
Journal of Trends in Computer Science and Smart Technology (ISSN: 2582-4104)  
www.irojournals.com/tcsst/    

 

Journal of Trends in Computer Science and Smart Technology, June 2025, Volume 7, Issue 2, Pages 266-294                                                                          266 
DOI: https://doi.org/10.36548/jtcsst.2025.2.008 

Received: 28.05.2025, received in revised form: 26.06.2025, accepted: 10.07.2025, published: 19.07.2025 
 © 2025 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License 

Context-Aware Multi-Modal Graph 

Attention Fusion Network for Adaptive 

Resource Allocation in Wireless Networks 

Anoop Mohanakumar1, Uma Shankari Srinivasan2, Judy Simon3, 

Nellore Kapileswar4, Sutha K.5* 

1Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha 

Institute of Medical and Technical Sciences, SIMATS, Chennai, India. 

2,5Department of Computer Science and Applications, Faculty of Science and Humanities, SRM 

Institute of Science and Technology, Ramapuram, Chennai, India. 

3,4Department of Electronics and Communication Engineering, Saveetha School of Engineering, 

Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai, India 

Email: 1anoopm.sse@saveetha.com, 2umabalajees@gmail.com, 3judysimon.sse@saveetha.com, 

 4kapileswarn.sse@saveetha.com, 5*ksutha1986@gmail.com 

Abstract 

Resource allocation in wireless networks is an important factor as it defines e the 

utilization of spectrum usage, resource distribution, and quality of services. The evolution of 

mobile communication brings additional challenges in allocating the resources due to high user 

mobility, heterogenous traffic demands, and dynamic topologies. Conventional techniques lag 

in performance due to their static optimization procedures and limited spatial-temporal 

awareness. To overcome this, a Spatio-Attentive Graph Mixture Network (SAGMNet) is 

proposed in this research work for enhanced resource management. The proposed model 

incorporates graph-based learning with a multi-modal attention mechanism for feature 

processing and scheduling decisions. The experimental analysis of the proposed model utilizes 

benchmark vehicular wireless scheduling dataset and evaluates the model's performance with 

different metrics like spectrum utilization, throughput, and latency. The proposed model 

exhibits superior performance in terms of 93.6% spectrum utilization efficiency, 29.1 Mbps 

average throughput, 0.087 interference index, 3.26 Mbps/Watt energy efficiency, 0.961 

scheduling fairness, 5.9ms allocation latency, 0.928 mobility robustness score, and 3.2 ms  
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inference time, which is better than conventional DNN, GCN, LSTM, ST-GCN, and 

Transformer-GAT models.  

Keywords: Context-Aware Scheduling, Spatio-Temporal Graph Learning, Adaptive Resource 

Management, Intelligent Wireless Networks, Dynamic Topology Optimization, Mobility-

Robust Allocation. 

1. Introduction 

Adaptive resource allocation plays an important role in modern wireless 

communication systems due to the demand for low latency and high-speed reliable 

connectivity. The increased usage of mobile devices, adaptation of IoT systems, and 

advancements in vehicular communication require dynamic adaptive procedures to handle real-

time network variations [1]. The adaptive resource allocation process provides intelligent 

distribution of resources like bandwidth and power based on user mobility, channel conditions, 

and interference levels [2]. Additionally, the   adaptive resource allocation procedure optimizes 

spectral efficiency and   energy utilization in dynamic environments. Specifically, adaptive 

resource allocation ensures network robustness and effectiveness in networks that experience 

frequency topology changes [3]. Moreover, adaptive resource allocation is essential for the 

evolving 5G and 6G systems, which process real-time data and advanced decision models to 

provide consistent quality of service to users [4].  

Apart from its importance, incorporating adaptive resource allocation in wireless 

networks brings numerous challenges. One significant challenge is the accurate modeling of 

the dynamic nature of wireless environments. Since users in dynamic environments move 

randomly which leads to reduced signal quality due to interference, congestion, and multipath 

fading [5]. Another challenge in adapting resource allocation in latency-sensitive applications 

is the requirement for instantaneous decisions making, r especially when deployed in edge or 

distributed systems. Most of the existing approaches developed so far face limitations in 

balancing the multiple objectives such as throughput, fairness, and energy efficiency [6-7]. 

Moreover, the computational complexity of real-time optimization limits the model’s practical 

adaptability and scalability. These limitations highlight the need for an intelligent, lightweight 

model with the ability to adapt to high mobility and resource-constrained environments. 

Existing optimization models based on the Markov decision process [8] and game theory [9] 

assume an ideal environment for analysis. They also require complete knowledge about 
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network status and user distribution, which is not feasible in real-time environments. Better 

interpretability and accommodation of dynamic changes in large-scale scenarios are necessary. 

In some cases, rule-based heuristics and statistical learning procedures are adopted to attain 

better performance; however, these systems require predefined feature mappings. Additionally, 

these techniques lack the flexibility to incorporate real-time data, making them unsuitable for 

networks such as vehicular networks. 

Recent learning-based models, specifically deep learning, graph learning, and attention 

mechanisms, exhibit better solutions for resource allocation problems. Graph Convolutional 

Networks and their variants, like Graph Attention Networks, are utilized to model network 

topologies for extracting spatial features [10]. Recurrent networks such as LSTM are used to 

model the temporal variations in traffic load and mobility. A few hybrid models combine 

attention modules with transformers to demonstrate the model's ability to process long-term 

dependencies. However, these models focus either on spatial or temporal features, which 

results in limited performance in highly dynamic environments. Moreover, the computational 

complexity and scalability limit their deployment in real-time environments.  

From the brief summary, the research work identifies several questions as follows:  

• How can a model effectively process the spatial and temporal dynamics in a mobile 

wireless network? 

• Is there a better architecture that can be developed to perform adaptive fusion so 

that multimodal inputs like data mobility, signal quality, and network topology can 

be considered and processed? 

• What is the possibility of developing a single module to enable a better balance 

between different objective functions? If developed, how would the model perform 

well in a dynamic environment with limited resources? 

Considering the above research questions, the proposed research framed an objective 

to develop a lightweight context-aware architecture for allocating optimal resources in a 

dynamic wireless network. The core objective is to design a learning model that integrates 

spatio-temporal features through a novel Spatio-Attentive Graph Mixture Network (SA-

GMNet). The proposed approach incorporates a multi-head attention mechanism with a graph 

mixture layer to combine multiple graph views dynamically for capturing the local and global 
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connectivity among users. Additionally, the proposed SA-GMNet incorporates spatio-temporal 

awareness, which makes it highly responsive to user mobility and channel variability. The 

novelty of the research work lies in its novel fusion of heterogeneous modalities such as spatial, 

temporal, and contextual features. The primary contributions of this work are summarized as 

follows: 

• Proposed a novel deep learning model, SA-GMNet, for adaptive resource 

allocation in dynamic wireless environments. The proposed SA-GMNet 

incorporates a graph mixture layer to provide spatial modeling while capturing the 

multi-view topologies. Additionally, an attention-based sequence modeling is 

presented to effectively encode the temporal dependencies and user mobility 

patterns. 

• A detailed experimental analysis is presented using a benchmark vehicular wireless 

scheduling dataset to validate the proposed model's performance under realistic 

conditions. 

• Experimental results exhibit the better performance of the proposed SA-GMNet 

with 93.6% spectrum efficiency, 29.1 Mbps throughput, 0.087 interference index, 

and 3.2 ms inference time, which is better than conventional models. 

• The remaining discussions are arranged in the following order: Section 2 provides 

the literature review of existing research works. Section 3 presents the proposed 

work, and Section 4 presents the results with relevant discussion. The conclusion 

is presented in the last section. 

2. Related Works 

A brief literature review of existing resource allocation approaches is considered for 

analysis, and the identified limitations are presented as a research summary in this section. A 

combination of multilayer perceptron with decision tree is presented in [11] to enable energy-

efficient access points in wireless networks. Additionally, the analysis incorporates 

optimization algorithms like PSO and GA to fine-tune the ML model hyperparameters. 

However, the lack of low latency and high packet loss are the limitations of the presented model 

when applied in dynamic network traffic conditions.  
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The distributed resource allocation model presented in [12] incorporates a modified 

Kuramoto strategy formulated based on node specific weights. The presented model performs 

allocation considering the dynamic QoS demands. It also adjusts the phase differences between 

nodes while mapping the time slots in a TDMA system and attains efficient bandwidth 

utilization. An adaptive resource allocation algorithm is presented in [13] for 5G vehicular 

cloud communication networks. The presented model integrates in-band and out-of-band 

communication modes with single-hop and multi-hop configurations to evaluate transmission 

performance under varying network conditions. The adaptive mechanism utilizes an objective 

function to optimize allocation dynamically based on current network states. However, the 

presented model assumes idealized conditions such as fixed communication radii and fully 

connected networks, which may not fully reflect real-world vehicular scenarios with high 

mobility and diverse interference patterns. 

The resource allocation procedure reported in [14] for next-generation wireless 

networks integrates Convolutional Neural Networks (CNN) with Game Theory. The presented 

model utilizes a hierarchical radio resource management architecture in which local radio 

resource managers handle subchannel distribution and reduce the overhead on central 

controllers. The CNN efficiently extracts network slicing patterns, and Game Theory optimizes 

resource distribution among competing slices. An optimal resource allocation strategy is 

presented in [15] for 5G networks to enable efficient coexistence of cellular and device-to-

device (D2D) communication. The approach adopts a two-layer game-theoretic matching 

algorithm in which the first layer assigns channels to cellular users using a many-to-one 

matching model. The second layer allocates D2D resources based on many-to-many matching. 

Additionally, a utility function based on Quality of Experience is used to guide the optimization 

to attain better user satisfaction and throughput. 

The joint resource allocation and power control algorithm presented in [16] for device-

to-device D2D communications in 5G networks provides enhanced energy efficiency under 

quality-of-service constraints. The model includes a modified particle swarm optimization PSO 

framework to handle both discrete and continuous decision variables. The hybrid update 

mechanism used in the presented model for subchannel allocation and transmit power matrices 

preserves network constraints. However, the approach assumes perfect channel state 

information and static user distribution, limiting its real-time applicability in dynamic and 

mobile environments. The distributed multi-agent deep reinforcement learning algorithm 
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presented in [17] solves the joint problem of mode selection and channel allocation in device-

to-device D2D communications. The presented Deep Q-Network maximizes system sum-rate 

while satisfying user Quality of Service QoS constraints, particularly in environments utilizing 

both millimeter wave and traditional cellular bands. However, the model's assumptions 

regarding fixed mobility and simplified channel conditions limit its real-world scalability. 

The federated learning framework presented in [18] for edge-assisted Device-to-Device 

D2D communication networks addresses computational and communication heterogeneity 

among edge nodes. The presented model introduces a D2D offloading mechanism that 

reallocates data samples between edge devices based on their resource capacities before 

federated training begins. The methodology transforms a non-convex optimization problem 

into a convex one and attains an optimal solution using the CVX optimization tool, which is 

later rounded to find the best discrete task distribution. Simulation using the benchmark dataset 

shows that the presented model enhances training efficiency and reduces total system time, 

particularly for larger aggregation rounds. However, the study assumes static channel 

conditions, which limit its applicability in practical applications. 

The resource allocation model presented in [19] utilizes federated learning to utilize the 

computational features and security of individual terminals. The model allocates resources 

considering both macro and micro base stations and assigns subcarriers in an optimal manner. 

The experimental results validate the model’s better performance over conventional 

approaches. An allocation model presented in [20] incorporates deep reinforcement learning, 

in which a deep Q-network is used for guaranteed exploration and model convergence in 

resource allocation. The presented model also considers the various priority levels of users to 

enhance service quality. The simulation analysis exhibits the model’s better convergence rate, 

stability, and reduce complexity compared to existing methods. Another resource allocation 

model presented in [21] for cognitive radio networks optimizes the task scheduling and 

allocation process by formulating the long-term average system cost. Through the proposed 

Lyapunov optimization, the presented approach identifies the limits, and by utilizing deep 

reinforcement learning, the model effectively allocates resources in a better manner compared 

to conventional methods.  
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Table 1. Summary of Literature Review 

Ref Methodology Advantages Limitations 

[11] MLP and 

Decision Tree 

with optimization 

Improved energy-focused 

resource prediction and 

evolutionary tuning 

Lacks in performance due to 

high packet loss and delayed 

responses in dynamic network 

loads 

[12] Modified 

Kuramoto-based 

TDMA slot 

mapping 

Adapts bandwidth based on 

real-time QoS with node-

weight awareness 

Restricted to single-hop setups 

and ignores multi-hop routing 

and energy constraints 

[14] CNN with Game 

Theory 

Learns network for better 

resource processing across 

users with decentralized 

control 

Tested under static traffic and 

exhibit limited responsiveness 

[15] Dual-layer game 

matching for 

cellular and D2D 

coexistence 

Enhanced QoE with layered 

allocation structure 

Assumes fixed transmission 

power and no mobility variance 

[16] PSO-enhanced 

joint power and 

subchannel 

allocation 

Balanced energy efficiency 

with spectrum reuse 

Requires perfect channel 

estimates and unsuitable for 

dynamic traffic 

[17] Multi-agent DRL Improved capacity and user 

satisfaction 

Simplified channel model which 

lacks adaptability for realistic 

user motion 

[18] Federated 

learning 

Enhanced distributed training 

and reduced total system time 

Limited responsiveness to 

runtime variability 
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Research Gap 

The brief literature analysis highlights the critical research gaps in the domain of 

adaptive resource allocation for wireless and IoT-enabled networks. Many existing approaches 

dependon static or idealized assumptions such as fixed mobility patterns, perfect channel 

conditions, or centralized control, which limit scalability and responsiveness in real-world 

dynamic environments. In a few research works, reinforcement learning and game-theoretic 

frameworks are used; however, they often neglect the joint modeling of spatial, temporal, and 

contextual factors crucial for real-time adaptation. The existing models mainly focus on energy 

efficiency and throughput without ensuring fairness or latency guarantees, which is more 

essential for heterogeneous and delay-sensitive applications. Additionally, the existing 

methodologies often lack multi-modal data fusion as they depend on single-dimensional 

optimization strategies. This leads to issues in allocation performance as it fails to capture the 

complexity of modern network topologies. These limitations highlight the need for a unified, 

lightweight, and context-aware model that can intelligently learn from spatial and temporal 

variations while adapting decisions in real-time precisely the motivation behind the proposed 

SA-GMNet framework. 

The proposed SA-GMNet addresses these limitations through a combined learning 

module that fuses multi modal data. The incorporation of spatial graphs, temporal sequences 

and contextual signals can enable the learning of mobility patterns, dynamic interferences, and 

dynamic traffic behaviors. Specifically, the graph mixture module considers multiple spatial 

features and temporal attention predicts the future states based on previous data. The complete 

architecture will provide better fairness and responsiveness with low computational overhead 

which is an improvement over conventional method.  

3. Proposed Work 

The proposed work, SA-GMNet, is a combined deep learning framework designed to 

perform adaptive resource allocation in wireless networks by integrating spatio-temporal 

attention with graph-based topology modeling. This architecture dynamically responds to 

mobility, interference, and traffic variations, enabling efficient, fair, and low-latency 

scheduling decisions in real-time environments. Before introducing the mathematical model 

for the proposed approach, the input modalities considered in the proposed work are 

mathematically formulated. The SA-GMNet model requires a wide range of input features that 
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describe the dynamic behavior of nodes and links in a wireless network. These features are 

encoded as node-level and edge-level data which can be captured over time and organized into 

structured tensors to feed the learning components. First the device mobility trajectories are 

considered for the nodes. Each node 𝑣𝑖 in the wireless network possesses a mobility state 

defined by its spatial coordinates and velocity. This can be mathematically represented as a 

time-series vector as follows 

𝑚𝑖
𝑡 = [𝑥𝑖

𝑡 , 𝑦𝑖
𝑡, 𝑠𝑖

𝑡]                  (1) 

where 𝑥𝑖
𝑡 , 𝑦𝑖

𝑡 ∈ 𝑅 indicates the Cartesian coordinates of the node 𝑖 at time 𝑡, 𝑠𝑖
𝑡 ∈ 𝑅 

indicates the instantaneous speed of the node 𝑖 at time 𝑡. These values capture mobility-related 

dynamics, which are crucial for modeling topology changes and handover behavior in mobile 

environments. Second channel state information is considered. The channel characteristics are 

encoded as a vector that reflects link quality over time and frequency. For each node 𝑖 and its 

neighbor,  𝑗 the CSI at time 𝑡 is mathematically expressed as 

𝑐𝑖𝑗
𝑡 = ℎ𝑖𝑗

𝑡 (𝑓1), ℎ𝑖𝑗
𝑡 (𝑓2), … , ℎ𝑖𝑗

𝑡 (𝑓𝐹)                (2) 

where ℎ𝑖𝑗
𝑡 (𝑓𝑘) ∈ 𝐶 indicates the complex channel gain between nodes 𝑖 and 𝑗 at 

frequency sub-band 𝑓𝑘, 𝐹 indicates the total number of frequency sub-bands considered. CSI 

provides a high-resolution view of link reliability and frequency selectivity, essential for 

adaptive spectrum allocation. However, in practical systems, the CSI vector is affected by 

variations in link quality, which occur due to user mobility, interference, and fading issues. 

These changes introduce temporal instability and noise that should be carefully addressed in 

the resource allocation process. Since CSI changes over frequency bands, it requires adaptive 

instability considering the spatial and temporal features. Thus, the proposed model incorporates 

graph network which effectively handles the degraded link quality. The temporal attention 

encoder captures the long- and short-term CSI variations, which enable better allocation even 

under dynamic environments. Next, the Signal-to-Noise Ratio (SNR) is considered, in which 

each node observes its SNR from communication with a base station or peer node. 

Mathematically, it is expressed as  

𝑆𝑁𝑅𝑖
𝑡 =

𝑃𝑟𝑥,𝑖
𝑡

𝑁0+𝐼𝑖
𝑡       (3) 
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where 𝑃𝑟𝑥,𝑖
𝑡  indicates the received signal power at node  𝑖 , 𝑁0 indicates the noise power 

spectral density, 𝐼𝑖
𝑡 indicates the aggregate interference experienced by node  𝑖  at time  𝑡 . SNR 

is used as a primary indicator for link quality and serves as a basis for modulation and coding 

decisions. To model traffic behavior over time each node maintains a buffer or load metric that 

tracks pending data. Mathematically, it is expressed as 

𝐿𝑖
𝑡 = ∑ 𝛿𝑖

𝑡−𝜏𝑊
𝜏=0                   (4) 

where 𝐿𝑖
𝑡 ∈ 𝑅+ indicates the cumulative traffic load at the node  𝑖  at time,  𝑡 , 𝛿𝑖

𝑡−𝜏 

indicates the data arrival at time  𝑡 −  𝜏,  𝑊 indicates the time window for accumulation. This 

metric informs the model of demand intensity, guiding fair scheduling and congestion-aware 

allocation. Furthermore, the interference profile is defined using the spatial and spectral 

interference experienced by a node. Mathematically, it is quantified as 

𝐼𝑖
𝑡 = ∑

𝑃𝑗
𝑡𝐺𝑗𝑖

𝑡

𝑑𝑗𝑖
𝛾𝑗≠𝑖       (5) 

where 𝑃𝑗
𝑡 indicates the transmit power of interfering node  𝑗 , 𝐺𝑗𝑖

𝑡  indicates the channel 

gain from node  𝑗  to node  𝑖 , 𝑑𝑗𝑖 indicates the distance between nodes  𝑗  and  𝑖 , 𝛾 indicates 

the path loss exponent. This feature allows the model to reason about spectral congestion and 

selects less interfered links. While constructing the topology graph, the connectivity structure 

is encoded in a dynamic adjacency matrix 𝐴𝑡. Mathematically, it is expressed as  

𝐴𝑡 = {
1 𝑖𝑓 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡 𝑙𝑖𝑛𝑘 𝑒𝑥𝑖𝑠𝑡𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                           

  (6) 

Additionally, edge weights are introduced to represent link quality, which is 

mathematically formulated as 

𝑊𝑡(𝑖, 𝑗) = 𝑓(𝑆𝑁𝑅𝑖𝑗
𝑡 , 𝑑𝑖𝑗 , 𝑐𝑖𝑗

𝑡 )    (7) 

where 𝑓(⋅) indicates the function that combines the signal strength, distance, and CSI 

to determine the reliability of the link. Considering all the above features, the final input tensor 

is constructed to obtain a final feature vector for each node. Mathematically, it is formulated 

as 

𝑥𝑖
𝑡 = [𝑚𝑖

𝑡||𝑆𝑁𝑅𝑖
𝑡||𝐿𝑖

𝑡||𝐼𝑖
𝑡]                            (8) 
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The full graph at time 𝑡 is described by (𝑋𝑡, 𝐴𝑡, 𝑊𝑡), where 𝑋𝑡 ∈ 𝑅𝑁×𝑑 is the node 

feature matrix and 𝑁 is the number of nodes. This structured input allows the proposed SA-

GMNet to process heterogeneous data types through graph-based and attention-based 

operations. The complete overview of the proposed model process flow is presented in Figure 

1.  

 

Figure 1. Process Flow of Proposed Model 

3.1   Graph Mixture Layer 

The Graph Mixture Layer in SA-GMNet is designed to extract spatial representations 

from multiple topological perspectives within the wireless network. Unlike traditional graph 

neural networks that depend on a single static graph structure, this layer introduces a mixture 

of graphs to capture diverse connectivity patterns such as proximity, interference, mobility 

similarity, or traffic load correlation. Each of these perspectives is encoded as a separate graph 

view 𝐺𝑡
𝑗

= (𝑉𝑡, 𝐸𝑡
𝑗
), where 𝑗 ∈ 1,2, … , 𝑘 represents the graph index, and  𝑘  is the total number 

of graph views. 
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For each graph 𝐺𝑡
𝑗
, the neighborhood information around node  𝑖  is processed using a 

graph attention mechanism. The intermediate embedding for node  𝑖  in graph  𝑗  is 

mathematically expressed as 

ℎ𝑖
(𝑗)

= 𝜎 (∑ 𝛼𝑖𝑘
(𝑗)

𝑊(𝑗)𝑥𝑘𝑣𝑘∈𝑁
𝑖
𝑗 )                (9) 

where ℎ𝑖
(𝑗)

∈ 𝑅𝑑 indicates the output embedding of node  𝑖  for graph view  𝑗 , 𝑁𝑖
𝑗
 

indicates the set of neighbors of node  𝑖  in graph 𝐺𝑡
𝑗
, 𝑊(𝑗) ∈ 𝑅𝑑×𝑑 indicates the learnable 

weight matrix for graph  𝑗 , 𝜎(⋅) indicates the non-linear activation function such as ReLU, 𝛼𝑖𝑘
(𝑗)

 

indicates the normalized attention score between node  𝑖  and neighbor  𝑘  in graph  𝑗 . The 

attention coefficients 𝛼𝑖𝑘
(𝑗)

 are then computed using a shared attention mechanism that considers 

the similarity between nodes  𝑖  and  𝑘. Mathematically, it is formulated as 

𝛼𝑖𝑘
(𝑗)

=
𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎⊤[𝑊(𝑗)𝑥𝑖|𝑊(𝑗)𝑥𝑘])) 

∑ 𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎⊤[𝑊(𝑗)𝑥𝑖|𝑊(𝑗)𝑥𝑙]))
𝑣𝑙∈𝑁

𝑖
𝑗  

            (10) 

where 𝑎 ∈ 𝑅2𝑑 indicates the shared attention vector,  | indicates the vector 

concatenation operator, 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(⋅) indicates the activation function to stabilize gradients 

during learning. Once the embeddings for each graph view are computed, they are combined 

into a fused spatial representation through a learnable gating mechanism, which is 

mathematically formulated as 

ℎ𝑖
𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = ∑ 𝑔𝑗 ⋅ ℎ𝑖

(𝑗)𝑘
𝑗=1                           (11) 

where ℎ𝑖
𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ∈ 𝑅𝑑 indicates the final spatial embedding of node  𝑖 , 𝑔𝑗 ∈

[0,1] indicates the soft gating coefficient for graph view  𝑗 , ∑ 𝑔𝑗 = 1𝑘
𝑗=1   ensures that the 

mixture remains a convex combination. The gating vector 𝑔 = [𝑔1, … , 𝑔𝑘] is derived through 

a softmax transformation of a trainable parameter vector 𝑧 ∈ 𝑅𝑘. Mathematically, it is 

expressed as 

𝑔𝑗 =
𝑒𝑥𝑝(𝑧𝑗) 

∑ 𝑒𝑥𝑝(𝑧𝑙)𝑘
𝑙=1  

                (12) 

This adaptive mixture allows the proposed model to selectively highlight the most 

informative graph views based on the training objective, network state, and node context. Thus, 
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the Graph Mixture Layer in SA-GMNet allows for generalization across diverse spatial 

conditions and dynamically integrates heterogeneous topological information. This flexibility 

enhances its capacity to make accurate and fair scheduling decisions in a wide range of wireless 

environments.  

3.2   Temporal Attention Encoder 

The Temporal Attention Encoder in the proposed SA-GMNet captures dynamic 

temporal patterns across past observations of each network node. In wireless environments, 

device behavior, channel quality, and traffic demand often fluctuate over time. Therefore, 

modeling this temporal variation is essential for making adaptive and context-aware scheduling 

decisions. To achieve this, the encoder processes sequential input features for each node using 

a multi-head self-attention mechanism, allowing the model to learn temporal relevance across 

a sliding window of observations. Let each node 𝑣𝑖 be associated with a time-series input 

𝑥𝑖
𝑡−𝑇+1, 𝑥𝑖

𝑡−𝑇+2, … , 𝑥𝑖
𝑡, where  𝑇  denotes the temporal window length, and  𝑥𝑖

𝑡−𝜏 ∈ 𝑅𝑑 indicates 

the feature vector of the node  𝑖  at time step  𝑡 − 𝜏. These vectors are stacked to form a temporal 

sequence matrix 𝑋𝑖
𝑡 ∈ 𝑅𝑇×𝑑. The encoder first projects each input into three separate vector 

spaces—queries, keys, and values using learned linear transformations, which is 

mathematically, formulated as follows.  

𝑄𝑖
𝑡 = 𝑋𝑖

𝑡𝑊𝑄 ,  𝐾𝑖
𝑡 = 𝑋𝑖

𝑡𝑊𝐾,  𝑉𝑖
𝑡 = 𝑋𝑖

𝑡𝑊𝑉             (13) 

where 𝑊𝑄 , 𝑊𝐾, 𝑊𝑉 ∈ 𝑅𝑑×𝑑𝑎 indicates the learnable projection matrices, 𝑄𝑖
𝑡, 𝐾𝑖

𝑡 , 𝑉𝑖
𝑡 ∈

𝑅𝑇×𝑑𝑎  indicates the query, key, and value matrices, 𝑑𝑎 indicates the attention dimension. 

Further, the temporal attention scores are computed using scaled dot-product attention, which 

quantifies the importance of each past time step relative to others in the sequence. 

Mathematically, it is formulated as: 

𝐴𝑖
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑄𝑖
𝑡𝐾𝑖

𝑡⊤

√𝑑𝑎
)                                     (14) 

where 𝐴𝑖
𝑡 ∈ 𝑅𝑇×𝑇 indicates the attention weight matrix, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⋅) ensuring each row 

in 𝐴𝑖
𝑡 sums to 1, assigning relative importance to each timestep. The attention-weighted 

temporal representation is mathematically expressed as: 

𝐻𝑖
𝑡 = 𝐴𝑖

𝑡𝑉𝑖
𝑡                (15) 
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where 𝐻𝑖
𝑡 ∈ 𝑅𝑇×𝑑𝑎  contains the context-aware output vectors that reflect weighted 

contributions from all time steps. To enhance the model’s capacity to capture multiple types of 

temporal dependencies, multi-head attention is applied. For  𝑀  parallel attention heads, each 

with its own parameter set, the individual outputs 𝐻𝑖
𝑡,1, 𝐻𝑖

𝑡,2, … , 𝐻𝑖
𝑡,𝑀

 are concatenated and 

linearly transformed. Mathematically, it is expressed as: 

ℎ̂𝑖
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻𝑖

𝑡,1, … , 𝐻𝑖
𝑡,𝑀)𝑊𝑂              (16) 

where 𝑊𝑂 ∈ 𝑅𝑀𝑑𝑎×𝑑 indicates the output projection matrix, ℎ̂𝑖
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ∈ 𝑅𝑑 indicates 

the final temporal embedding for node  𝑖 . This representation effectively captures both periodic 

and irregular variations in traffic, channel quality, and mobility trends over time. To further 

stabilize learning and enhance generalization, residual connections and layer normalization are 

optionally applied, which is mathematically formulated as: 

ℎ𝑖
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋𝑖

𝑡 + ℎ̂𝑖
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙)             (17) 

Through this mechanism, the Temporal Attention Encoder allows SA-GMNet to focus 

on the most relevant historical states while down-weighting the less informative ones. The 

temporal representation of the network is then passed into the context fusion layer to obtain the 

final feature vector.  

The temporal attention encoder in the proposed work analyzes the traffic demands, 

resource availability, and topological behaviors over time. The encoder module dynamically 

assigns importance to each time step and focuses on the most important features. The temporal 

attention unit analyzes the time dependent feature maps. Specifically, it analyzes the time 

dependent feature maps which contributes contextual information such as mobility, quality of 

the channel and interference patterns in dense traffic. The attention mechanism calculates the 

weight for each time point to determine the current resource allocation decisions. The weights 

are obtained by a function which compares the past feature representation with learnable query 

which represents the current temporal features. Finally, all the weighted features are combined 

through the fusion process to obtain a single output that provides the most useful information 

from the sequence. This process helps the model focus on significant changes in the network 

instead of considering all time steps as equal. Thus, it improves the accuracy and timing of 

resource allocation decisions. The temporal attention module enhances the efficiency and 

precision with reduced impact of noises. This module enhances the model ability to allocate 
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bandwidth and ensures the stable responsiveness for short and long variations in the wireless 

environment.  

3.3   Context Fusion Layer 

The Context Fusion Layer in the SA-GMNet is basically an integration module that 

combines the spatial and temporal representations of each network node into a combined 

feature vector. This operation is essential for capturing the combined influence of topological 

relationships and dynamic behavior on wireless resource demands. While the Graph Mixture 

Layer captures spatial dependencies and the Temporal Attention Encoder models sequential 

trends, the fusion layer combines this information to form a context-aware embedding suitable 

for decision-making. Consider the output of the graph mixture layer for node 𝑣𝑖 be denoted as 

ℎ𝑖
𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ∈ 𝑅𝑑𝑠, and the temporal attention output as ℎ𝑖

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ∈ 𝑅𝑑𝑡 . These two vectors are 

concatenated to form an extended representation which is mathematically expressed as 

𝑧𝑖 = [ℎ𝑖
𝑠𝑝𝑎𝑡𝑖𝑎𝑙||ℎ𝑖

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙] ∈ 𝑅𝑑𝑠+𝑑𝑡             (18) 

where  ||  indicates the concatenation operator. This intermediate vector 𝑧𝑖 contains 

comprehensive context for node  𝑖 , encompassing both localized structural information and 

time-evolving patterns. To process this joint embedding, the model applies a linear 

transformation followed by a non-linear activation which is mathematically formulated as 

ℎ̃𝑖 = 𝑅𝑒𝐿𝑈(𝑊𝑓𝑧𝑖 + 𝑏𝑓)               (19) 

where 𝑊𝑓 ∈ 𝑅𝑑𝑓×(𝑑𝑠+𝑑𝑡) indicates the learnable weight matrix for feature compression, 

𝑏𝑓 ∈ 𝑅𝑑𝑓 indicates the bias term for the transformation, ℎ̃𝑖 ∈ 𝑅𝑑𝑓  indicates the fused output 

vector for node  𝑖 , 𝑅𝑒𝐿𝑈(⋅) indicates Rectified Linear Unit activation function that introduces 

non-linearity and prevents vanishing gradients. The output ℎ𝑖̃ represents a condensed, high-

level context vector that encapsulates the most informative features from both spatial and 

temporal domains. This vector forms the basis for downstream predictions such as resource 

allocation, power control, or scheduling decisions. In scenarios where different applications or 

tasks are to be addressed the fusion layer are extended to support task-specific projections. In 

such a case, separate transformation is applied which is mathematically expressed as 

ℎ̃𝑖
(𝑡)

= 𝜙(𝑊𝑓
(𝑡)

𝑧𝑖 + 𝑏𝑓
(𝑡)

),  𝑡 ∈ 1,2, … , 𝑇             (20) 
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where 𝑊𝑓
(𝑡)

∈ 𝑅𝑑𝑓×(𝑑𝑠+𝑑𝑡) indicates the task-specific weight matrix, 𝑏𝑓
(𝑡)

 indicates the 

task-specific bias term, 𝜙(⋅) indicates the optional task-specific non-linearity,   𝑇 indicates the 

total number of output prediction tasks. To ensure stable learning and faster convergence, the 

model include dropout regularization and layer normalization after fusion which is 

mathematically expressed as 

ℎ𝑖
𝑓𝑢𝑠𝑒𝑑

= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ℎ̃𝑖))             (21) 

This final fused embedding ℎ𝑖
𝑓𝑢𝑠𝑒𝑑

is passed to the output layer for generating allocation 

decisions that consider both the structural configuration of the network and the historical 

behavior of each user. In the proposed model, different graphs are used to understand the 

network nodes and their relationships. The graph structures include mobility, interference 

levels and traffic patterns through unique graphs that have connected nodes. The graphs first 

consider each process individually and perform their neural operations to extract the features 

that indicate its specific connectivity. Further the attention-based fusion learns the importance 

of each graph view and provides its current decision by assigning weights to each graph view. 

The weighted features are then combined to obtain a combined graph so that the model 

adaptively select the connections based on the mobility and load conditions. Thus, using this 

process, the proposed model obtains complete details about the network which further 

improves its ability to allocate resources in dynamic environments.  

3.4    Output Layer 

The Output Layer in SA-GMNet process the fused context representation of each node 

into actionable predictions for wireless resource allocation. These predictions include spectrum 

block assignment, transmission power level selection, and scheduling flags personalized to the 

primary application objective. The output layer processes the final fused embedding ℎ𝑖
𝑓𝑢𝑠𝑒𝑑

∈

𝑅𝑑𝑓 produced by the Context Fusion Layer through a set of trainable linear projections to 

produce decision scores or allocation probabilities. The output for each node 𝑣𝑖 is computed as 

𝑦𝑖 = 𝑊𝑜ℎ𝑖
𝑓𝑢𝑠𝑒𝑑

+ 𝑏𝑜               (22) 

where 𝑊𝑜 ∈ 𝑅𝑚×𝑑𝑓 indicates the weight matrix that maps the fused feature vector to 

the decision space, 𝑏𝑜 ∈ 𝑅𝑚 indicates the bias term, 𝑦𝑖 ∈ 𝑅𝑚 indicates the raw output vector 

containing scores for  𝑚  decision classes. For classification tasks such as assigning a specific 
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channel from a predefined set, the raw outputs are passed through a softmax activation to obtain 

normalized probability distributions which is mathematically expressed as 

𝑦̂𝑖
(𝑐)

=
𝑒𝑥𝑝(𝑦𝑖

(𝑐)
) 

∑ 𝑒𝑥𝑝(𝑦
𝑖
(𝑗)

)𝑚
𝑗=1  

 ∀𝑐 ∈ 1,2, … , 𝑚              (23) 

where 𝑦̂𝑖
(𝑐)

 indicates the probability of node  𝑖  being assigned to class  𝑐 ,  𝑚 indicates 

the total number of discrete allocation options. For multi-task learning the model predicts 

multiple allocation parameters simultaneously in that case, multiple output heads are used. In 

this scenario, each task 𝑡 ∈ 1, … , 𝑇 has its own output layer which is mathematically expressed 

as 

𝑦𝑖
(𝑡)

= 𝑊𝑜
(𝑡)

ℎ𝑖
𝑓𝑢𝑠𝑒𝑑

+ 𝑏𝑜
(𝑡)

                          (24) 

where 𝑊𝑜
(𝑡)

∈ 𝑅𝑚𝑡×𝑑𝑓 indicates the task-specific weight matrix, 𝑏𝑜
(𝑡)

∈ 𝑅𝑚𝑡  indicates 

the task-specific bias, 𝑦𝑖
(𝑡)

∈ 𝑅𝑚𝑡  indicates the prediction vector for task  𝑡.  Each task output 

is evaluated against its ground truth label using an appropriate loss function, and the total 

training loss is defined as a weighted combination of all task-specific objectives which is 

mathematically expressed as 

𝐿𝑡𝑜𝑡𝑎𝑙 = ∑ 𝜆𝑡𝑇
𝑡=1  𝐿𝑡(𝑦𝑖

(𝑡)
, 𝑦̂𝑖

(𝑡)
)              (25) 

where 𝜆𝑡 indicates the weight assigned to task  𝑡 , 𝐿𝑡 indicates the loss function used for 

task  𝑡, 𝑦̂𝑖
(𝑡)

 indicates the ground truth for task  𝑡 . The output layer is designed to be modular 

and lightweight, making it suitable for real-time inference in resource-constrained 

environments. 

3.5   Loss Function 

The loss function in the SA-GMNet architecture is constructed to optimize multiple 

performance criteria simultaneously which ensures that the model does not only learn to 

allocate resources accurately but also considers fairness, efficiency, and real-time 

responsiveness. Since the model handles both classification and regression tasks such as 

spectrum assignment, power level prediction, and scheduling decisions the overall loss 

function integrates task-specific objectives along with domain-specific regularization terms. 

The main objective is formulated as 
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𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑎𝑙𝑙𝑜𝑐 + 𝜆1𝐿𝑓𝑎𝑖𝑟 + 𝜆2𝐿𝑒𝑛𝑒𝑟𝑔𝑦             (26) 

where 𝐿𝑎𝑙𝑙𝑜𝑐 indicates the primary task loss, 𝐿𝑓𝑎𝑖𝑟 indicates the auxiliary loss to promote 

fairness in scheduling, 𝐿𝑒𝑛𝑒𝑟𝑔𝑦 indicates the penalty term to discourage energy-inefficient 

decisions, 𝜆1, 𝜆2 ∈ 𝑅+ indicates the weighting coefficients to balance the influence of each 

term. The allocation 𝐿𝑎𝑙𝑙𝑜𝑐 varies depending on whether the target task is for scheduling 

classification tasks. the categorical cross-entropy loss is used which is mathematically 

expressed as 

𝐿𝑎𝑙𝑙𝑜𝑐 = − ∑ ∑ 𝑦𝑖
(𝑐)

𝑙𝑜𝑔 (𝑦̂𝑖
(𝑐)

)𝑚
𝑐=1

𝑁
𝑖=1                (27) 

where  𝑁 indicates the total number of nodes devices,  𝑚 indicates the number of output 

classes, 𝑦𝑖
(𝑐)

 indicates the ground truth one-hot encoded for node  𝑖 , 𝑦̂𝑖
(𝑐)

 indicates the predicted 

probability for class 𝑐. For continuous variables like transmission power, a regression loss such 

as mean squared error is used which is mathematically expressed as 

𝐿𝑎𝑙𝑙𝑜𝑐 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1                           (28) 

The Fairness Loss 𝐿𝑓𝑎𝑖𝑟 is used to encourage equitable resource distribution across 

users. The loss incorporates a differentiable approximation of Jain’s fairness index. Let 𝑟𝑖 be 

the resource allocated to node  𝑖 , then the fairness loss is formulated as 

𝐿𝑓𝑎𝑖𝑟 = 1 −
(∑ 𝑟𝑖

𝑁
𝑖=1 )

2

𝑁⋅∑ 𝑟𝑖
2𝑁

𝑖=1

               (29) 

The above loss function penalizes skewed distributions and ensures that all devices 

receive a balanced share of bandwidth or scheduling opportunities. A lower value of this term 

indicates greater fairness. To reduce unnecessary power consumption, the Energy Efficiency 

Loss 𝐿𝑒𝑛𝑒𝑟𝑔𝑦 penalizes solutions that allocate excessive energy. The energy loss is 

mathematically expressed as 

𝐿𝑒𝑛𝑒𝑟𝑔𝑦 =
1

𝑁
∑ (

𝑃𝑖

𝜂𝑖
)𝑁

𝑖=1                (30) 

where 𝑃𝑖 indicates the predicted power for node  𝑖 , 𝜂𝑖 indicates the spectral efficiency 

for node 𝑖 . By integrating these components, the total loss ensures that SA-GMNet does not 

just perform well in isolated metrics, but aligns with real-world system objectives like 
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accuracy, fairness, and efficiency. The coefficients 𝜆1 and 𝜆2 are selected through validation 

to best reflect deployment priorities. This multi-objective optimization approach allows the 

proposed SA-GMNet to perform reliably in dynamic, heterogeneous wireless environments. 

The summarized pseudocode for the proposed SA-GMNet is presented in Table 2 (Appendix 

A). 

The proposed SA-GMNet model is developed to handle high user mobility in a better 

manner compared to traditional models, which handle static conditions. In dynamic network 

environments, users frequently move from one location to another, affecting signal quality, 

interference levels, and resource demand. The proposed SA-GMNet uses spatial-temporal 

graph views that are dynamically updated based on current mobility patterns. Using unique 

graphs, the model describes user movements, signal interference, traffic flows, and adjusts 

them based on users' position changes. As a result, the proposed model is aware of real-time 

network changes and the use of attention mechanisms helps focus on the most recent and 

relevant changes in user behavior. Overall, SA-GMNet performs significantly better in high 

mobility cases due to its continuous learning and adjusting features to motion, which 

effectively handling the dynamic changes in the environment.  

4. Results and Discussion  

The experimentation for the proposed SA-GMNet model is carried out using the python 

tool and benchmark vehicle wireless network scheduling dataset [22] from the Kaggle 

repository is used to evaluate the model’s performance. The dataset is initially preprocessed to 

normalize the continuous features like speed, signal strength and traffic load. Further graph 

generation is done based on node proximity, reflecting the dynamic network topology over 

time. The dataset is divided into two parts for training and testing. Each sample is processed as 

a multi-modal input that includes spatial coordinates, traffic demands and graph connectivity. 

The multi-head attention encodes the spatial and temporal dependencies whereas the graph 

mixture model obtains the structural dynamics of the network which varies dynamically. The 

final output layer predicts the channel and power for each node. The simulation 

hyperparameters of proposed and existing models are presented in Table 3 (Appendix B).  

The average throughput comparative performance analysis presented in Figure 2 for the 

proposed SA-GMNet model and existing DL methods across 100 epochs. The proposed model 

consistently achieves the highest throughput stabilizing at approximately 29.1 Mbps, 
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outperforming the Transformer-GAT, which peaks around 27.6 Mbps. ST-GCN follows with 

24.8 Mbps, while GCN and LSTM exhibits less throughput as 24.5 Mbps and 23.2 Mbps, 

respectively. DNN records the lowest throughput among all as 21.7 Mbps which indicates its 

limitations in capturing temporal and structural dependencies. The superior performance of 

SA-GMNet is attributed to its multi-modal attention mechanism and graph mixture fusion, 

which effectively utilize spatio-temporal patterns and dynamic topologies for more precise 

resource allocation.  

 

Figure 2. Average Throughput Analysis 

The scheduling fairness comparative analysis presented in Figure 3, highlights the 

performance of various models using Jain’s Index. The higher value of scheduling fairness 

indicates more equitable resource allocation across users. The proposed SA-GMNet model 

exhibits the highest fairness, reaching a stable value of 0.961 due to its ability to contextually 

fuse spatial and temporal information with dynamic graph attention. Thus, it allows the model 

to adapt allocations fairly under varying mobility and load. Whereas existing transformer-GAT 

exhibits less performance as 0.931 due to its lacking in temporal coordination. The existing 

ST-GCN and GCN achieve 0.899 and 0.872 respectively which is lesser than the proposed due 

to limited cross-modal integration. LSTM which lacks spatial context converges at 0.849 and 

the DNN exhibits the lowest at 0.823 due to its inability to model temporal trends. 
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Figure 3. Scheduling Fairness Analysis 

Figure 4 presents the energy efficiency performance of all models in terms of output 

per unit power consumption, measured in Mbps/Watt. The proposed SA-GMNet achieves the 

highest energy efficiency stabilizing around 3.26 Mbps/Watt due to its optimized resource 

control and context-aware decision-making that minimizes power usage without compromising 

throughput. Whereas existing transformer-GAT exhibits 2.87 Mbps/Watt which is lesser than 

the proposed due to inefficiency in mobility fusion. The existing ST-GCN and GCN attain 2.53 

and 2.41 Mbps/Watt respectively. Their limited temporal coordination reduces adaptability 

under variable loads. LSTM reaches 2.19 Mbps/Watt only due to the absence of structural 

learning which affects allocation under network congestion. DNN the least performer which 

exhibits 2.04 Mbps/Watt due to its flat architecture and inability to utilize graph topology and 

temporal trends which results the model to exhibit poor performance in energy allocation.  

 

Figure 4. Energy Efficiency Analysis 
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The energy efficiency exhibits the model efficiency in terms of data transmitted per unit 

of power consumed. The proposed lightweight architecture allows to deploy the model on 

different types of edge devices without requiring any additional computation resources. The 

proposed model is executed in a general-purpose processor and exhibits best performance with 

high data rates and reduced parameter count.  The spectrum utilization efficiency analysis 

presented in Figure 5 compares the effectiveness of different models in maximizing spectrum 

use across 100 epochs. The proposed SA-GMNet model outperforms all existing methods 

achieving a peak efficiency of 93.6%, attributed to its dynamic fusion of spatial-temporal 

features and graph mixture attention. The existing transformer-GAT exhibits 89.4% but lacking 

in performance due to its integrated mobility adaptation. ST-GCN and GCN reach 86.2% and 

83.7% respectively which is lesser than the proposed. LSTM achieves 81.2% which is lesser 

than the proposed as it cannot handle spatial network shifts effectively. The existing DNN 

shows the lowest performance at 79.3% which is lesser than the proposed due to inefficient 

resource assignments. 

 

Figure 5. Spectrum Utilization Efficiency Analysis 

The allocation latency analysis presented in Figure 6 describes the time each model 

takes to complete a resource assignment operation. The lower latency values indicate faster 

decision-making. The proposed SA-GMNet consistently achieves the lowest latency, 

stabilizing around 5.9 ms, owing to its efficient attention-driven feature integration and 

lightweight fusion of spatial-temporal information, which streamlines inference. Transformer-

GAT follows with 6.4 ms, benefiting from parallelizable attention but lacking the mobility 

adaptation seen in SA-GMNet. ST-GCN and LSTM record 7.8 ms and 7.3 ms, respectively, 

with their temporal modeling offering moderate speed but constrained by sequential processing 

overhead. GCN reaches 8.6 ms, impacted by static graph assumptions and slower contextual 
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updates. DNN performs worst at 9.7 ms, due to its lack of structural optimization and absence 

of time-aware modeling, leading to inefficient computation paths. 

 

Figure 6. Allocation Latency Analysis 

 

Figure 7. Mobility Analysis 

The Mobility Robustness Score (MRS) presented in Figure 7 compares how effectively 

each model sustains performance under dynamic user mobility. The proposed SA-GMNet 

outperforms all others, reaching a peak MRS of 0.928, due to its design that integrates mobility 

context with spatial-temporal graph attention, allowing it to adapt resource allocation in 

fluctuating topologies. Transformer-GAT follows with 0.891, performing well by utilizing 

attention but lacking integrated temporal mobility awareness. ST-GCN and LSTM exhibit 

competitive performance, with final scores of 0.837 and 0.834, respectively, as both can 

capture time-based variations, though ST-GCN benefits from added graph representation. GCN 

achieves an MRS of 0.791, limited by its static graph assumption and inability to process 

temporal shifts. DNN yields the lowest score at 0.716, primarily because it lacks both 

sequential and topological modeling, making it ineffective in mobile network scenarios. 
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Figure 8. Inference time Analysis vs Nodes 

Further the inference time is analyzed over different node counts. Figure 8 presents the 

inference time analysis over 100 to 500 nodes. The graph describes the inference time 

scalability of the proposed SA-GMNet model and its objective is to evaluate whether the model 

remains efficient when deployed in dense environments like vehicular networks. In this each 

vehicle is considered as nodes and increasing the node count indicates the dense network 

environment. The inference time indicates how long the model takes time to make resource 

allocation decisions. Generally, the inference should be low and the proposed model also 

exhibits the lower inference time which means it takes quick decisions in resource 

allocation process. The proposed SA-GMNet exhibits lowest inference which starts from 

2.1ms for 100 nodes and increased gradually at 3.6ms for 500 nodes. The proposed model 

exhibits better performance due to its efficient attention-based fusion and feature processing 

abilities. The conventional models DNN exhibits less performance as 7.0ms and LSTM attains 

6.3ms which is lesser than the proposed. The transformer model exhibits better latency by 

reaching 4.6ms, however it is lesser than the proposed model.  

 

Figure 9. Prediction Accuracy Analysis 
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The comparative analysis graph presented in Figure 9 depicts the prediction accuracy 

performance of proposed and existing models over different SNR range. The proposed model 

exhibits 93.8% even at low distortion levels and attains 85.6% at extreme noisy condition. 

Whereas the existing DNN and LSTM models exhibits low performance from maximum to 

64.3% and 70.4% at high SNR condition. This limited performance is due to the existing model 

limited spatial temporal feature processing abilities. The results clearly exhibit the better 

performance of the proposed model under different fluctuating conditions.  

The overall performance comparison presented in Table 4 (Appendix C) clearly 

demonstrates the superior capability of the proposed SA-GMNet model across all evaluated 

metrics. In terms of spectrum utilization efficiency, SA-GMNet achieves 93.6%, 

outperforming Transformer-GAT 89.4% and ST-GCN 86.2%, due to its adaptive context-

aware spectrum allocation. It also leads in average throughput, reaching 29.1 Mbps, 

significantly higher than GCN 24.5 Mbps and LSTM 23.2 Mbps, reflecting its effective 

handling of dynamic data demands. In energy efficiency, it reaches 3.26 Mbps/Watt, while the 

next best, Transformer-GAT, reaches 2.87 Mbps/Watt. SA-GMNet also scores the highest in 

scheduling fairness 0.961 and mobility robustness 0.928, both critical in mobile wireless 

systems. In contrast, DNN shows the weakest performance overall, with the lowest throughput 

21.7 Mbps, highest latency 9.7 ms, and poorest robustness 0.716, primarily due to its lack of 

temporal and spatial modeling. These results confirm that SA-GMNet offers a comprehensive 

and efficient solution for intelligent wireless resource management. 

The effectiveness of the proposed model though validated through simulation, 

incorporating it in real world environment will collect different types of data like user 

movement, traffic loads and signal interferences. All the collected data can be processed 

through graph views and then combined through the attention-based fusion to understand 

which information is useful to improve the network performance. Based on the information, 

decisions about the users can be made to provide access to resources. Specifically, the temporal 

attention adapts the changes in network traffic and user mobility and the spatial component 

analyzes the user interferences. Thus, the proposed model might avoid interferences and 

allocates resources to the users considering the dynamic demands. However, in real time 

environment few resource collisions might occurs due to real time network conditions which 

is considered as minor limitation of the proposed work.   
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5. Conclusion  

This research presents a novel Spatio-Attentive Graph Mixture Network (SA-GMNet) 

for intelligent wireless resource allocation in dynamic environments. The proposed model 

integrates graph-based topological awareness with temporal mobility patterns using a multi-

modal attention mechanism, enabling context-driven scheduling decisions. The 

experimentation was conducted using a benchmark vehicular wireless scheduling dataset from 

Kaggle, featuring time-variant topology, mobility, and traffic load characteristics. SA-GMNet 

was compared against existing models such as DNN, GCN, LSTM, ST-GCN, and 

Transformer-GAT. Across eight key metrics, the proposed SA-GMNet achieved the best 

results, including 93.6% spectrum efficiency, 29.1 Mbps average throughput, 0.087 

interference index, 3.26 Mbps/Watt energy efficiency, and 0.961 scheduling fairness. 

Additionally, it recorded the lowest latency 5.9 ms and inference time 3.2 ms, demonstrating 

real-time capability. While SA-GMNet outperforms in multi-dimensional optimization, its 

limitation lies in computational overhead from graph attention fusion, which may scale 

unfavorably in ultra-dense networks. Future work can explore model pruning, hardware-aware 

deployment, and transfer learning to improve scalability. Furthermore, the framework could be 

extended to support federated or edge-based architectures, making it adaptable for 6G 

applications involving distributed intelligence and real-time responsiveness. 
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Appendix A 
Table 2. Pseudocode for the Proposed SA-GMNet – Spatio-Attentive Graph Mixture 

Network 
Pseudocode for the Proposed SA-GMNet – Spatio-Attentive Graph Mixture Network 

Input: 𝐺௧
௝

= ൫𝑉௧, 𝐸௧
௝
൯ Set of graph views at time  𝑡 ,  𝑗 =  1, 2, … , 𝑘, 𝑋௧ ∈ 𝑅ே×ௗ: Node 

feature matrix for all  𝑁  nodes, {𝑋௜
௧ିఛ}ఛୀ଴

்  Historical feature sequence for each node 𝑣௜   
Output:  𝑌෠  Predicted resource allocation decisions channel, power, scheduling for all nodes 
Initialization: 𝑊(௝), 𝑎(௝) for all graph attention heads, Temporal projections 𝑊ொ , 𝑊௄, 𝑊௏ 
for attention, Fusion parameters 𝑊௙ , 𝑏௙ Output parameters 𝑊௢ , 𝑏௢, attention heads  𝑀 , 
window size  𝑇 , number of graph views  𝑘 
Begin  

For each node 𝑣௜ ∈ 𝑉௧ 
     For each graph view  𝑗 =  1  to  𝑘    
         Compute transformed features 𝑥௞

ᇱ = 𝑊(௝)𝑥௞ 
             For each neighbor 𝑣௞ ∈ 𝑁௜

௝  

                Calculate attention score 𝑒௜௞
(௝)

= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈൫𝑎(௝)ୃ[𝑥௜
ᇱ|𝑥௞

ᇱ ]൯ 

                    Normalize using SoftMax 𝛼௜௞
(௝)

=
௘௫௣ቀ௘೔ೖ

(ೕ)
ቁ 

∑ ௘௫௣ቀ௘
೔೗
(ೕ)

ቁ
೗∈ಿ

೔
ೕ  

 

                         Aggregate spatial features ℎ௜
(௝)

= ∑ 𝛼௜௞
(௝)

𝑥௞
ᇱ

௞∈ே
೔
ೕ  

Compute gating weights 𝑔௝ =
௘௫௣൫௭ೕ൯ 

∑ ௘௫௣(௭೗)ೖ
೗సభ  

 

Compute mixed spatial embedding ℎ௜
௦௣௔௧௜௔௟

= ∑ 𝑔௝ ⋅ ℎ௜
(௝)௞

௝ୀଵ  
      For temporal attention encoding for each node 𝑣௜ 
           Stack sequence: 𝑋௜

௧ = [𝑥௜
௧ି்ାଵ, … , 𝑥௜

௧] ∈ 𝑅்×ௗ   
               Project to Q, K, V 𝑄 = 𝑋௜

௧𝑊ொ , 𝐾 = 𝑋௜
௧𝑊௄, 𝑉 = 𝑋௜

௧𝑊௏ 

                   Compute scaled attention 𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ൬
ொ௄఻

ඥௗೌ
൰   

                      Generate temporal embedding 𝐻 =  𝐴 𝑉    
               Apply multi-head attention and concatenate outputs   

      Project and normalize ℎ௜
௧௘௠௣௢௥௔௟

= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋௜
௧ + 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻ଵ, … , 𝐻ெ)𝑊ை) 

      Concatenate features 𝑧௜ = ൣℎ௜
௦௣௔௧௜௔௟

|ℎ௜
௧௘௠௣௢௥௔௟

൧ 
Apply fusion transformation ℎ෨௜ = 𝑅𝑒𝐿𝑈൫𝑊௙𝑧௜ + 𝑏௙൯ 

Apply dropout and normalization if enabled ℎ௜
௙௨௦௘ௗ

= 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 ቀ𝐷𝑟𝑜𝑝𝑜𝑢𝑡൫ℎ෨௜൯ቁ 

Compute final output 
     If single-task   

                     𝑦పෝ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥൫𝑊௢ℎ௜
௙௨௦௘ௗ

+ 𝑏௢൯ 
     If multi-task 

                 For each task  𝑡, 𝑦ො௜
(௧)

= 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛ቀ𝑊௢
(௧)

ℎ௜
௙௨௦௘ௗ

+ 𝑏௢
(௧)

ቁ 

     Compute total loss 𝐿௧௢௧௔௟ = 𝐿௔௟௟௢௖ + 𝜆ଵ𝐿௙௔௜௥ + 𝜆ଶ𝐿௘௡௘௥௚௬ 
Update all trainable parameters 
Return 
         End 
       End 
    End 
End 
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(iii) 

Appendix B 

Table 3. Simulation Hyperparameters for Proposed and Existing Models 

S.No Method/Algorithm Parameter Type / Range 
1 Proposed SA-GMNet Learning Rate 0.0005 
2 Number of Attention Heads 8 
3 Graph Mixture Size 3 
4 Embedding Dimension 128 
5 Batch Size 64 
6 Optimizer Adam 
7 Dropout Rate 0.2 
8 Number of Epochs 100 
9 DNN Learning Rate 0.001 
10 Hidden Layers 3 
11 Units per Layer 256 
12 Activation Function ReLU 
13 Batch Size 64 
14 Optimizer Adam 
15 Number of Epochs 100 
16 GCN Learning Rate 0.0008 
17 Number of GCN Layers 2 
18 Hidden Dimension 128 
19 Dropout Rate 0.3 
20 Batch Size 64 
21 Optimizer Adam 
22 Number of Epochs 100 
23 LSTM Learning Rate 0.001 
24 Hidden Size 128 
25 Number of Layers 2 
26 Sequence Length 10 
27 Batch Size 64 
28 Optimizer RMSProp 
29 Number of Epochs 100 
30 ST-GCN Learning Rate 0.0007 
31 Spatial Kernel Size 3 
32 Temporal Window 5 
33 Hidden Channels 64 
34 Dropout Rate 0.25 
35 Batch Size 64 
36 Number of Epochs 100 
37 Transformer-GAT Learning Rate 0.0006 
38 Number of Attention Heads 4 
39 Layers 6 
40 Hidden Dimension 128 
41 Dropout Rate 0.3 
42 Batch Size 64 
43 Number of Epochs 100 
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(iii) 

Appendix C 

Table 4. Overall Performance Comparative Analysis 

Metric DNN GCN LSTM ST-
GCN 

Transformer-
GAT 

Proposed 
SA-GMNet 

Spectrum Utilization 
Efficiency % 

79.3 83.7 81.2 86.2 89.4 93.6 

Avg. Throughput per 
Device (Mbps) 

21.7 24.5 23.2 24.8 27.6 29.1 

Energy Efficiency 
(Mbps/Watt) 

2.04 2.41 2.19 2.53 2.87 3.26 

Scheduling Fairness 
(Jain's Index) 

0.823 0.872 0.849 0.899 0.931 0.961 

Allocation Latency (ms) 9.7 8.6 7.3 7.8 6.4 5.9 

Mobility Robustness 
Score (MRS) 

0.716 0.791 0.834 0.837 0.891 0.928 

 

 

 

 

 

  

 

 


