, let us define 

u=                                                                                                (2) 

where u is a new control input that should be designed to ensure stability. Substituting 

Eq. (2) into Eq. (1a) to obtain the following control input 

  121112111211
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                                  (3) 

Equation (3) is highly coupled and will be nonlinear if the stiffness terms are inherently 

nonlinear. However,  the proposed control works well for both linear and nonlinear problems. 

With some mathematical manipulations, the following equivalent system is achieved: 

u=                                                                                    (4a) 
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The next step is to design the virtual control input u  based on Lyapunov theory, see 

the following theorem and lemma. 

Lemma 1. Let  hxT =  and 

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2 −bmh , where 2b  is a 

positive constant gain. The proof of the above lemma is easily made based on one of the tests 

of positive definite matrices. 

Theorem 1. The dynamic modeling of the aircraft wing described in Eq. (1), with the 

closed loop dynamics presented in Eq. (4), and the following control law  

      (5) 

    

where d  is a positive constant parameter. 

Proof.  

According to the above lemma, let us consider the Lyapunov function along Eq. (4) 
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where 1b  is a positive constant parameter. Taking the time derivative for the above 

equation leads to 
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Substituting Eq. (4a) and Eq. (4b) into above equation to get  
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With some manipulation for Eq. (6), we can get 
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According to theorem 1 and the associated control law proposed in Eq. (5), Eq. (9) 

becomes 

022 −−=  dhcV h                                                                         (8) 

LaSalle's invariance principle serves as a fundamental framework that demonstrates the 

uniform asymptotic stability of the closed-loop origin. This significant conclusion is evidenced 

through the meticulous mathematical expressions presented in equations (2) and (3), along with 

the essential feedback control law detailed in equation (5). As a direct result of this analysis, 

equation (8) emerges as semi-negative, thereby providing substantial confirmation of the 

controller's uniform asymptotic stability when viewed through the lens of Lyapunov theory, as 

elaborated in the referenced work [19]. Notably, this particular controller is ingeniously 

designed to consolidate both state variables into a unified control law. This innovative approach 

effectively removes the need to conduct a thorough verification of the stability of internal 

dynamics, a point that has been emphasized and supported in various previous studies 

conducted in this field. Thus, the implications of LaSalle's principle, in conjunction with the 

structure of the feedback control system, play a pivotal role in ensuring stability while 

simplifying the overall analysis required for control system performance. The proposed 

controller consists of two main steps. Step 1 uses feedback linearization to simplify the system's 

dynamics, making them more manageable. Step 2 develops a control law for the virtual control 

input, employing Lyapunov theory to ensure stability. This approach is more straightforward 

and user-friendly than alternatives like pure partial feedback linearization, energy-based 

control, flatness-based control, and feedforward-based methods, as referenced in [20-22]. 

Overall, the approach aims to streamline control processes and improve system behavior. 

3. Results and Discussion 

In this section, the validity of the proposed control structure of the previous section is 

proved by using a simulation example on a 2D wing model described previously in Figure. 1. 

The physical parameters used in the simulation experiment are described as follows.  
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𝑎 = −0.8, 𝑏 = 0.14 𝑚, 𝑥𝛼 = 0.2, 𝑐ℎ = 28 𝑁
𝑚

𝑠
, 𝑐𝛼 = 0.04 𝑁𝑚, 𝑐𝑙 = 6.3,  

𝑐𝑚 = (0.5 + 𝑎)𝑐𝑙, 𝑐𝑙𝑢
= 3.4,  𝑘ℎ = 2845 𝑁/𝑚, 𝑘𝛼 = 3 𝑁. 𝑚/𝑟𝑎𝑑, 𝐼𝛼 = 0.06 𝑘𝑔. 𝑚2,  

𝑚 = 2 𝑘𝑔, 𝜌 = 1.3 𝑘𝑔/𝑚3. 

A constant control gain is implemented, specifically setting 11 =b , 22 =b , and 1=d . 

These values are chosen because they satisfy the necessary conditions stipulated in Lemma 1. 

In order to induce vibrations within the wings, the plunge and pitch coordinates are initialized 

at specific values of (0.01 m for plunge and 0.1 rad for pitch). To analyze the system’s behavior 

under these conditions, we conducted a simulation experiment using MATLAB/SIMULINK. 

This simulation effectively utilized the controller structure as characterized in Theorem 1, 

allowing for a detailed examination of the system dynamics. The results derived from this 

simulation indicate a noteworthy effectiveness in the attenuation of wing oscillations, which is 

visually presented in Figures 2 through 4. 

In Figures 2 and 3, a comparative analysis of the open-loop and closed-loop oscillations 

specifically for pitch and plunge coordinates is provided. The illustrations clearly demonstrate 

that the proposed controller exhibits significant capability for dampening the oscillations, 

thereby leading to a substantial reduction in the response error. This comparative analysis 

highlights the enhancements in performance brought about by the utilization of the proposed 

control strategy. Further, Figure 4 presents a visual representation of the control input signals, 

noting the saturation effects that occur within the system. These input signals are constrained 

within the range of 0.5 to -0.5 rad, which is pertinent for ensuring that feasible flap angles are 

maintained throughout the operation. 

It is also crucial to emphasize that the controller implemented are non-adaptive in 

nature. This means it operates under the assumption that the parameters of the wing model are 

known and constant. In real-world applications, however, it is essential to employ a system 

identification method, which is a process that would allow for the accurate estimation of these 

physical parameters. This process is vital for improving control strategies and achieving 

optimal performance in practical scenarios where model parameters may vary or be uncertain.  
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Figure 2. Pitch Response 

 

Figure 3. Plunge Response 
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Figure 4. Control Input with Anti-Windup Control. 

4. Conclusions 

This study introduces and discusses a nonlinear control strategy specifically designed 

for an underactuated wing model. The control law currently in use exhibits significant 

nonlinearity, which allows it to effectively avoid the requirement for maintaining internal 

stability in specific coordinates of the wing system that are typically necessary when employing 

partial feedback linearization techniques. Despite its innovative approach, the existing 

controller is limited in its capabilities, as it lacks the necessary adaptability to address and 

manage system vibrations that arise due to unknown physical parameters present in the model. 

This shortcoming highlights an important area for improvement. Therefore, it is essential for 

future research to concentrate on the development of an adaptive control version of this 

strategy. Such advancements would enhance the algorithm’s practicality and effectiveness in 

real-world applications, addressing the challenges posed by variable parameters and dynamic 

conditions within the system. 
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