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Abstract

An enormous wave of automation technology is about to hit the global market. To save
thousands of people's lives, autonomous vehicle technology may decrease congestion and
increase mobility, as well as may enhance the productivity of the transportation industry.
Developed country governments, on the other hand, are concerned that they may be placing
unneeded or unforeseen obstacles on the path of growth. As a result, when it comes to
features, safety always comes first. With the help of various functions based on certain
automation technologies, this effort attempts to find example ideas. A more technical look at
the needs throughout the development to minimize safety-related dangers is presented in this
paper, which is meant to augment previous publications on different safety elements. This
article emphasizes the significance of safety by design. Additionally, the goal of this article is
to overcome the problems of the existing system with authentication and security architecture
framework.
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1. Introduction

When creating Cyber-Physical Systems (CPS) such as linked and autonomous
automobiles, security, safety, and privacy aspects merge. Increased connection and
automation, as well as changes in the ownership of vehicles, may be a contributing factor. As
a consequence, security and safety (as well as privacy) are becoming more intertwined. Fully
autonomous cars have a cybersecurity risk since their safety-critical activities rely on external
data sources such as, onboard sensors, V2X connectivity, and remote services from cloud
servers. As a result, any one of these channels may be breached, causing services to fail or

data assets to be lost [1-5]. An integrated engineering approach is required here.
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By cooperating on perceptual and driving-related duties, individual autonomous cars
may benefit from inter-vehicle and roadside communication. It is also possible for
transportation and law enforcement authorities to profit from real-time traffic information
given by every car. There are many transportation system stakeholders that want to reduce
the risk of cyber-attacks. V2X misbehaviour detection systems may depend on data from
onboard sensors, but they can also take use of information from infrastructure components.
From a vehicle- and infrastructure-based viewpoints, cyber dangers are presented and

mitigation options are discussed in this study.

Autonomous vehicles need more expensive maintenance due to the risk of
catastrophic failure if its components aren't properly fitted and maintained. Advanced driver
aid systems (cameras, radar, and ultrasound) cost almost twice as much as minor accident

damage nowadays as compared to previous generations [6-8].
1.1 Cybersecurity importance

Automated driving poses new issues for the automobile industry because of the high
level of communication inside and between automated driving cars and their operational
environment. These difficulties include anything from meeting regulatory standards and
safeguarding public safety to prevent cyberattacks on fleets and consumers. Car control
functions and many information technology backend approaches with various base
foundation will all be linked through new interfaces. Sadly, this wide range of assault options
attracts a lot of attention from criminals with a variety of motives. In other words, we've
progressed to the point where cars can no longer function safely without also maintaining a
safe condition. Mostly, a vehicle's movement can't be taken over by attackers, and scaling

assaults to exploit numerous vehicles simultaneously is difficult [9-11].
1.2 Purpose of this article

A major goal of this work is to help standardize autonomous driving throughout the
whole industry. A framework or recommendations for mechanical driving system safety is
developed as part of this initiative, and it will benefit all enterprises through various

industries from suppliers of vital technology.

2. Self-driving car Infrastructure

Automated cars are not self-driving. Public and private (e.g., back-office activities)

infrastructure is used to support vehicles. Data collected from an infrastructure are taken into
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account by autonomous driving cars, but the cars retain control over their own decision-
making in the final analysis, not the infrastructure. Automated driving cars must also take
into account the people who will be required to operate, manage, repair, etc., these vehicles.
Vehicle entry is restricted and compartmentalized depending on the vehicle's intended use.
Operations workers, for example, may need to know the location and condition of a vehicle,

but they don't need to know who is inside [12,13].
2.1 Safety Measures

Many limited seats cars are explicitly geared on functional safety in these types of
vehicles. To determine and convey standard risk, the Automotive Safety Integrity Levels
(ASILs) are utilized. ASIL values in conventional applications of functional safety are not
traced and decomposed in this paper, but they can be studied from the previous structural
behaviour. When it comes to ASIL D's biggest safety hazards, it is well recognized by those
involved in operational security that an electrical vehicle defect that causes failures at the
system level might lead to erroneous steering or braking.

2.2 Automotive Industry Cybersecurity

Even if they can't explain the connection between the two, people often lump safety
and security together. This category is logical because of the overlap between the problems’
attributes. While both are concerned with the appropriate operation of a system, their
emphasis differs somewhat in the safety focuses of the system's capacity to withstand a
purposely malevolent activity. The dangers posed by passive enemies like hostile human
beings acting purposefully are the safety and security concerns of the dangers posed towards
active opponents. Security is forced to rely on extra tools and methods, which compromise
the integrity of the system [14- 16].

2.3 Deep security architecture

In order to meet the previously described security objectives, this section explains
how security functions are stacked. There are several layers of protection in place for
autonomous cars, starting with the lowest level components (e.g., sensors) and working up to
the wvehicle itself and the infrastructure that supports it. Data, systems, functions, or
components of embedded systems for automatic driving may all benefit from the classic
trinity of information security: Confidentiality, Integrity, Authenticity, and Availability
(CIA). Confidentiality and integrity may be secured at the component level (e.g.,
microcontroller/ECU/camera sensors) using primitives. Component tamper resistance,
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configurability (e.g., the removal or disablement of unnecessary elements) and updatability

are also addressed in this article.

3. Proposed Solution
3.1 Fuzzy procedure with sensor fusion

Algorithms and strategies for sensor fusion have been investigated intensively in the
past several years. But a modern research found that getting the most recent fusion methods
and algorithms is a difficult and time-consuming effort because of the many different fusion
algorithms published in the literature. Deep learning device combination methods and
conventional sensor fusion algorithms combine neural network classification research. In
order to combine sensor data, traditional algorithms including knowledge-based, statistical,
and probabilistic sensor fusion rely on notions of uncertainty arising from data flaws, such as
imperfection and latency. Proposals for roundabout detection and navigation systems on
roads are also being considered. In order to locate objects, it makes use of the suggested

"Laser Simulator" technique and the knowledge-based Fuzzy Logic (FL) algorithm [17, 18].
3.2 Deep Neural Network

Input pre-processing procedures like as scaling and resampling may also be included
in the DNN-based architecture. The DNN architecture's user interface can only be customized
if these stages are included in the design. The DNN is the emphasis of this architectural level.
It is important to consider the use case and specification needs when deciding on the kind and
mix of DNN layers to include i.e., while deciding the architecture. On the DNN architectural
side, issues to consider include the data types and dimensions of the input and output, as well
as the model's size and categorization. In addition, the activation function must be carefully
chosen, since it is critical to the approximation of the function. The DNN model's
convergence may be accelerated as a result of this. In addition, there are a number of DNN
architectural features to consider, such as the pooling layer type, stride, recurrence, and more.
Furthermore, the network's generalization may be further adjusted throughout the

development and evaluation process.
3.3 Training and detection procedure

Labelled data may be used to train a DNN model by applying a loss function that
determines how far model outputs depart from the labels. The DNN model's training loss is
minimized via back propagation of the associated gradient after averaging the error across
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(randomly chosen) training dataset samples. Depending on the loss function and
regularization used, the resultant network's resilience may vary greatly. Because of this, it
may be necessary to limit the number of alternative loss functions that may be used in the
training phase. In addition, the cost function is connected to the distribution of the data's

numerical values [19 — 22].
3.4 Prediction of objects

Neuronal network output may not be sufficient as input for the safe and legal
development of an ambitious goal. A more comprehensive depiction of a dynamic driving
scenario, or "scene", is needed to incorporate not just present conditions but also projections
for the future. The purpose of other dynamic objects and items that occlusions from view may
obscure should also be considered when making predictions about future movements. It is
also necessary to consider the present weather conditions, which include impaired sensor

performance. Figure 1 shows the block diagram of future behaviour prediction process.
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Figure 1. Future Behaviour prediction

3.5 Collision Free driving plan

Many factors must be taken into account while creating a safe and legal driving
strategy. Prior to any driving plan, for example, the car must have correctly detected its

surroundings and completed localisation. The vehicle should next take into account the world
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model's safety-relevant (vulnerable) road users recommendations from an construal and
estimate calculation viewpoint, once localization has been served and an accurate world
model has been supplied. Thus, it is possible to begin making inferences about potentially

vulnerable road users [23, 24].
3.6 Localization process

If the automated driving system's intended usage is limited, it must be assured that it
performs only within the established system restrictions. This means that utilizing sensor
fusion techniques, the automated driving vehicle should be accurately found here. At times,
additional prior details from outside of the automated driving vehicles on board perception
performance may be required in order to achieve appropriate localization. These details can

be from the automated driving vehicle's own range or from an outside source.

Commercial vehicle’s drivers, on the other hand, offer services like passenger
assistance and security, as well as loading, monitoring, and maintenance, thus certain
positions for vehicle operators will be eliminated. Rapid development, deployment, and fleet
turnover are all necessary for a more rapid application of this vehicle technology than has

been the case in the past.
3.7 Future predictions

Driverless car implementation is slowed by causes such as the following when it
comes to the advancement of technology. In the near future, automobiles will be able to run
autonomously under all regular circumstances thanks to Level 4 technology (vehicles capable
of self-driving in restricted circumstances). Whether dependable Level 5 operation can be

achieved in the next five years is uncertain.
3.7.1 Regulations and testing

While testing and approval standards are now being developed, it may take many
more years before they are widely employed. Large-scale testing will take considerably

longer.
3.7.2 Increasing expenses

Additional equipment and services are needed for autonomous cars, which increases
the overall cost. Only very expensive new cars will be able to drive independently which

means that yearly expenditures will rise by thousands of dollars when compared to human-
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operated vehicles. This technology will be available in fewer new automobiles due to high

extra costs, which will slow down fleet adoption.
3.7.3 Autonomous vehicle sale

The look at how people travel and live as well as their preferences for new
developments are provided. Most households in the United States reside in automobile-
dependent areas and possess their own automobiles. Autonomous vehicle sharing is best
suited for families that travel fewer than 6,000 miles per year by car in more multimodal
areas. People who are able to live in multi-modal communities will be more likely to use
shared independent vehicles. People may be reluctant to adopt self-driving automobiles
because of concerns about safety, privacy, or their own preferences. When the market is fully
saturated, consumers will still be able to purchase vehicles. Table 1 contains the autonomous

vehicle planning problems [25].

Table 1. Autonomous vehicle planning problems

Performance Future analysis Required Approach | Response Duration
Measures
Safety and Consider safety and | To decrease
Reliability dependability. Set up | congestion,
a foundation for accidents, and
regulation. pollution, Moderate
transportation
management is
needed.
Travel Comfort Consider the possible | Decongestion
advantages and pricing, vehicle
expenses of changing | limits, priority, and )
trip plans. regulations that High
encourage sharing a
trip.
Traffic from local Investigate the Disability- and low-
roads effects of shifting income-inclusive
patterns in the policy for the use of )
volume of AVs. High
automobile traffic.
Safety New dangers and Regulate and
collision promote the use of
repercussions, self-driving cars and )
especially for other | trips in public spaces. High
road users, should be
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examined.

Non-Driving
mobility

Rides and
transportation
services provided by

Encourage the use of
Alternative Vehicles
(AVs) that are both

self-driving cars efficient and electric. High
Manage roads to
reduce the number of
vehicles on the road.
Impacts on use of Type and use of AV | Curb space and
shared vehicle gasoline. parking needs may
be minimized by )
reducing parking High
regulations.
Environmental and | Overall vehicle travel | Redesign the road
monetary costs is affected by this. layout. Create AV Moderate
lanes if required.
Passenger loading Vehicles, as well as | Find out how much
at parking parking and loading | money they have and Moderate
requirements. how much they'll
charge.
Design for highway | To what extent other | Minimize conflict Moderate
road users have to and danger using
contend with the rules and facility
presence of AVs designs.
Preparation of Effects on traffic All road users' safety
traffic type flow and the design | depends on
of the route. regulating ]
autonomous vehicles. High
and safe road
management.
Needs of self- Mandating AVs Make all cars
driving car might have certain autonomous and limit
advantages. human driving if the ]
advantages are High

significant enough.

3.7.4 Autonomous vehicle demand

Future transportation demands and planning requirements will be influenced by

several developments, including the development of autonomous vehicles. Changes in the

population, customer preferences, costs, information technology, transit alternatives and other

planning advances may be more important than self-driving automobiles in the near future.
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4. Descriptions of Datasets

It is expected that the dataset will improve over time as more cases are uncovered,
hence decreasing the amount of unknown information. To keep the DNN-trained model as
accurate as possible as the dataset's diversity changes over time, it's important that the dataset
itself reflects any changes in the operating environment. To keep track of everything from the
weather to the sensors' settings, tagging is essential and allows the data is to be rearranged in
any way. In certain circumstances, the collection of data may be improved by using various
strategies, such as augmentation or synthesis. However, it is essential that the most correct
data be the most prominent.

5. Conclusion

Building the autonomous driving product's safety case requires the use of evidence
from the aforementioned parts. There should be some thought put into what additional
standard working required on a deep neural network; this is important. As a starting point,
one may conceive about the proposed neural network's whole development process as
detailed previously in the article. The behaviour of an autonomous driving system cannot be
precisely described because of the dynamic, ever-changing nature of the surroundings. As a
result, the need for real-time monitoring grows. Monitoring DNNs while they are functioning
is an important aspect of a successful deployment. Developing accurate and effective obstacle
detection in self-driving cars is essential. In order to obtain greatest efficient self-driving cars,
this is a must-have feature. Recent research have taken a more pragmatic approach when it
comes to obstacle detection, by combining data from several sensors such as distance sensors,

velocities and colours that are essential for ensuring the safety and reliability of the system.
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