
Recent Research Reviews Journal (ISSN: 2583-7079)
https://irojournals.com/rrrj

Recent Research Reviews Journal, June 2025, Volume 4, Issue 1, Pages 141-153

DOI: https://doi.org/10.36548/rrrj.1.009

Received: 16.04.2025, received in revised form: 18.05.2025, accepted: 06.06.2025, published: 17.06.2025 141
© 2025 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-Non-commercial International (CC BY-NC 4.0) License

Distributed Resource Management in

Operating Systems: A Case Study on HDFS

and YARN

Sivaprasath R.1, Vedeshvar L.2, Bharath M. D.3, Achari Magesh4,

Anisha C. D.5

1-4Student, 5Assistant Professor, Department of Computer Science and Engineering, PSGCT, India.

E-mail: 5ani.c.dass@gmail.com

Abstract

This research study focuses on analysing the role of distributed resource management

in enhancing the scalability and reliability of the linked systems. This study presents a detailed

analysis on the architectures, benefits, and inherent drawbacks of the Hadoop Distributed File

System (HDFS) and Yet Another Resource Negotiator (YARN). YARN offers flexible

resource scheduling through Fair and Capacity schedulers, while HDFS offers fault-tolerant,

scalable storage through a block-based, replicated, and locality-optimized design. Although

robust, limitations like resource contention in YARN and the Name Node's single point of

failure in HDFS still exist. In order to address the evolving challenges in modern computing,

this study also explores the potential research domains like serverless architecture for dynamic

scaling, latency-conscious edge computing, and AI-based resource forecasting.

Keywords: Distributed resource management, HDFS, YARN, Edge computing.

1. Introduction

Distributed systems are a key element in today’s computing, which we see to scale and

dependably in real time, cloud services, and big data analysis. They enable smooth operation

in many dynamic and diverse environments by establishing interconnection among many

nodes. Also, in the area of distributed resource management, there is an increasing need to

manage the computational and storage resources to maintain performance, scalability and

reliability, which plays a major role in distributed systems.

 Distributed Resource Management in Operating Systems: A Case Study on HDFS and YARN

Recent Research Reviews Journal, June 2025, Volume 4, Issue 1 142

In the field of Resource Management, we see the advantages of using both Yet Another

Resource Negotiator (YARN) and Hadoop Distributed File System (HDFS). HDFS is a base

component in the field of large scale distribution that uses a master slave structure to present

to users a storage solution for large sets of data across many nodes. Features like block level

storage, data replication and locality optimization to reduce network overhead and increase

performance by enhancing the fault tolerance and dependability of HDFS. Also in HDFS’

advantage are its features but it does present some issues which include a single point of failure

in the Name Node, which has seen the development of high availability solutions. YARN is

the resource management and scheduling framework of Hadoop which puts forward an

effective way to use cluster resources. By separating resource management from application

logic, YARN gives us what we need in terms of flexibility and scalability by using the

architecture of Central Resource Manager and Per node NodeManagers. While YARN

performs well in the area of resource management it also has many issues in terms of multi-

tenant environments, which include resource management and communication overhead. This

study looks at what is put forth in terms of technology and trends that have the chance to modify

the HDFS and YARN models. The recent introduction of AI driven systems can enable real

time resource allocation and anomaly detection. We also have serverless architectures which

are all about dynamic scaling with idle resource use and at the same time Edge Computing

enables new 1.6.5 paradigms for light weight and low latency resource management. This

research study presents the value of the aforementioned models in terms of flexible, reliable

and sustainable solutions in order to guarantee the performance and dependability of distributed

resource management.

1.1 Major Contributions of the Research

This research study contributes to the field of distributed resource management in many

ways. We look at related issues of resource contention and system heterogeneity along with

basic concepts of scalability, fault tolerance, efficient resource allocation and data locality. We

look at the Hadoop ecosystem in depth which we study how the HDFS and YARN architectures

perform in terms of distributed storage and scheduling of workloads. Also we include in the

discussion the recent innovations in serverless architectures, edge computing and AI enabled

resource allocation. We also present a structured review of different distributed resource

management strategies in Table I, which includes the process, performance analysis,

advantages and disadvantages of different models.

Sivaprasath R, Vedeshvar L, Bharath M. D, Achari Magesh, Anisha C. D

 143

We present a comparison on various scheduling policies (for example Capacity

Scheduler and Fair Scheduler) at different workloads and resource demands. To show out how

scheduling policies play into resource allocation optimization we present an analysis on

performance metrics like job completion time, resource utilization, and throughput. Also we

present technical insight and put forth recommendations for what may improve future

enhancements to the systems’ adaptability and overall efficiency which in turn we also look at

the hadoop distributed file system and the resource manager yarn do in different workloads.

This study reports on the results of our quantitative analysis which in addition to

qualitative did also study HDFS, and YARN performance in detail using simulation. As to

what we looked at for each policy’s performance we looked at throughput, resource use, and

job completion time. The empirical data from the study support out analysis and also add a

practical dimension to how different scheduling policies and architectural elements play out in

a variety of workloads.

2. Related Works

Resource management is a key element in the performance and scale up of distributed

computing which in turn includes mobile edge computing (MEC), cloud infrastructures, and

big data systems. Zhang and Debroy [1] report in detail on resource management in MEC which

they look at in terms of latency issues, heterogeneity, and dynamic workloads. Also in this

space, Huang, He, and Miao [2] study resource management in multi-tier web applications,

which they look at through the lens of elastic mechanisms to adapt to the changing demands.

From a different perspective, Moreira and Naik [3], [10] look at dynamic resource management

within reconfigurable applications and lay out the base concepts for adaptive systems. Also, in

high performance distributed computing, Hussain et al. [4] presented an in-depth study of

resource allocation in terms of the trade-off between efficiency and computational overhead.

The Internet of Things (IoT) adds a layer of complexity. In terms of real time issues and

resource constraints in pervasive IoT systems research is presented by Zahoor and Mir [5]

which also brings out the need for lightweight and intelligent resource handling mechanisms.

In large scale datasets’ environment, Hadoop remains as the main focus. Research has been

done on the Hadoop workloads’ issue, which includes the work of job scheduling frameworks

by Cheng et al. [6] and in depth usage info by White [7]. Also, Krauter, Buyya, and

Maheswaran [8] present a classification of grid resource management which in turn is a base

 Distributed Resource Management in Operating Systems: A Case Study on HDFS and YARN

Recent Research Reviews Journal, June 2025, Volume 4, Issue 1 144

for current frameworks. At Facebook they did real time Hadoop processing which as reported

by Borthakur et al. [9] shows how in practice real world applications differ from what is seen

in theory due to production scale issues.

In the field of cloud computing Chen et al. [11] report on ALBERT which is a machine

learning based resource manager for Hadoop workloads that they put forth which also presents

how AI plays a role in the optimization of cloud resources. In terms of file systems, Huang et

al. [12] report on I/O proportionality at the container level and also shown the increasing degree

of control in resource management. What we see is that scheduling has been the focus of much

research from the initial reports by Rao and Reddy [13] of studies done on MapReduce in cloud

settings to the introduction by Yao et al. [14] of new algorithms for YARN clusters which in

turn do not only report results but also put forth methods to improve performance and resource

use. Also, Van Do et al. [15] pay close attention to issues of data rate in Hadoop based systems

which they present as very complex operationally.

Table 1. Summary of Distributed Resource Management Approaches

Author/Year Strategies

Used

Performance Metrics Merits Demerits

Zhang &

Debroy

(2023)

Survey on

MEC resource

management

Comprehensive

but theoretical

Latency,

scalability

Wide coverage

of MEC topics

Lacks

empirical

validation

Huang et al.

(2014)

Resource

management in

multi-tier apps

Effective in

layered

systems

Throughput,

response time

Practical

application

insights

Outdated for

current tech

Moreira &

Naik (1997)

Reconfigurable

application-

based

management

Adaptive in

distributed

systems

Utilization rate Dynamic

adaptability

Old

hardware

assumptions

Hussain et al.

(2013)

Resource

allocation

survey for

HPC

Broad scope Efficiency,

utilization

Extensive

taxonomy

High-level,

lacks case

studies

Zahoor &

Mir (2021)

IoT resource

survey

Focus on IoT

constraints

Energy, latency Tailored to

constrained

devices

Lacks

algorithmic

detail

Cheng et al.

(2015)

Deadline-

aware

scheduling in

Hadoop

Improved job

throughput

Makespan,

deadline hit

rate

Dynamic

adaptability

Limited

scalability

data

Sivaprasath R, Vedeshvar L, Bharath M. D, Achari Magesh, Anisha C. D

 145

White (2012) Definitive

Hadoop guide

N/A N/A Practical

deployment

reference

Not a

research

evaluation

Krauter et al.

(2002)

Grid resource

taxonomy

Categorical

comparison

Adaptability,

scalability

Foundational

framework

Pre-cloud

focus

Borthakur et

al. (2011)

Real-time

Hadoop at

Facebook

Production-

scale

performance

Latency, data

throughput

Real-world

implementation

Specific to

Facebook

infrastructure

Chen et al.

(2022)

Learning-

based Hadoop

resource

management

Efficient

optimization

Execution

time, energy

AI integration Training

overhead

Huang et al.

(2020)

IO sharing in

big data

systems

Balanced IO

utilization

Proportionality,

fairness

Improved data

flow

Niche to

specific FS

types

Rao & Reddy

(2012)

Improved

MapReduce

scheduling

Enhanced

scheduling

Job time,

resource usage

Focus on cloud

Hadoop

Limited to

MapReduce

Yao et al.

(2019)

New Hadoop

YARN

schedulers

Better

utilization

Resource

efficiency

Cluster-wide

optimization

Complexity

in

deployment

Van Do et al.

(2015)

Data rate

control in

Hadoop

Better

bandwidth

control

Transfer rate,

delay

Network-aware

execution

No user-

layer

abstraction

3. Survey on Various Distributed Resource Management Approaches

A primary aspect of distributed resource management is dynamic resource allocation

which in turn puts to use storage and processing power very well. In their 2022 work which

also looked at compute offloading as a strategy for limited environs, Zhang and Debroy put

forth the importance of real time resource allocation in mobile edge computing. Also they

brought to fore that which which does the job of effective processing in resource starved

systems is what which tasks are given dynamic priority. Also looked at is workload aware

scheduling which in high performance distributed systems does what it does best by which it

balances resource use across many workloads. What it does is it maximizes system

performance by what it does to adapt to many computing needs. As for fault tolerance which

is key to the issue of reliability in distributed systems, in 2023 Zahoor and Mir looked at fault

tolerant mechanisms in IoT settings which they put forward to be lightweight redundancy and

failover protocols. What these do is improve on reliability at the same time they take into the

 Distributed Resource Management in Operating Systems: A Case Study on HDFS and YARN

Recent Research Reviews Journal, June 2025, Volume 4, Issue 1 146

account the specific issues of IoT devices which include low compute power and energy

efficiency. Also, in the area of scalability which is what we look to in growing systems, in 2014

Huang et al. put forth SLA based models for multi-tier web apps which did what it did best in

balancing between performance and cost. What they did was to scale resources dynamically to

meet service level agreements thus they in turn addressed the issues of complex layered

architectures.

Distributed storage systems like Hadoop Distributed File System (HDFS) are key to

fault tolerance and scale. Shvachko et al. (2010) put forth HDFS which includes block

replication and data locality to improve storage performance and reliability in large scale

settings. Borthakur (2013) reported on improvements we saw in high availability and snapshot

features which in turn we solved for issues like single points of failure thus improving also

what we see in terms of system reliability and recovery. YARN transformed resource

management by putting the focus on separate resource allocation from application logic.

Vavilapalli et al. (2013) reported on YARN’s central Resource Manager and node Level Node

Managers to enable better multi-tenant resource sharing. Also, in this time frame Zhao et al.

(2016) did a research work on queueing policies, which included Fair and Capacity Schedulers

to do better at what is fair and what is the use of the cluster. These worked to position YARN

as a base element in distributed resource management frameworks. Also in today’s computing,

we have new paradigms like containerization and serverless computing, which are redefining

distributed resource management. Abad et al. (2021) reviewed the role of Kubernetes in

distributed systems to improve the modularity and fault isolation. Li et al. (2020) analyzed the

issues of serverless computing, which include low latency scheduling and dynamic scaling.

These studies point out the ongoing evolution of distributed resource management in response

to the issues of current computing.

4. Case Study

At present we have 128 MB which are replicated across many Data Nodes for the

purposes of fault tolerance and high availability. In the event of a failure, to bring back lost

data the healthy nodes are used and perform re replication of blocks. Also, we see that data

locality is a key element on which tasks are performed at the node which has the required data

which in turn puts down network overhead and at the same time improves performance. Also,

HDFS has a rack awareness feature which does a great job of putting data replica’s out in

different racks to improve fault isolation and data availability. This in turn means that should

Sivaprasath R, Vedeshvar L, Bharath M. D, Achari Magesh, Anisha C. D

 147

an entire rack go down our data is still available. But at the same time, we must note that we

do have a single point of failure with the Name Node. In the case of a Name Node failure the

whole HDFS cluster may go down and we lose access to our data which results in large scale

unavailability. To that end we have seen the development of high availability options like the

stand by Name Node and fail over systems which do a good job at smooth recovery from a

Name Node failure. Though these do a great job they still have issues with sync and fail over

which in turn play a role in the overall responsiveness of the system.

Overall HDFS is a reliable, fault tolerant and scalable which makes it a key element in

big data processing. But we see that it has major issues in terms of single point of failure at the

Name Node and the related failover problems. In the HDFS architecture as seen in Fig. 1 we

have the Client, NameNode and DataNodes which are in communication. The NameNode’s

job is to manage metadata and the DataNodes which store and replicate the data blocks.

Figure 1. HDFS Architecture

Yet in the Hadoop environment YARN enables the heavy lifting of resource

management and scheduling of diverse workloads across distributed clusters. YARN separates

resource management from application logic which in turn gives us greater flexibility and scale.

At its core is the Resource Manager, which is serves as the central authority for resource

allocation. It uses advanced scheduling policies like Fair Scheduling which as the name

suggests puts all users on an equal foot, and Capacity Scheduling which is a pre-determined

set of priorities for different workloads. Also, it is able to do dynamic resource allocation, a

key element in the design for multi-tenant success.

 Distributed Resource Management in Operating Systems: A Case Study on HDFS and YARN

Recent Research Reviews Journal, June 2025, Volume 4, Issue 1 148

In each node, Node Managers track local resources and perform tasks within containers

which are isolated environments that contain the needed resources (e.g., CPU, memory) for

operation of particular applications. YARN has fault tolerant features like resubmitting tasks

in case of container of node failures which in turn makes for what is minimal service

interruption in the operation with which it does not go down. Also, it has a multi-tenancy

ability, which is that it allows for multiple users and applications at the same time to make use

of the cluster resources.

Even though this system is very flexible in design we do see issues with resource

contention in high demand settings. When large scale resource requests are made at the same

time the system may experience resource starvation which in turn causes delay for some jobs

or in some cases, we may see that they just don’t get scheduled at all. Also, in dynamic settings

which include many different types of resources the issue is made more complex as our present

allocation strategies may have trouble at the same time maintaining fair play and overall system

efficiency.

Despite these issues, YARN’s modular and scalable design which is what makes it the

best choice for running into clusters of up to 1000 nodes at which also support both batch and

real time processing. Also, from Fig 2 we see that the YARN architecture which shows how

the Client Node puts in requests to the Resource Manager which in turn passes it to Node

Managers in which they in turn see that the application is run in the containers across the

networked nodes.

Figure 2. Yarn Architecture

Sivaprasath R, Vedeshvar L, Bharath M. D, Achari Magesh, Anisha C. D

 149

5. Limitations of HDFS and YARN

HDFS and YARN present very good and scalable solutions for distribution storage and

resource management but also have issues which must be taken into account. In the case of

HDFS a key issue is that we have what in essence is a single point of failure in the Name Node.

The Name Node’s job is to manage all metadata and it is a very important element for the

system to run should it go down the whole cluster goes down at least until failover mechanisms

take over. While we have seen the introduction of stand by Name Nodes and failover systems

which attempt to address this issue what we see is an increase in the system’s complexity and

a certain amount of performance hit. Also, in order to ensure fault tolerance, HDFS face issues

related to data replication. Although this does improve reliability, a large-scale storage issue,

which in very large data sets can lead to poor resource use.

In the case of YARN, we see that resource contention is a significant issue in multi-

tenant settings which we see play out when many jobs are competing for the same limited

resources. Also we have put in place Fair and Capacity Scheduling which are supposed to even

out resource distribution but some jobs still see delay or in some cases don’t get any resources

at all in dynamic and resource intensive settings. Also YARN has issues with communication

between its components which include the Resource Manager, Node Managers, and containers.

This in turn introduces latency which in turn affects scheduling performance in large scale

clusters. Also, what we find is that current YARN’s scheduling policies may not do a great job

in heterogeneous environments which have many types of resources (for example CPU and

GPU). What we see is that this in turn causes some nodes to be underutilized while others are

over used which in the end degrades overall system performance.

6. Performance Evaluation and Simulation Details

In our controlled virtual environment, which we set up using Apache Hadoop

framework (v3.3.1), we conducted simulation-based experiments to validate the architectural

and scheduling points put forth. We installed the cluster on VirtualBox virtual machines which

ran Ubuntu 20.04 with Java 8 and we used the following parameters which we then simulated

with the resource management and work load simulation tools of Apache Hadoop YARN:

Number of Nodes: 10 DataNodes, 1 NameNode

Block Size: 128 MB

 Distributed Resource Management in Operating Systems: A Case Study on HDFS and YARN

Recent Research Reviews Journal, June 2025, Volume 4, Issue 1 150

Memory per Node: 8 GB

Replication Factor: 3

CPU Cores per Node: 4

Tools used: TeraSort, WordCount, and TestDFSIO jobs

Schedulers Used: Fair Scheduler, Capacity Scheduler

Table 2. Quantitative Comparison of Fair and Capacity Schedulers in Hadoop YARN

Metric Fair Scheduler Capacity Scheduler

Average Job Completion Time 145 sec

168 sec

Average CPU Utilization

85%

77%

Memory Utilization

83%

84%

TeraSort Throughput

86 MB/s

73 MB/s

Node Failover Recovery 33 sec 36 sec

These results in Table 2 show the issue of resource contention and communication

overhead in YARN based systems as well as the trade-off performance between what different

scheduling strategies perform. We find that in distributed resource management frameworks’

throughput and efficiency plays a major role in architecture selection, this also include block

size, replication and scheduler.

This study has analyzed the Fair Scheduler and the Capacity Scheduler based on what

they did in terms of resource management and job execution performance in a distributed

environment. In many key areas the Fair Scheduler did better. It did a better job at what it does

which is run jobs more so for instance it had an Average Job Completion Time of 145 seconds

as compared to 168 seconds which the Capacity Scheduler did. Also, it achieved better CPU

utilization (85% than the Capacity Scheduler (77%. Which in turn means the Fair Scheduler

was more efficient with its compute resources. The Fair Scheduler outperform the Capacity

Scheduler in terms of TeraSort Throughput which reported in at 73 MB/s. Also, the Fair

Scheduler’s Node Failover Recovery time was a little bit faster at 33 seconds as compared to

Sivaprasath R, Vedeshvar L, Bharath M. D, Achari Magesh, Anisha C. D

 151

36. But in terms of memory use the Capacity Scheduler had a little bit of an edge, at 84% of

memory use as opposed to Fair Scheduler’s 83% which was a very close second.

7. Conclusion and Future Directions

 Distributed resource management is a requirement for the scalability, reliability and

performance of present day distributed systems. As these systems grow in scale and

complexity, we see that certain issues which still stand out. Scalability is a primary issue we

see as we manage thousands of nodes which in turn introduce latency and communication

issues. For fault tolerance we require robust recovery which at the same time minimizes

redundancy and maintains data availability. In terms of resource contention which is an issue

in multi-tenant environments we require balanced approaches for fair allocation and optimal

use. Also, the growth of different hardware types which include CPUs, GPUs and specialized

accelerators puts forth the need for innovative solutions for compatibility and optimization.

Energy efficiency has become a very important issue which we see in the design of algorithms

that reduce power use, especially in IoT networks and large-scale data centers.

To that end in the future research, we will consider the adoption of new technology and

theories. AI powered systems can be used to enable more real time resource allocation and

anomaly detection to improve overall efficiency. Also, we see in edge computing an

opportunity for light weight and latency aware resource management which in turn allows for

better integration with small scale devices. The serverless architectures will perform effectively

in terms of auto scaling and reduction in cold start delays. Also, we see in green computing, a

chance to develop energy aware algorithms which in turn promote sustainability. The cross-

layer coordination will bring together resource distribution across compute, storage and

network layers to enable total system optimization.

References

[1] Zhang, Xiaojie, and Saptarshi Debroy. "Resource management in mobile edge

computing: A comprehensive survey." ACM Computing Surveys 55, no. 13s (2023):

1-37.

[2] Huang, Dong, Bingsheng He, and Chunyan Miao. "A survey of resource management

in multi-tier web applications." IEEE Communications Surveys & Tutorials 16, no. 3

(2014): 1574-1590.

 Distributed Resource Management in Operating Systems: A Case Study on HDFS and YARN

Recent Research Reviews Journal, June 2025, Volume 4, Issue 1 152

[3] Moreira, José E., and Vijay K. Naik. "Dynamic resource management on distributed

systems using reconfigurable applications." IBM Journal of Research and Development

41, no. 3 (1997): 303-330.

[4] Hussain, Hameed, Saif Ur Rehman Malik, Abdul Hameed, Samee Ullah Khan, Gage

Bickler, Nasro Min-Allah, Muhammad Bilal Qureshi et al. "A survey on resource

allocation in high performance distributed computing systems." Parallel Computing 39,

no. 11 (2013): 709-736.

[5] Zahoor, Saniya, and Roohie Naaz Mir. "Resource management in pervasive Internet of

Things: A survey." Journal of King Saud University-Computer and Information

Sciences 33, no. 8 (2021): 921-935.

[6] Cheng, D., Rao, J., Jiang, C., & Zhou, X. (2015, May). Resource and deadline-aware

job scheduling in dynamic hadoop clusters. In 2015 IEEE International Parallel and

Distributed Processing Symposium. IEEE: 956-965.

[7] White, T. (2012). Hadoop: The definitive guide. " O'Reilly Media, Inc.".

[8] Krauter, Klaus, Rajkumar Buyya, and Muthucumaru Maheswaran. "A taxonomy and

survey of grid resource management systems for distributed computing." Software:

Practice and Experience 32, no. 2 (2002): 135-164.

[9] Borthakur, Dhruba, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkaruppan,

Nicolas Spiegelberg, Hairong Kuang, Karthik Ranganathan et al. "Apache hadoop goes

realtime at facebook." In Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data, pp. 1071-1080. 2011.

[10] Moreira, José E., and Vijay K. Naik. "Dynamic resource management on distributed

systems using reconfigurable applications." IBM Journal of Research and Development

41, no. 3 (1997): 303-330.

[11] Chen, Chen-Chun, Kai-Siang Wang, Yu-Tung Hsiao, and Jerry Chou. "ALBERT: an

automatic learning based execution and resource management system for optimizing

Hadoop workload in clouds." Journal of Parallel and Distributed Computing 168

(2022): 45-56.

[12] Huang, Dan, Jun Wang, Qing Liu, Nong Xiao, Huafeng Wu, and Jiangling Yin.

"Enhancing proportional IO sharing on containerized big data file systems." IEEE

Transactions on Computers 70, no. 12 (2020): 2083-2097.

[13] Rao, B. Thirumala, and L. S. S. Reddy. "Survey on improved scheduling in Hadoop

MapReduce in cloud environments." arXiv preprint arXiv:1207.0780 (2012).

Sivaprasath R, Vedeshvar L, Bharath M. D, Achari Magesh, Anisha C. D

 153

[14] Yao, Yi, Han Gao, Jiayin Wang, Bo Sheng, and Ningfang Mi. "New scheduling

algorithms for improving performance and resource utilization in hadoop YARN

clusters." IEEE Transactions on Cloud Computing 9, no. 3 (2019): 1158-1171.

[15] Van Do, Tien, Binh T. Vu, Nam H. Do, Lóránt Farkas, Csaba Rotter, and Tamás

Tarjányi. "Building block components to control a data rate in the Apache Hadoop

compute platform." In 2015 18th International Conference on Intelligence in Next

Generation Networks, IEEE, (2015): 23-29

