Journal of Trends in Computer Science and Smart Technology (ISSN: 2582-4104) ﬁ
www.irojournals.com/tcsst/ @

Entangling Quantum Adversarial Network
with Football Optimization for Software

Defect Prediction

Suresh Yallamati!, Shaheda Akthar?

'Research Scholar, *Lecturer in Computer Science, Government College for Women(A), Guntur, and
Research Supervisor, Department of Computer Science, and Engineering, Acharya Nagarjuna

University, A.P, India.

Email: !sureshyallamati@gmail.com, 'researchwork660@gmail.com, 2shahedaakthar76@gmail.com

Abstract

Predicting software defects is a critical component of software quality control. It is
essential to plan for early defect detection and mitigation to enhance performance and
reliability. Traditional machine learning and deep learning models often face challenges in
managing missing values, extracting meaningful features, and effectively distinguishing
between defective and non-defective software modules due to their reliance on linear classifiers
and limited feature representation capabilities. To address these challenges, this study proposes
an Entangling Quantum Generative Adversarial Network with Football Optimization
Algorithm (EQGAN-FbOA) for efficient software defect prediction. The PROMISE dataset
has been collected, and missing values are imputed during the pre-processing stage using
Diffusion Models for Missing Value Imputation (DMVI), which employs a forward noising
process to introduce controlled noise and a reverse denoising process to reconstruct the missing
data. To enhance computational performance, a Spike-driven Transformer (S-DT) that
incorporates a Leaky Integrate-and-Fire (LIF) spiking neuron is utilized for feature extraction.
The EQGAN model improves defect prediction by generating quantum-enhanced feature
representations. Additionally, the Football Optimization Algorithm (FbOA) is applied to
balance exploration and exploitation through football-inspired search strategies, thereby
preventing premature convergence and refining defect classification. Experimental findings

from the PROMISE dataset demonstrate that the proposed method surpasses existing

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2, Pages 140-175 140
DOI: https://doi.org/10.36548/jtcsst.2025.2.003
Received: 16.04.2025, received in revised form: 14.05.2025, accepted: 27.05.2025, published: 06.06.2025

© 2025 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

Suresh Yallamati, Shaheda Akthar

approaches, achieving a software defect prediction accuracy of 99.8%, precision of 99.7%,

recall of 99.6%, Matthews correlation coefficient (MCC) of 99.5%, and F-measure of 99.4%.

Keywords: Diffusion Models for Missing Value Imputation, Entangling Quantum Generative
Adversarial Networks, Football Optimization Algorithm, Spike-Driven Transformer, Software

Defect Prediction.

1. Introduction

Since the 1970s, the development of software defect prediction systems has emerged
as one of the most active areas within software engineering. In today's environment, the
economy, politics, social dynamics, and military capabilities are all heavily reliant on software.
For highly complex and reliable software systems, ensuring software dependability is crucial.
Software defects can lead to errors, crashes, and associated system issues [1]. With the rapid

increase in software production, maintaining such reliability has become imperative [2].

A primary challenge in software defect prediction is the imbalance between minority-
class and majority-class instances. This disparity leads prediction models to favor majority-
class examples, ultimately diminishing overall prediction performance [3]. The projected
volume of code in software is staggering; for example, Google's codebase encompasses over
two billion lines, while a typical iPhone application contains between 10,000 and 15,000 lines
[4]. Datasets used for software defect prediction often derive from static code measurements
taken from issue log files of previous software versions [5]. These datasets consist of a
collection of programs, data, or instructions utilized across various applications, including
cybersecurity, to execute specific functions [6]. By analyzing a software module's source code
or development process, programmers can proactively identify defects and concentrate on

problematic modules to enhance software quality [7].

Hyperparameter tuning significantly influences classifier performance, with studies
indicating that this technique can lead to improved prediction outcomes [8]. The Convolutional
Neural Network (CNN) and Gated Recurrent Unit (GRU) models are among the most
prominent deep learning architectures designed to address issues related to gradient vanishing
and long-term dependencies. These models exhibit strong prediction performance in software
defect prediction due to their ability to identify longer time-series data sequences [9]. Utilizing

this type of data enhances feature semantics, enabling software defect prediction models to

ISSN: 2582-4104 141

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

more effectively detect malfunctioning modules. However, the unstructured nature of natural
language data presents challenges in integrating natural language texts with programming

language code to fully understand semantic aspects [10].

When labeled target instances are available, they can be employed for instance-based
transfer learning without requiring similarity metrics between source and target instances.
Additionally, variations in conditional distribution have been utilized for multi-source
applications in the second stage of the process [11]. Although no single strategy is universally
effective, machine learning models must adapt their hyperparameters for each classification
challenge to optimize performance [12]. Insufficient attention has been paid to the application

of machine learning techniques for predicting the number of defects in a software module [13].

Improving software defect prediction technology can reduce Research and
Development (R&D) costs and contribute to the creation of more reliable software systems.
Both inexperienced engineers and inadequate software development processes are significant
contributors to software defects [14]. As an instance-based transfer learning approach, it can
leverage labeled target instances when available, without necessitating similarity metrics

between source and target instances [15].
1.1 Novelty and Contribution

e The PROMISE dataset undergoes data cleaning to handle missing values. DMVI

applies a forward noising process and reverse denoising to reconstruct the missing data.

e S-DT with LIF spiking neurons extracts relevant software defect features. This

enhances computational efficiency and improves feature representation.

e EQGAN generates quantum-enhanced feature representations for defect classification.
Fidelity-based discrimination ensures accurate distinction between defective and non-

defective modules.

e EQGAN optimizes weight parameters using the Football Optimization Algorithm
(FbOA). This ensures robust classification and enhances predictive performance for

accurate SDP.

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 142

Suresh Yallamati, Shaheda Akthar

The format of this report is as follows: The literature is examined in Section 2, and the
recommended plan of action is presented in Section 3. Section 4 displays the results and

comments. In Section 5, the Conclusion and suggestions for further study are provided.

2. Literature Survey

In 2024 Abdul Waheed Dar and Sheikh Umar Farooq [16] introduced Software Defect
Prediction (SDP), which finds faulty modules and maximizes testing resources, is necessary to
raise the caliber of software. = However, class imbalance and overlap reduce prediction
accuracy in SDP datasets.This work proposes a four-stage pipeline consisting of Extreme
Gradient Boosting (XGBoost), an under-sampling strategy, and a class overlap reduction
technique to improve prediction performance in an ensemble SDP model. After being
evaluated on sixteen imbalanced SDP datasets and contrasted with ten cutting-edge methods,
the model successfully manages overlap and class imbalance problems. It lowers development
costs, improves error detection, and increases predictive accuracy. Though computationally
demanding, the method greatly enhances classification performance. In 2023 Iqra Mehmood
et.al [17] developed to increase the accuracy of machine learning classifiers, this research uses
feature selection to improve Software Defect Prediction (SDP). Utilizing the Waikato
Environment for Knowledge Analysis (WEKA) application, the suggested method picks
features utilizing classifiers such Random Forest, Logistic Regression, Multilayer Perceptron,
Bayesian Network, J48, Lazy IBK, Support Vector Machine, Neural Networks, and Decision
Stump. The objective is to improve the defect prediction accuracy in the PROMISE dataset
using five publicly available National Aeronautics and Space Administration (NASA) datasets:
CM1, IM1, KC2, KC1, and PC1. The Minitab software is used for statistical analysis. The
approach's advantage is that it improves prediction accuracy compared to models without
feature selection; however, its disadvantage is that feature selection increases computing
complexity. In 2023 Nasraldeen Alnor Adam Khleel and Karoly Nehez [18] established SDP
improves software quality by identifying troublesome components using previous defect data.
This study employs a Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU)
in conjunction with the Synthetic Minority Oversampling Technique and the Tomek link
(SMOTE Tomek) to address the issue of class imbalance in SDP. Improved prediction
performance is demonstrated by experiments using PROMISE repository datasets, with GRU

ISSN: 2582-4104 143

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

attaining a 24% better Area CNN receives a Receiver Operating Characteristic Curve (AUC)
of 19%. Compared to existing SDP models, the proposed approach enhances defect prediction
in terms of mean square error (MSE), accuracy, precision, recall, Matthew’s Correlation
Coefficient (MCC) and F-measure. In 2022 Pravali Manchalaa and Manjubala Bisi [19]
suggested the purpose of SFP is to identify between defective and non-defective modules;
model performance is impacted by class imbalance. = Weighted Average Centroid-based
Imbalance Learning Approach (WACIL) is proposed as a synthetic oversampling method that

enhances diversity and decreases noise.

WACIL filters noise and generates pseudo-data from borderline events using a
weighted average centroid algorithm. Based on experiments on 24 PROMISE and National
Aeronautics and Space Administration (NASA) datasets, the best methods in terms of False
Omission Rate (FOR), F-measure, and Area Under the Receiver Operating Characteristic
Curve (AUC) are K-Nearest Neighbours (KNN), Logistic Regression (LR), Naive Bayes (NB),
Support Vector Machine (SVM), Decision Tree (DT), and Deep Neural Network (DNN). With
statistical evidence to support its effectiveness, WACIL is a good choice for addressing class
imbalance in SFP. In 2022 Li-qiong Chen et.al [20] evaluated the software testing ensures
high-quality software, and Software Defect Prediction (SDP) aids in efficient defect detection.
In order to improve prediction accuracy and resource allocation, this paper suggests an SDP
framework that makes use of heterogeneous feature selection and nested stacking. A Nested-
Stacking classifier, feature selection, dataset pre-processing, and performance assessment are
all included in the system. Region The Receiver Operating Characteristic Curve (AUC) and
Fl-score are used in experiments to evaluate classification performance on the Kamei and
PROMISE datasets. By displaying improved accuracy in Within-Project defect Prediction
(WPDP) and Cross-Project Defect Prediction (CPDP), the model surpasses baseline

approaches and increases the effectiveness of software fault classification.

In 2023 Iqra Mehmood et.al [21] demonstrated the software engineering, defect
prediction is essential for locating source code defects prior to testing. It employs a variety of
feature selection and machine learning techniques to increase prediction accuracy, including
Random Forest, Logistic Regression, Multilayer Perceptron, Bayesian Network, J48, Lazy
IBK, Support Vector Machine, Neural Networks, and Decision Stump. Feature selection
(WFS) improves accuracy over WOFS, according to experiments conducted with Minitab and

the Waikato Environment for Knowledge Analysis (WEKA) on the publicly available National

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 144

Suresh Yallamati, Shaheda Akthar

Aeronautics and Space Administration (NASA) datasets CM1, JM1, KC2, KC1, and PC1. In
2024 MISBAH ALI et.al [22] suggested detecting and delivering only faulty modules for
testing, software defect prediction improves software quality and lowers testing expenses. This
study combines Random Forest, Support Vector Machines, Naive Bayes, and iteratively
updated artificial neural networks to produce intelligent ensemble-based software defect
prediction model.On seven NASA Metrics Data Program datasets, a voting ensemble
outperforms 20 techniques in terms of accuracy by aggregating their predictions. In 2023
Shabib Aftab et.al [23] determined an intelligent cloud-based Software Defect Prediction
(SDP) system, data and decision-level machine learning techniques are merged. Its prediction
approach consists of two steps: Naive Bayes, Artificial Neural Networks (ANN), and Decision
Trees (DT) are used first, followed by fuzzy logic-based rules that combine classifier accuracy.
The tests performed better than ensemble approaches and basic classifiers, achieving 91.05%
accuracy on the National Aeronautics and Space Administration (NASA) CM1, MW1, PCl,
PC3, and PC4 datasets.In 2022, Mutasem Shabeb Alkhasawneh [24] demonstrated that
millions of people worldwide are impacted by software flaws, which result in large financial
losses. The proposed method integrates feature selection and classification using a Radial Basis
Function Neural Network (RBF) with a correlation-based methodology. The National
Aeronautics and Space Administration (NASA) provided fourteen datasets for the model's
evaluation using K-fold cross-validation. Performance was evaluated using F-measure,
accuracy, precision, and recall. The results confirmed that the model was effective in increasing
software dependability, with superior defect prediction compared to competing methods,
particularly for the datasets CM1, KC4, MC1, PC1, PC2, PC3, PC4, and PC5. In 2022, K.
Thirumoorthy and J. Jerold John Britto [25] noted that software defects can lead to severe
economic consequences, making early prediction essential. Software modules that are prone to
errors are categorized in this study using the Elitist Self-Adaptive Multi-Population Social
Mimic Optimization (ESAMP-SMO) technique as part of a clustering-based Software Defect
Prediction (SDP) method. While optimizing the fault prediction rate, the objective function
reduces intra-cluster distance. The CM1, JMI1, and KC1 datasets from the National
Aeronautics and Space Administration (NASA) are used in experiments to verify better
performance than current techniques. Table 1 shows the comparative analysis of the literature

survey.

ISSN: 2582-4104 145

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

Table 1. Comparative Analysis of Literature Survey

Reference Method Advantages Disadvantages
The ensemble SDP model The method requires high
improves accuracy and reduces | computation, increasing
[16] XGBoost
costs by balancing data. processing time and
resource usage.
[17] Bayesian Net | Feature selection enhances Feature selection uses extra
defect prediction accuracy in processing power and adds
SDP models. complexity to the
algorithm.
The method successfully CNN and GRU increase
corrects imbalance and model complexity and
[18] CNN) .
increases the accuracy of defect | computational cost.
prediction.
Improves data diversity, Computational complexity,
reduces noise in SFP potential data overfitting
[19] WACIL .
issues
[20] Nested- Enhances prediction accuracy, | Increased computational
stacking improves resource allocation cost, complex framework
classifier implementation
[21] WEKA Increases precision by Few datasets were used for
employing feature selection assessment.
(WFS).
[22] VESDP Improves prediction accuracy computationally expensive
by merging several classifiers. | due to iteration

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2

146

Suresh Yallamati, Shaheda Akthar

[23] FSDPS Achieves high accuracy, Increased complexity as a

surpassing base classifiers. result of integrating fuzzy
logic

[24] RBFNN It improves the ability to Requires a large amount of
predict defects across various processing power.
datasets

[25] ESAMP- Improved fault prediction and Improved fault prediction

SMO decreased intra-cluster distance | and decreased intra-cluster

distance

2.1 Summary

The comparative analysis discusses a number of SDP strategies and their benefits and
drawbacks. XGBoost uses a lot of processing resources even though it lowers expenses and
increases accuracy. Bayesian Net increases complexity while improving prediction through
feature selection. CNN corrects the imbalance while increasing computing costs. Despite its
computational issues, the nested-stacking classifier maximizes resource use, while WACIL
encourages data diversity. Despite their complexity and dataset limitations, methods like
WEKA, VESDP, and FSDPS improve accuracy. RBFNN enhances defect prediction but
requires a significant amount of processing power, whereas ESAMP-SMO enhances fault

detection and reduces intra-cluster distance.
2.2 Problem Statement

Software Defect Prediction (SDP), it detects issues early in the development process
and is essential for ensuring software reliability. However, problems including data imbalance,
noise, and computational complexity make it difficult to achieve high prediction accuracy.
Many current models suffer from overfitting, high processing costs, and poor generalizability.
Furthermore, striking a balance between efficiency and precision is still a major issue. An
enhanced SDP technique that improves fault prediction while maximizing computational

resources and preserving model scalability is thus required.

ISSN: 2582-4104 147

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

3. Proposed Methodology

The suggested Entangling Quantum Generative Adversarial Network with Football
Optimization Algorithm (EQGAN-FbOA) is designed for effective software defect prediction.
The PROMISE dataset, which comprises 1,125 examples divided into 80% training (900
instances) and 20% testing (225 instances), is first obtained. These instances are classified as
Defective (985) and Non-defective (140). Diffusion Models for Missing Value Imputation
(DMFMVI) are used for pre-processing. A Spike-driven Transformer (S-DT) is utilized for
feature extraction to improve computational performance. For defect prediction, EQGAN
generates quantum-enhanced feature representations and performs joint measurements on both
real and generated defect-prone module representations, ensuring accurate defect classification
through fidelity computation. To further optimize prediction performance, the FbOA enhances
the process by simulating football strategies, balancing exploration and exploitation for
improved defect detection. This combined approach strengthens software quality assessment
by integrating quantum generative learning with football-inspired optimization techniques,
leading to more precise and efficient software defect prediction (SDP).. Figure 1 shows the

workflow of the proposed EQGAN-FbOA.

PREPROCESSING

PROMISE Dataset

SOFTWARE DEFECT

Performance metrics PREDICTION

* Accuracy .

= Precision a— senet e Saversme
= Recall T

+ MCC

* F— MEasurs

o Non

Figure 1. Block Diagram of the Proposed Methodology
3.1 Data Acquisition

To evaluate software defect prediction, the PROMISE dataset is utilized, containing
two main classes: Defective and Non-defective, which are used to assess the effectiveness of
the suggested approach. There are 1,125 cases in the dataset, 985 of which are classified as
defective and 140 as non-defective. The dataset is divided into 20% testing (225 instances)

and 80% training (900 instances) for model evaluation. Name, version, amount of code files,

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 148

Suresh Yallamati, Shaheda Akthar

and defect rate are among the crucial project details it contains. In order to examine software

defect prediction, 20 static metric features are also extracted.
3.2 Pre-Processing Using Diffusion Models for Missing Value Imputation

The DMFMVI [26] aims to improve model performance. Pre-processing is an essential
step in data analysis that enhances data quality by reducing noise and increasing clarity.
Although the PROMISE dataset is frequently used to predict software defects, model
performance may be impacted by missing values in software measurements. Through a two-
step procedure called forward noising and reverse denoising, diffusion models provide an
efficient solution for missing value imputation. The forward process fixes the observed portion
of the data while gradually adding Gaussian noise to the unobserved portion. The opposite
procedure then learns the conditional distribution and iteratively reconstructs the missing data.
For missing value imputation in the PROMISE dataset, pre-processing involves standardizing
numerical attributes and encoding categorical variables. A diffusion-based imputation process
iteratively refines missing values using learned conditional distributions. Post-imputation,
decoding strategies such as probability-based selection, thresholding, and nearest-neighbour

methods ensure data integrity. This approach enhances defect prediction accuracy and software

quality assessment. An input dataset is separated into two parts: the unobserved y,, (missing
values to be predicted) and the observed y,, (known values). Equation (1) explains the

conditional distribution is approximated by the model.

) ok) (1)

nolye [y, v)= My, (v

where the conditional expectancies based on observed and missing data are represented
by the function 46 . The variable y“ represents the missing values, while y.° defines the
baseline observed data, serving as a reference for imputation. The transformation procedure
that improves missing value estimates is represented by the mapping function M () The
variance term oK indicates the uncertainty in the imputation process, guaranteeing robustness
in estimation, whereas the mean estimation function determines the expected value of missing
data. This approach aims toenhance data quality and improve model performance by effectively
imputing missing values in the PROMISE dataset. By leveraging diffusion models, the

approach ensures robust estimation, preserving data integrity for accurate defect prediction and

ISSN: 2582-4104 149

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

software quality assessment. Following pre-processing, feature extraction is covered in the next

section.
3.3 Feature Extraction Using Spike-Driven Transformer(S-DT)

The process of converting raw data into a collection of features that a spike-driven
transformer can use efficiently is known as feature extraction. Using sparse addition operations
to improve computing performance, the S-DT [27] combines the architecture of the
Transformer with the spike-driven paradigm. An essential component of this idea is the
computationally effective Leaky Integrate-and-Fire (LIF) neuron. Equations (2), (3), and (4)

describe the functioning of the LIF neuron.

V[s]= Gnb(E[s]-v,,), 3)

6l5)- M,V (A1) (- Vs) "

E [S] represents the membrane potential that results

Y[s] Y[S]

Where, S denotes the time step and

G[S N 1] , Where

from coupling the temporal input with the spatial input information

can be acquired using operators like self-attention, MLP, and Conv. A higher membrane

potential than the threshold Vi will cause the neuron to produce a spike.; else, it won't.

Vls]

Consequently, there is only 1 or 0 in the spatial output tensor . The Heaviside step function

an(y) satisfies the condition an(y) =1 when Y20 and an(y) =0 otherwise. Whereas
Gls]

N represents the reset potential that is set upon the activation of the output spike,

G[S]

represents the temporal output. The membrane potential E [S] will decay to if the spiking

neuron does not fire, with p<l as the decay factor. Based on spike activity, SPS dynamically

divides input patches. Spike-driven patch splitting is explained in Equation (5).

v=PSM(J) 5)

v=PSM(J)

where, is represented by the input stimulus or activation, v is the

calculated output, and PSM' gtands for the Patch Splitting Mechanism. This function

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 150

Suresh Yallamati, Shaheda Akthar

dynamically segments input patches according to spike activity in order to increase computing

efficiency while processing J utilize the spike-driven patch splitting. Equation (6) defines

the spike-driven self-attention to extract local-global dependencies.

H! =SDSAV,)+ H, 6)

H;, = SDSAWV, .)+ H,,

where, the feature representation update is represented by

here, the updated feature map at layer 77? is represented as H, , SDSA The Spike-Driven Self-

Attention mechanism is shown by SDSA, the input from the previous layer, 7 _1, is

represented by Vi , and the feature representation from the previous layer is represented by

H’"‘l. By combining spike-driven self-attention with previous feature information, this

formulation improves feature extraction. The final class result is expressed in Equation (7).
X =CH(GARV)) (7

where, CH s a channel-wise modification or compression function, Vi

is the input
feature map, X is the final output representation, and GAP s the Global Average Pooling
operation done to it. While maintaining crucial channel-wise information, this formulation
helps to the reduction of spatial dimensions. The integration of the spike-driven transformer
improves feature extraction efficiency, optimizing local-global feature representation and

reducing computational complexity. After feature extraction, the next step is prediction.
3.4 Prediction Using Entangling Quantum Generative Adversarial Networks (EQGAN)

In EQGAN for software defect prediction, quantum-enhanced feature representations
are generated to capture complex patterns in software data. The discriminator evaluates
entangled quantum states, refining defect detection accuracy and optimizing software quality
assessment. Using the PROMISE dataset, EQGAN [28] present a unique minimax optimization
method for predicting software defects. The EQGAN performs joint measurement on both the
created defect-prone module representations and the real software defect data, in contrast to
standard GANs where the discriminator assesses generated and real data independently.
Software defect prediction models are optimally evaluated which facilitates this measurement.
For complex defect classification, traditional quantum generative models may not be the best

option because they depend on a linear function of input states. To improve defect prediction

ISSN: 2582-4104 151

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

in software systems, EQ-GAN, on the other hand, uses a parameterized fidelity-based
discriminator to differentiate between produced and genuine defect patterns. The reliability of

the measurement function is shown in Equation (8).
Efd(p(é’k))Z(HZ\/ O'l/zp(gk)0'1/2)2 (8)

Where, the trace function 7z determines the relationship between P (0") and the

reference covariance matrix © , ensuring accurate defect pattern differentiation in EQ-GAN.

: : . EM P(Hk)
The equation represents the fidelity-based expectation ~¢ of the quantum state A

minimax cost function is explained in Equation (9).

minmaxG(6),, 0,) = minmaxl - £, (6, p(0,)]

©)

where, the parameters of the generator are represented by O .The parameters of the

discriminator are denoted as 9”. The discriminator and generator are balanced by the goal

G(6;.6,)

function is . The trace function norm that measures similarity is indicated by E,

P (0") represents the generated quantum state. The discriminator as follows in Equation (10).

UH(0.)010), 9)6) =2 % 1), [) -1w)¢)]

O A L R %) B

Where a UH(QG) unitary transformation is applied to the quantum state. The basis states

of the quantum system are |O>b and|1>b . |(p>| §> represents the quantum state input. J denotes

sin@

the unit of imagination. Trigonometric terms that determine state evolution are b and

—JOh
cos, .f represents the transformation's phase factor. Equation (11) is used to determine

the probability of measuring state |0>

E,(60,,0(0,) = [1+cos' 0, +sin 0,E[(p(6,)] -

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 152

Suresh Yallamati, Shaheda Akthar

where, the expected value is represented as £, (9” P (9")) depending on the parameters
1
0, and the quantum state P (6"‘) . A scaling factor of 2 isincluded in the equation to guarantee

normality. The weight distribution of the various components is controlled by the parameters

2 2
Y &, and sm 9". The reliability of the measurement linked to the quantum state is also

fid
represented by the fidelity-based expectation function is Es ('0 (Hk)).By using quantum-

enhanced generative adversarial training to precisely model defect-prone modules, the EQ-
GAN technique improves software defect prediction. It improves software quality evaluation
by better differentiating between created and real fault patterns through the use of fidelity-

based quantum measurements. In the next section, the EQGAN's weight parameters are E.H

optimized using the Football optimization algorithm.
3.5 Football Optimization Algorithm (FbOA)

The FbOA[29] is a metaheuristic optimization technique inspired by football strategies,
including passing, positioning, and teamwork. It models the optimization process as a football
game, where each agent (player) navigates the search space using short passes (local search),
lob passes (intermediate search), and through-ball passes (global search). These techniques
help maintain a balance between exploration and exploitation, preventing premature
convergence to local optima while ensuring efficient search performance. FbOA is applied to
software defect prediction by simulating real-time decision-making and adaptive positioning

to identify defect-prone modules.
Step 1: Initialization

Football players adjust their moves, pass strategically, and position themselves to create
scoring opportunities; these tactics are the inspiration behind FbOA. In order to ensure
dynamic flexibility and effective solution discovery, it emulates this optimization strategy by
using through-ball passes for global search, lob passes for intermediate exploration, and short

passes for local search.
Step 2: Fitness Function

The fitness function measures how well defects are identified in order to assess the

quality of solutions in FbOA. It assesses how effectively a player or agent moves up the search

ISSN: 2582-4104 153

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

space. Because the function is based on velocity and force updates, agents are guaranteed to
efficiently investigate promising defect patterns. The fitness function evaluates the quality of
each software defect prediction model by measuring the accuracy of each solution's
classification of fault-prone modules. Equation (12) provides an explanation of the function's

definition.

Fitnessfurction= Mid E, H \Max(Accuracy) (12)

where, the fitness function maximizes accuracy to optimize the optimal solution by

choosing the minimum of weights £ and H .
Step 3: Exploration

The FbOA's exploration performance is predicated on the idea that a player will always
execute his pass with a specific velocity. To avoid becoming stuck in the local optimum, the
search space must be explored while current regions are exploited. The dynamic process is

explained in Equation (13).
FHG(s+1))=j (13)

where, Fb represents the evaluation function for input. G(s+1) denotes the
transformation based on s represented by a function G applied to s+1. s Stands for a state

index or iteration. j Value that results from applying Fb to G(s +1).

Step 4: Football Velocity

FbOA dynamically adjusts the movement speed of agents, ensuring a balance between
exploration and exploitation. It incorporates external forces, acceleration factors, and
trigonometric modulation to enhance search efficiency in software defect prediction. The

formula shows each player's velocity is explained in Equation (14).

|+s-a, -bF

best —Fmin]XCOS(. d .]j
iteration (14)

Where, the number of factors determines the player's velocity at iteration 2 , which is

min

K, :Fmax(ay-bj[Fm ~F

represented as K,,. A velocity upper limit is established by the highest force applied, F,,,

which guarantees regulated movement inside the search space. The influence of various

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 154

Suresh Yallamati, Shaheda Akthar

directions on the agent's movement through the space is determined by the coefficients b x and

a,. The acceleration factors determine the b, and b . are essential for modifying speed since
they can either enhance or reduce the agent's motion. External influences, which take into
consideration extra forces influencing the search process, are represented by F,, . The lower

bound of velocity is indicated by the F

min *

The optimal force discovered thus far in the

optimization process is denoted by F,,,. s is a random variable that increases exploration and

adds variability. co{#j represents the speed is adjusted based on the number of
iteration

repetitions to maintain a balance between exploration and exploitation.
Step 5: Update for Best Force

The FbOA Update for the Best Force equation dynamically modifies the best-found
solution to further hone the search. Through repeated updates, it strikes a balance between
exploration and exploitation, ensuring an individualized yet flexible optimization process. The

optimal force is updated using Equation (15).

F = ! i E:i" (15)
o PE\ (2n+1)

where, the most effective force in the current optimization context is denoted by £, .

L is an exponential variable that balances exploration and exploitation by rising from 0 to 1

over the course of the iterations. (2n+l)2 is a normalization term to control the update rate.

F,

v INdicates the power raise.

Step 6: Exploitation

The FbOA in exploitation focuses on improving solutions within designated search
spaces, concentrating on lucrative areas during exploration. The update rules for agent location
changes during the exploitation phase is expressed in Equation (16).

FHG(s-+1)= F, +v,-FHG(s)+ D ~sin((16)

Iterati on)

ISSN: 2582-4104 155

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

where, the modified solution at iteration s+1 is denoted by FB(G(s+1)). Fi represents
the current position. A control parameter called v, modifies how the current and new positions

are balanced. At iterations, the current location or state is denoted by Fb(G(s)) D is an

exponential variable that rises as the iterations continue. The sin()speeds up

[teration

convergence to the ideal solution by introducing a sinusoidal modulation.
Step 7: Termination

Upon reaching a predetermined maximum number of iterations, achieving convergence
where the difference between the best solutions in successive iterations drops below a threshold
or reaching solution stability. where the fitness function value stabilizes, signifying no further
improvement FbOA comes to an end. Through the combination of adaptive search
mechanisms and football-inspired techniques, FbOA improves software defect prediction by
precisely identifying modules that are prone to defects while preserving strong search
efficiency. The Football Optimization Algorithm (FbOA) maximizes classification accuracy
and avoids premature convergence in order to enhance software defect prediction. It improves
flaw identification by establishing a balance between search space exploration and exploitation.

Figure 2 shows the Football Optimization Algorithm.

Initialization

Fitmess Fumction

Lpdate for Best Force

s ploratiom

Foothall YWelocity

Exploitation

Crprimmal Saolution

Terminatiom

Figure 2. Flow Chart for Football Optimization Algorithm

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 156

Suresh Yallamati, Shaheda Akthar

4. Results and Discussion

The proposed method utilizes Python 3.7.1 to process software defect data on Windows
10. Training and testing have been conducted using the PROMISE dataset. The EQGAN neural
network is employed for software defect prediction, with the model parameters detailed in

Table 2.

Table 2. Implementation Parameters

Parameters Values
Windows 10
Programming language Python version 3.7.1
Neural Network EQGAN
Optimization Football Optimization Algorithm
Dataset PROMISE

4.1 PROMISE Dataset Description

To evaluate the accuracy of the proposed strategy, six open-source Java programs were
selected from the PROMISE dataset. All six projects have publicly available source codes
and PROMISE [17] data. These projects, which comprise applications such as XML parsers,
data transport adapters, and text search engine libraries, provide traditional static metrics for
each Java file. The experimental datasets consistof projects with different sizes and fault rates
to ensure that the evaluation results are generalizable. The defect rate ranges from 2.23% to
92.19%, while the number of incidents across the six projects ranges from 205 to 965. Key
details about the selected projects are shown in Table 3, including the project name, version,

number of instances, and defect rate, or the percentage of problematic instances.

ISSN: 2582-4104 157

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

Table 3. Description of the PROMISE Dataset

Project version | Project name | Defect rate (%) | #of instances
1.6 camel 19.48 965
1.7 ant 22.28 745
2.0 vy 11.36 352
1.2 Log4j 92.19 205
1.4 Xerces 74.31 588
43 Jedit 2.23 492

4.2 Performance Metrics

Table 3 explains the performance metrics, including F-Measure, Recall, Precision,

MCC (Matthews Correlation Coefficient), and Accuracy.

True Positive (A): Accurately determinesthat a software module has become defective.
True Negative (B): Identifies a software module as non-defective with accuracy.
False positive (C): Incorrectly identifies a software module that isn't defective as one.

False Negative (D): Fails to identify a malfunctioning software module and incorrectly

labels it as non-defective.

Table 4. Performance Metrics

Performance Metrics Formula
Accuracy (4+B)/(A+C+D+B)
Precision A

A4+C
Recall A/(A+ D)

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2

Suresh Yallamati, Shaheda Akthar

MCC

A*B—C#D/\/(4+C)*(4+D)*(B+C)*(B+D)

F-Measure

(2#Recall*Precision)/(Recall+ precision

4.3 Performance Analysis of the Proposed Model

The suggested EQGAN-FbOA approach improves software fault prediction by

systematically processing the PROMISE dataset through steps of feature extraction, pre-

processing, and prediction. SDP accuracy has enhanced when the model has been validated

for performance analysis utilizing machine learning and optimization methodologies.

Table 5. Testing Outcome of Proposed Model for PROMISE Dataset

Module Input Data Pre-processing Feature Prediction
ID Extraction
loc=200 | v(g)=10 | loc=0.8 | V(g)=0.4 v(g)=0.4 Defective
iv(g)=5 | n=50 |Iv(g)=0.2 | n=0.6 v(g)=0.2
V=100 | d=20 v=0.7 d=0.4 n=0.6
1 =5 e=500 1=0.3 e=0.8 e=0.8
b=2 t=10 b=0.2 t=0.4 d=0.4
2 Ioc=100 | v(g)=5 | loc=0.5 | v(g)=0.2 v(g)=0.2 Non-
Defective
iv(g)=2 | n=25 |iv(g)=0.1 | n=0.5 v(g)=0.1
v=50 d=10 v=0.5 d=0.3 n=0.5
1=2.5 e=250 1=0.2 e=0.7 e=0.7
b=1 t=5 b=0.1 t=0.3 d=0.3

The EQGAN-FbOA model's testing results for software defect prediction using the

PROMISE dataset are shown in Table 5. It describes the various module IDs, the input data

that goes with them, the pre-processing procedures, the features that are extracted, and the final

ISSN: 2582-4104

159

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

forecasts. The pre-processing step normalizes several software metrics, including cyclomatic
complexity (v(g)), lines of code (loc), effort (¢), and number of decisions (d), to guarantee
effective feature representation. These metrics are further refined for better defect
categorization through feature extraction. Using learned patterns, the model successfully
separates modules that are defective from those that are not. The outcomes demonstrate how
well the suggested method predicts software flaws, making it a dependable tool for evaluating

software quality and identifying errors.

—=—Training
——Testing

Accuracy

"o 20 40 60 80 100 o 20 40 60 80 100
Epoch Epoch

Figure 3. Proposed (a) Accuracy and (b) Loss for PROMISE Dataset

The model's accuracy (left) and loss (right) for training and testing data across 100
training epochs are shown in Figure 3. The loss plot exhibits a continuous drop, whereas the
accuracy plot shows a gradual improvement, approaching near-optimal performance. Overall,
the model generalizes effectively, although the testing curves' modest oscillations point to some
overfitting. By assessing model performance, these learning curves guarantee efficient training

and reduce the possibility of overfitting.

True Positive Rate

0.4 0.6 0.8 1
False Positive Rate

Figure 4. Proposed ROC Curves for PROMISE Dataset

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 160

Suresh Yallamati, Shaheda Akthar

Plotting the True Positive Rate (TPR) versus the False Positive Rate (FPR) after
applying the Receiver Operating Characteristic (ROC) curve to the PROMISE dataset in Figure
4 shows the prediction efficiency of the proposed approach. The outstanding predictive
potential of the model is indicated by its Area Under the Curve (AUC) of 0.99. The curve
displays excellent sensitivity and specificity because it is near the top-left corner. Since the
model's curve is significantly above the diagonal orange dashed line, which represents random

guessing, the classifier performs significantly better than chance.

Confusion Matrix for PROMISE Dataset

175
Defective
Non-Defective -
=

P
=V
&
2

True Label

189
P
o‘} o‘}o
e
-
Predicted Label

Figure S. Proposed Confusion Matrix for PROMISE Dataset

Figure 5 shows the performance of the proposed model for the PROMISE dataset. Four
important metrics are included: one false negative (items that were mistakenly classified as
non-defective), 35 true negatives (items that were correctly identified as non-defective), 189
true positives (items that were correctly predicted to be faulty), and 0 false positives (no non-
defective items that were mistakenly classified as defective). The high number of correct
predictions and low misclassification rate demonstrate how well the model distinguishes

between defective and non-defective objects.

1000

800

600 -

Count

400 -

200 -

Defective Non-defective
Class

Figure 6. Class Distribution of Defective and Non-Defective Items

ISSN: 2582-4104 161

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

Figure 6 indicates that the dataset's faulty and non-defective items are distributed per
class. The blue bar shows defective products, which are substantially higher in count, close to
1000, whereas the orange bar represents non-defective articles, with a much smaller count of,
approximately 150-200. This suggests a class imbalance in which the dataset is dominated by
defective objects. Model performance may be impacted by such an imbalance, necessitating

the use of methods like weighted loss functions or resampling to increase classification

accuracy.

10 -

Featurel

Defective Non-defective
Class

Figure 7. Feature Distribution Across Defective and Non-Defective Classes

Figure 7 displays the distribution of Feature 1 between the non-defective and defective
groups. Defective products are represented by blue dots, which are widely distributed
throughout the feature range and show considerable variance. On the other hand, non-defective
items are represented by orange spots, which are more concentrated and indicate smaller
variance. This suggests that the two classes behave differently in terms of features. By utilizing

feature separability, these insights aid in feature selection and model training, enhancing

classification performance.

Featurel

Feature2

Feature3

Figure 8. Pair Plot of Features for Defective and Non-Defective Class

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 162

Suresh Yallamati, Shaheda Akthar

Figure 8 illustrates a pair plot that indicates the relationships between several
characteristics for both faulty and non-faulty items. Defective products are shown by blue
points, and non-defective items are indicated by orange points. Each feature's distribution is
displayed in diagonal plots, with defective items showing a wider spread than non-defective
ones. In order to find patterns that can help with model training and classification tasks, this

shows differences in feature distributions across the two classes.

Feature3 Mean Value

Defective Non-defective
Class

Figure 9. Mean Value Comparison of Feature3 for Defective and Non-Defective

Classes

A bar chart comparing the mean values of Feature3 for products that are defective and
those that are not is depicted in the figure 8. Defective products are shown by the blue bar, and
non-defective things are indicated by the orange bar. Feature 3 does not differentiate between
defective and non-defective things, as evidenced by the nearly identical mean values for the
two classes. This shows that Feature3 might have low predictive ability for categorization and

may require additional analysis or feature engineering to improve its usefulness.

12+

10

Featurel

Defective Non-defective
Class

Figure 10. Violin Plot of Featurel Distribution for Defective and Non-Defective

Classes

ISSN: 2582-4104 163

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

A violin plot comparing the distribution of Featurel for faulty and non-defective things
is displayed in figure 10. Defective things are represented by the blue plot, while non-defective
objects are represented by the orange plot. With a concentration of values in the middle range,
both groups show a comparable spread. This suggests that Featurel may not be a powerful
differentiator for classification but still offers insight into variability, as it shows a similar

distribution for both groups.

20.0 _— -

17.5

15.0

12.54

10.0

Feature2

N
[

5.0

2.5

0.0

Defective Non-defective
Class

Figure 11. Box Plot of Feature2 for Defective and Non-Defective Classes

A box plot comparing the distribution of Feature2 for faulty and non-defective products
is illustrated in figure 11. Defective things are indicated by the blue box, and non-defective
items are indicated by the orange box. The median, interquartile range and overall spread of
both classes are comparable, suggesting that Feature? is distributed similarly in both categories.
This suggests that while Feature2 might not be a powerful differentiator for categorization,

further research might identify minute variations or interactions with other features.

20.0

17.5

15.0

12.5

10.0

7.5

Feature2 Value

5.0

2.5 1

—— Defective
—— Non-defective

0.0 1

o 200 400 600 800 1000
Sample Index

Figure 12. Feature2 Value Distribution Across Samples for Defective and Non-

Defective Classes

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 164

Suresh Yallamati, Shaheda Akthar

A line plot of Feature 2 values for both defective and non-defective items across sample
indices is shown in Figure 12. Defective products are indicated by blue lines, and non-defective
things are indicated by orange lines. The majority of the collection contains defective items,
and a minor portion contains non-defective items. This suggests a class imbalance, where
defective samples predominate. Resampling strategies may be necessary to provide equitable

categorization and enhance predictive accuracy, as well as to affect model performance.

50 -

B
=}
|

w
o
|
|
|
I
I

Frequency

N
=]

10

o 2 4 6 8 10 12 14
Feature3

Figure 13. Distribution of Feature3 with Density Estimation

A histogram of Feature3 values, displaying their frequency distribution within the
dataset, is depicted in the Figure 13. The kernel density estimate (KDE), which highlights the
general distribution trend, is represented by the smooth green line, while the green bars show
the number of observations falling within particular value ranges. A reasonably even range of
Feature3 values is indicated by the histogram's apparent uniformity. In machine learning tasks,

feature engineering, normalization, and model selection all depend on an understanding of such

distributions.

0.035 |
0.030
0.025

; Class

1 0.020 Defective

A Non-defective
0.015 |
0.010
0.005 4
0.000

-5 o 5 10 15 20 25 30
Feature4

Figure 14. Kernel Density Estimation of Feature4 by Class

ISSN: 2582-4104 165

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

Figure 14 shows the probability density distribution of Feature 4 for both the defective
and non-defective classes. Defective things are indicated by the blue shaded area, whereas non-
defective items are shown by the light red area. Given its significantly higher density, the
defective class appears to make up a bigger percentage of the sample. Classification
performance may be impacted by the overlapping distribution, which indicates some
resemblance between the two classes for this characteristic. Selecting features and preparing

data for machine learning models is made easier with an understanding of feature distribution.

Feature4 Feature3 Feature2 Featurel

Featurel FeatureZ Feature32 Featured

Figure 15. Correlation Matrix of Features

Figure 15 displays the correlation matrix of four features with values ranging from -1
to 1, each cell displays the Pearson correlation coefficient between two attributes. When the
diagonal values are 1, complete self-correlation is indicated. Using the color gradient from
blue (low correlation) to red (high correlation) makes relationships simpler to discern. All of
the feature correlations in this case are near 0, indicating that there is either no linear association
at all or very weak ones. This could have an effect on the choice of features in machine learning

models.

20.0
17.5
15.0

12.5

5.0

2.5 Defective

0.0 Non-defective

o 2 a4 6 8 10
Featurel

Figure 16. Scatter Plot of Featurel vs. Feature2

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 166

Suresh Yallamati, Shaheda Akthar

The distribution of two characteristics, Featurel and Feature 2, is shown in Figure
16. This scatter plot is categorized according to the class labels "Defective" (blue) and "Non-
defective" (orange). There is no obvious pattern or linear division between the two classes, as
the points seem to be dispersed randomly. This suggests that it could be difficult to differentiate
between samples that are flawed and those that are not based solely on these characteristics.
For improved class separation, more feature engineering or sophisticated classification

techniques might be required.

Class = Defective Class = Non-defective
50 =

40

30 M

Count

20

10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 7 . - .
Feature3 Feature3

Figure 17. Distribution of Feature3 by Class

Figure 17 shows the distribution of Feature3 for the faulty and non-defective classes,
Defective samples are depicted in the left plot, which has a somewhat uniform distribution with
different peaks. Non-defective samples, which are substantially fewer and show a more
distributed distribution, are depicted in the right plot. The two classes' glaringly different
counts point to an imbalance in the data, which could affect classification performance.
Strategies for feature selection and model improvement can benefit from an understanding of

this distribution.

Feature2

Defective
— Non-defective

Feature3 Featurel

Featured

Figure 18. Radar Chart of Feature Comparison by Class

ISSN: 2582-4104 167

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

The average values of four characteristics (Feature 1, Feature 2, Feature 3, and Feature
4) for both defective and non-defective samples are provided in figure 18. Both classes have
comparable distributions across these traits, as shown by the almost overlapping lines. Feature
1 displays the lowest values, while Features 2 and 4 show the highest. When examining
multidimensional data, radar maps can be helpful in seeing trends and connections between

several classes, which can aid in feature selection and the creation of classification models.
4.4 Performance Analysis of Proposed Method Compared with the Existing Methods

Using the PROMISE dataset, the efficacy and efficiency of the proposed approach are
carefully assessed, and the outcomes are contrasted with those of other approaches. Precision,
Accuracy, MCC, recall and F-measure are among the evaluation metrics. CNN [18], XGBoost
[16], Bayesian Net [17], WACIL [19], and the Nested-stacking classifier [20] were the methods
compared on the PROMISE dataset. These comparisons help assess how much the proposed

method improves software defect prediction performance.

Table 6. Comparison of Proposed with Existing Methods for PROMISE Dataset

Methods Accuracy | Precision | Recall | MCC | F — Measure
(%) N R R D)
XGBoost [16] 81.3 81.3 823 | 724 84.2
Bayesian Net [17] 77.6 78.5 90.4 | 72.1 83.8
CNN [18] 88.3 87.6 843 | 77.1 90.4
WACIL [19] 82.5 87.3 80.4 | 79.3 80.6
Nested-stacking 74.8 75.7 853 | 78.7 90.4
classifier [20]
EQGAN-FbOA 99.8 99.7 99.6 | 99.5 99.4
(Proposed)

A comparison of various software defect prediction techniques using the PROMISE
dataset is shown in Table 6. Conventional methods with accuracy ranging from 74.8% to

88.3%, like CNN, Bayesian Net, and XGBoost, perform moderately. The proposed EQGAN-

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 168

Suresh Yallamati, Shaheda Akthar

FbOA model significantly outperforms all existing methods with impressive MCC of 99.5%,
F-Measure of 99.4%, recall of 99.6%, precision of 99.7%, and accuracy of 99.8%. This
demonstrates its exceptional efficacy in precisely forecasting software flaws with great

performance and dependability.
4.5 Statistical Analysis of the Proposed Method Versus Existing Methods

The EQGAN-FbOA proposed approach is statistically evaluated against other baseline
methods at a significance level of 0.05 for each project using Friedman's non-parametric test
and Nemenyi's post-hoc test. By comparing the average ranks of the approaches, the Friedman
test determines whether any differences are statistically significant. It does not presume any
particular distribution and is less impacted by outliers because it ranks the approaches

according to performance rather than raw values. This can be expressed in Equation (17).

_12M (iCLz_K(KH)zJ a7

rIRE ST 4

where, K is the number of techniques that need to be compared in order for

cp KK +1]

1

to be calculated, and M is the total number of projects. L, represents the

rank of the i—th project, and L, represents the average rank of method i over all projects.
Obedient to the Y? distribution, T, has a degree of freedom of K +1. Then the variation of

7, , 1s typically employed to perform the statistic test since the original Friedman test statistic
is too conservative is shown in Equation (18).

(M -1,

MK =) -7, (18)

where, the F -distribution is represented by the above equation, which has (M —1) and
the degrees of freedom, (K —1) If 7. is the lowest value from the F -distribution table,

signifying statistically significant differences, the null hypothesis is rejected. A post-hoc test,
like Nemenyi's test, can be used to determine whether specific procedures differ significantly

if the null hypothesis is rejected. Equation (19) is used to determine the crucial difference DC

ISSN: 2582-4104 169

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

DC=h,, K6K—M“ (19)

where, the number of techniques and significance level determine the crucial value,

h, x - Two approaches are deemed significantly different if their rank difference is more than

the DC . The Nemenyi test's disadvantage is that approaches may fall under more than one

overlapping category.

Table 7. Statistical Analysis Results Using Friedman Test and Nemenyi Post-hoc Test

Method Average Rank | Rank Group
XGBoost [16] 4.33 Bottom
Bayesian Net [17] 5.17 Bottom
CNN [18] 3.00 Middle
WACIL [19] 3.50 Middle
Nested-stacking classifier [20] 2.17 Top
EQGAN-FbOA (Proposed) 1.83 Top

The statistical comparison of several approaches using the Nemenyi post-hoc test and
the Friedman test is shown in Table 7. The average rank column shows the relative performance
of each method across multiple datasets, with lower ranks indicating better performance. The
proposed EQGAN-FbOA method achieved the best rank (1.83), followed by the Nested-
Stacking classifier (2.17), both forming the top-performing group. CNN (3.00) and WACIL
(3.50) fall into the middle group, while XGBoost (4.33) and Bayesian Net (5.17) perform the

worst, forming the bottom group.
4.6 Ablation Study of the Proposed Method

Use the PROMISE dataset to assess the effects of each component in the proposed
EQGAN-FbOA method. The baseline is the EQGAN model, highlighting its predictive
function. When EQGAN is added, accuracy rises, proving how well attention processes work

to improve predictions. The entire model, EQGAN-FbOA, achieves the highest accuracy,

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 170

Suresh Yallamati, Shaheda Akthar

highlighting the significance of FbOA-based weight parameter adjustment in improving

software defect prediction performance.

Table 8. Ablation Study

PROMISE dataset
Methods Accuracy (%) | Precision (%)
EQGAN 93.59
EQGAN with SDT 92.97
EQGAN - SDT- FbOA 99.9%

An ablation study utilizing the PROMISE dataset to assess the effects of several
EQGAN-FbOA model components is shown in Table 8. The EQGAN model alone achieves
93.59% accuracy, serving as the baseline. When incorporating SDT, the accuracy slightly
decreases to 92.97%, indicating its limited contribution. The efficacy of FbOA-based weight
parameter adjustment in improving software defect prediction performance is demonstrated by
the entire model, EQGAN-SDT-FbOA, which performs noticeably better than the others with

an astounding 99.9% accuracy.
4.7 Discussion

The PROMISE dataset was used to assess the EQGAN-FbOA model's capacity to
forecast software faults. Performance analysis reveals that conventional methods, such as
CNN, XGBoost, Bayesian Net, and WACIL, achieve moderate accuracy, with values ranging
from 74.8% to 88.3%, In contrast, the proposed EQGAN-FbOA method achieves 99.8%
accuracy, 99.7% precision, and 99.6% recall, demonstrating a significant improvement. Its
superiority is confirmed by statistical validation using the Friedman test and Nemenyi post-hoc
test, which position it as the best-performing model. Additionally, the ablation study highlights
the contributions of EQGAN and FbOA, showing that FbOA-based weight optimization
prevents premature convergence and enhances defect prediction accuracy. The study confirms
that integrating quantum generative learning with football-inspired optimization leads to more
reliable software quality assessment. These findings establish EQGAN-FbOA as a highly
efficient approach for enhancing software defect prediction, improving accuracy, robustness,

and overall software reliability.

ISSN: 2582-4104 171

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

5. Conclusion

The proposed EQGAN-FbOA framework significantly enhances software defect
prediction by integrating Entangling Quantum Generative Adversarial Networks (EQGAN)
with the Football Optimization Algorithm (FbOA). This model improves defect classification
through quantum-enhanced feature representations, while FbOA optimizes feature selection
and classification accuracy by effectively balancing exploration and exploitation. Experimental
validation on the PROMISE dataset demonstrates that the proposed method outperforms
conventional approaches, achieving accuracy of 99.8%, Matthews Correlation Coefficient
(MCC) 0of 99.5%, precision of 99.7%, F-measure of 99.4%, and recall of 99.6%. However, the
model presents certain limitations, including increased computational complexity with larger
datasets, resulting in longer training times and resource constraints. Furthermore, the
performance of FbOA is contingent upon hyperparameter tuning, necessitating additional
optimization. Future research could investigate hybrid classical-quantum architectures to
enhance computational efficiency and develop adaptive tuning mechanisms for FbOA.
Extending this approach to multi-label defect classification may further broaden its

applicability across various software engineering domains.

Reference

[1] Zheng, Wei, Tianren Shen, Xiang Chen, and Peiran Deng. "Interpretability application
of the Just-in-Time software defect prediction model." Journal of Systems and Software

188 (2022): 111245,

[2] Uddin, Md Nasir, Bixin Li, Zafar Ali, Pavlos Kefalas, Inayat Khan, and Islam Zada.
"Software defect prediction employing BiLSTM and BERT-based semantic feature."
Soft Computing 26, no. 16 (2022): 7877-7891.

[3] Feng, Shuo, Jacky Keung, Yan Xiao, Peichang Zhang, Xiao Yu, and Xiaochun Cao.
"Improving the undersampling technique by optimizing the termination condition for

software defect prediction." Expert Systems with Applications 235 (2024): 121084.

[4] Pandit, Mahesha, Deepali Gupta, Divya Anand, Nitin Goyal, Hani Moaiteq Aljahdali,
Arturo Ortega Mansilla, Seifedine Kadry, and Arun Kumar. "Towards design and
feasibility analysis of DePaaS: Al based global unified software defect prediction
framework." Applied Sciences 12, no. 1 (2022): 493.

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 172

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Suresh Yallamati, Shaheda Akthar

Azzeh, Mohammad, Yousef Elsheikh, Ali Bou Nassif, and Lefteris Angelis. "Examining
the performance of kernel methods for software defect prediction based on support vector

machine." Science of Computer Programming 226 (2023): 102916.

Abdu, Ahmed, Zhengjun Zhai, Redhwan Algabri, Hakim A. Abdo, Kotiba Hamad, and
Mugahed A. Al-antari. "Deep learning-based software defect prediction via semantic key

features of source code—systematic survey." Mathematics 10, no. 17 (2022): 3120.

Balasubramaniam, S., and Shantappa G. Gollagi. "Software defect prediction via optimal
trained convolutional neural network." Advances in Engineering Software 169 (2022):

103138.

Alazba, Amal, and Hamoud Aljamaan. "Software defect prediction using stacking
generalization of optimized tree-based ensembles." Applied Sciences 12, no. 9 (2022):

4577.

Alazba, Amal, and Hamoud Aljamaan. "Software defect prediction using stacking
generalization of optimized tree-based ensembles." Applied Sciences 12, no. 9 (2022):

4577.

Liu, Jingyu, Jun Ai, Minyan Lu, Jie Wang, and Haoxiang Shi. "Semantic feature learning
for software defect prediction from source code and external knowledge." Journal of

Systems and Software 204 (2023): 111753.

Bai, Jiaojiao, Jingdong Jia, and Luiz Fernando Capretz. "A three-stage transfer learning
framework for multi-source cross-project software defect prediction." Information and

Software Technology 150 (2022): 106985.

Zivkovic, Tamara, Bosko Nikolic, Vladimir Simic, Dragan Pamucar, and Nebojsa
Bacanin. "Software defects prediction by metaheuristics tuned extreme gradient boosting
and analysis based on shapley additive explanations." Applied Soft Computing 146
(2023): 110659.

Nevendra, Meetesh, and Pradeep Singh. "Empirical investigation of hyperparameter
optimization for software defect count prediction." Expert Systems with Applications

191 (2022): 116217.

ISSN: 2582-4104 173

Entangling Quantum Adversarial Network with Football Optimization for Software Defect Prediction

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Tang, Yu, Qi Dai, Mengyuan Yang, Tony Du, and Lifang Chen. "Software defect
prediction ensemble learning algorithm based on adaptive variable sparrow search
algorithm." International Journal of Machine Learning and Cybernetics 14, no. 6 (2023):

1967-1987.

Bai, Jiaojiao, Jingdong Jia, and Luiz Fernando Capretz. "A three-stage transfer learning
framework for multi-source cross-project software defect prediction." Information and

Software Technology 150 (2022): 106985.

Dar, Abdul Waheed, and Sheikh Umar Farooq. "An ensemble model for addressing class
imbalance and class overlap in software defect prediction." International Journal of

System Assurance Engineering and Management 15, no. 12 (2024): 5584-5603.

Mehmood, Igra, Sidra Shahid, Hameed Hussain, Inayat Khan, Shafiq Ahmad, Shahid
Rahman, Najeeb Ullah, and Shamsul Huda. "A novel approach to improve software

defect prediction accuracy using machine learning." IEEE Access 11 (2023): 63579-
63597.

Khleel, Nasraldeen Alnor Adam, and Kéroly Nehéz. "A novel approach for software
defect prediction using CNN and GRU based on SMOTE Tomek method." Journal of
Intelligent Information Systems 60, no. 3 (2023): 673-707

Manchala, Pravali, and Manjubala Bisi. "Diversity based imbalance learning approach
for software fault prediction using machine learning models." Applied Soft Computing

124 (2022): 109069.

Chen, Li-qiong, Can Wang, and Shi-long Song. "Software defect prediction based on
nested-stacking and heterogeneous feature selection." Complex & Intelligent Systems 8,

no. 4 (2022): 3333-3348.

Mehmood, Iqra, Sidra Shahid, Hameed Hussain, Inayat Khan, Shafiq Ahmad, Shahid
Rahman, Najeeb Ullah, and Shamsul Huda. "A novel approach to improve software

defect prediction accuracy using machine learning." IEEE Access 11 (2023): 63579-
63597.

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2 174

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Suresh Yallamati, Shaheda Akthar

Ali, Misbah, Tehseen Mazhar, Yasir Arif, Shaha Al-Otaibi, Yazeed Yasin Ghadi, Tariq
Shahzad, Muhammad Amir Khan, and Habib Hamam. "Software defect prediction using
an intelligent ensemble-based model." IEEe Access 12 (2024): 20376-20395.

Aftab, Shabib, Sagheer Abbas, Taher M. Ghazal, Munir Ahmad, Hussam Al Hamadji,
Chan Yeob Yeun, and Muhammad Adnan Khan. "A cloud-based software defect

prediction system using data and decision-level machine learning fusion." Mathematics

11, no. 3 (2023): 632.

Alkhasawneh, Mutasem Shabeb. "Software defect prediction through neural network and
feature selections." Applied Computational Intelligence and Soft Computing 2022, no. 1
(2022): 2581832.

Thirumoorthy, K., and J. Jerold John Britto. "A clustering approach for software defect
prediction using hybrid social mimic optimization algorithm." Computing 104, no. 12

(2022): 2605-2633.

Zheng, Shuhan, and Nontawat Charoenphakdee. "Diffusion models for missing value

imputation in tabular data." arXiv preprint arXiv:2210.17128 (2022).

Yao, Man, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li.
"Spike-driven transformer." Advances in neural information processing systems 36

(2023): 64043-64058.

Niu, Murphy Yuezhen, Alexander Zlokapa, Michael Broughton, Sergio Boixo, Masoud
Mohseni, Vadim Smelyanskyi, and Hartmut Neven. "Entangling quantum generative

adversarial networks." Physical Review Letters 128, no. 22 (2022): 220505.

El-Kenawy, El-Sayed M., Faris H. Rizk, Ahmed Mohamed Zaki, M. E. Mohamed, A.
Ibrahim, Abdelaziz A. Abdelhamid, Nima Khodadadi, E. M. Almetwally, and M. M. Eid.
"Football optimization algorithm (fboa): A novel metaheuristic inspired by team strategy

dynamics." J. Artif. Intell. Metaheuristics 8, no. 1 (2024): 21-38.

ISSN: 2582-4104 175

