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Abstract 

Precise Gleason grading of prostate biopsy specimens is vital for determining the 

appropriate clinical management of prostate cancer. However, traditionally, subjective manual 

evaluation by pathologists is susceptible to inter-observer variability, contributing to variable 

diagnoses and a likelihood of less-than-optimal treatment decisions. Therefore, we present a 

hybrid deep-learning architecture, wherein a modified ResNet50 convolutional backbone has 

been amalgamated with a Vision Transformer (ViT) module with the aim of automated and 

standardized Gleason classification. The ResNet50 portion consists of 50 layers with 

bottleneck residual blocks inserted for texture and glandular pattern localization in contrast-

enhanced histopathological images. The spatially rich feature maps are then forwarded to the 

ViT module that extracts long-range dependencies and contextual relationships across image 

patches through a combination of multi-head self-attention mechanisms and transformer 

encoders. In this manner, a combination of local feature extraction and global attention 

facilitates the model's learning of subtle morphological variations that are crucial for the 

differentiation of six different Gleason patterns on a large scale. The model was trained and 

validated on a balanced multiclass dataset of prostate biopsy images, achieving a classification 

accuracy of 99%, which is better than several existing deep-learning baselines. This hybrid 

architecture aims to enhance diagnostic consistency while providing a realistic, interpretable 

framework for implementation in clinical workflows geared toward high-throughput prostate 

cancer screening, especially in resource-limited healthcare settings. 

Keywords: Hybrid Vision-ResNet50, Gleason Grading, Prostate Biopsy Images, Deep 

Learning, Histopathology Classification. 

1. Introduction 

Prostate cancer is among the most prevalent types of cancer in men throughout the 

world and is a major health issue due to its high rate of occurrence in the population, as well 

as the risk of death when it is not detected and treated. The identification, diagnosis, and 

grading made under histopathological observation based on biopsy samples of the prostate 

remain the gold standard. The most valuable and helpful advancement in evaluating cancer 
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aggressiveness, choosing treatment, and determining clinical outcomes is the introduction of 

the Gleason grading system in the 1960s. This system grades prostate cancer based on the 

architectural patterns of tumor glands observed under a microscope. Inter-observer variability 

is significant, even though the clinical usefulness of Gleason grading is well-established and 

primarily relies on subjective judgment. Unpredictable scoring introduces an element of 

chance, leading to either over-treatment or under-treatment, which can adversely affect patient 

outcomes.In addition to the considerable inter-observer variability, Gleason grading forces 

pathology services to provide accurate diagnoses in a timely manner. Pathologists must 

manually examine high-resolution whole-slide images (WSI) in different regions of interest, 

which is a tedious and time-consuming procedure. Any extended delay in diagnosis brought on 

by the high demand for prostate biopsies and the lack of resources in pathology-related 

specialties can increase the likelihood of diagnostic errors. Furthermore, grading prostate 

cancer is a difficult task that requires consistency because it involves identifying minute 

morphological variations in a variety of glandular patterns. These problems necessitate the use 

of computerized tools that will improve reproducibility, diagnostic validity, and the workload 

of pathologists conducting investigations. Due primarily to developments in computer vision 

and deep learning, advances in AI offer the potential to replace and enhance histopathological 

evaluations. By producing repeatable and objective results when AI is applied to the diagnostic 

process, more consistent grading of prostate cancer diagnoses and reduced diagnostic 

workloads would support clinical decision-making. In order to maximize the validity of 

prostate cancer diagnosis in clinical use, algorithms for further and expanded research can be 

developed based on the intersection of clinical necessity and technological feasibility. In Figure 

1, prostate cancer grading is represented on the Gleason scale, starting with the least aggressive 

and progressing to the most aggressive, until the final Gleason score is calculated based on the 

combination of these grades. The grading of these scores will enable patients to undergo active 

monitoring, surgery, or radiation therapy. In this classification, patient files must be 

troubleshooted manually, which is a long and tedious process that requires knowledge not all 

healthcare centers possess due to various circumstances. This is why the use of artificial 

methods for grading Gleason scores may be of significant interest in the fields of medical 

imaging and robotics. Some of the most remarkable results in cell and tissue analysis of these 

images have been achieved using CNNs. Other researchers have attempted to grade Gleason 

scores, but most have failed to explain the differences in texture and shape observable through 

the biopsy cores of different Gleason scores. 

 

Figure 1. Prostate Cancer Gleason Grading 

The difficulty in prostate cancer histopathology is that a combination deep learning 

approach must rely on ResNet50 since there is no other cancer that can compare with this. The 

evil does not subgrade into the prostate cancers by presence but by sophisticated patterns of 

glandular architecture, which are evaluated by Gleason grading systems. Such patterns are 

usually made up of small-scale as well as contextual cell morphology variations that call for 

local as well as global levels of interpretation. Conventional convolutional neural networks 

(CNNs) like ResNet50 are good at characterizing local spatial features such as gland shapes 
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and boundaries. Nonetheless, long-range dependencies and context on a global level of tissues, 

while important to the interpretation of the differences between the intermediate grades of 

Gleason, prove to be extremely difficult for traditional neural networks. To attain the proposed 

hybridization, the hybrid model will include a Vision Transformer (ViT) and ResNet50 

architecture; thus, the model will possess the potential of tapping into the fine-grain and local 

feature extraction power of ResNet50 while simultaneously seeing through ViT and viewing it 

in the image tile to construct the big picture of the spatial relationship of the biopsy. Prostate 

cancer modeling is very relevant to this type of modeling when successful diagnosis goes hand 

in hand with the identification of agnostic spatially fine multiscale pattern histology. Thus, this 

mixed design is scientifically effective and clinically motivated since it can react to complexity 

and subjectivity regarding grading prostate cancer. 

1.1   Application 

The proposed model automates Gleason grading of prostate biopsies, thereby 

enhancing reliability and accuracy. 

• Favourability criterion: Clinical decision support will provide treatment 

decisions more accurately through the consistent grading of similar test cases. 

• Digital Pathology and Whole-slide Imaging: The system can link with digital 

systems and other pathology software being utilized in hospitals and laboratories 

to grade and analyze the samples in real-time. 

• Prompt Diagnosis and Correct Risk Stratification: The model detects early 

cases of prostate cancer and stratifies them into three grades of risk, thus enabling 

the timely initiation of appropriate treatment. 

• Telemedicine and Remote Diagnosis: Light and adaptable, the model can be used 

in telepathology to render expert-level medical support to patients far from 

hospitals or in resource-limited settings. 

The data can also serve as a teaching tool for medical students and pathology residents 

to train and learn the Gleason scoring method. The model may facilitate an increased speed of 

annotating histopathological images for research, allowing for a quicker turnaround time in 

developing such AI tools for cancer diagnosis. 

2. Related Work 

Proper histopathologic classification is very important during treatment planning and 

diagnosis of prostate cancer. The Gleason grading system continues to be the basis for the 

assessment of prostate biopsy specimens, and its subjective assessment leads to great inter-

observer variability, especially among all intermediate grades. Artificial intelligence (AI) and 

deep learning have become a potent solution to the problem of working across these 

inconsistencies, increasing the rate of accuracy in diagnoses and homogenizing assessments, 

which have emerged in recent years. Although a number of models have shown encouraging 

performance in the image classification task of prostate cancer, most of the presented literature 

lacks comparative analysis of adequate depth, with many instances being restricted to binary 

classification, operating on small datasets, or failing to achieve the required level of detail in 

morphological patterns to enable fine-grained Gleason scoring. Additionally, there is scarce 
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research conducted on hybrid structures that can mix local and global contextual information, 

which is critical for high-quality representation in multi-class classification. [1] Initial studies 

mostly exploited Convolutional Neural Networks (CNNs) to extract local visual information 

embodied in digitized histopathology slides. In another example, Sarıateş and Ozbay [2] 

proposed a model classifier that utilizes pre-trained CNNs and transfer learning (e.g., VGG and 

ResNet) for prostate cancer detection. This method helped achieve better results on small 

datasets, but due to overfitting, it reached its limits and was unable to cover such diverse clinical 

sources of data. Furthermore, such models found it difficult to address the wider spatial context 

of tissue structures, which play a vital role in discriminating genetic patterns, particularly of 

adjacent Gleasons. The review studies on CNN-based models of prostate cancer grading 

presented by Patel et al. [9] and lacked interpretative capabilities of the developed models, 

noting weaknesses such as a lack of comprehensibility of the models along with failure to 

capture borderline or ambiguous situations. 

In a bid to transition past imaging-based methods, investigators are now incorporating 

clinical metadata into their diagnostic workflows. The suggested machine learning system 

based on Sungur et al. [3] used the results of prostate-specific antigen (PSA) tests, magnetic 

resonance imaging (MRI) diagnostics, and hematological indicators to determine the need for 

a biopsy. Although this multimodal structure decreased false-positive tests and unwarranted 

medical tests, it disregarded image-based estimation. On the same note, Bottillo et al. [4] 

performed genomic profiling to detect mutations of HRR genes in prostate cancer at an early 

stage of the disease, which is not intended to replace histological diagnosis but to complement 

it. Li et al. [5] designed the PCaseek, a deep learning model for tumor DNA detection in urine, 

which led to a non-invasive technology that may complement histopathological observations 

and is not intended as an alternative to image-based classification. In a bid to solve the data 

diversity and overall data generalization problem, Kong et al. [6] proposed a federated learning 

framework that uses attention-consistent institution-specific learning. In this way, this method 

secured privacy-preserving training and enhanced the consistency of grading between various 

datasets in different hospitals [8]. However, it was confined to three-grade classification and 

did not fully absorb contextual semantics. Harder et al. [7] introduced a digital AI-based 

solution based on a biopsy system optimized for prostate-MRI-targeted sampling, improving 

the workflow for diagnosing prostate cancer, but remaining dependent on radiology region-of-

interest [17]. More recently, research has focused on ensemble models and hybrid strategies to 

overcome the limitations of single-architecture networks. Butt et al. [10] developed a multi-

label ensemble CNN to manage labeling inconsistencies common in histopathological 

annotations. While ensemble methods improved performance, they often required significant 

computational resources and lacked interpretability. Sethi et al. [11] introduced a model 

combining Long Short-Term Memory (LSTM) and Deep Belief Networks (DBN) using gene 

expression data, showing that temporal and biological information could enrich prostate cancer 

classification, but such methods are difficult to implement in histopathological imaging 

workflows. 

Advanced methods have started to incorporate both handcrafted and learned features. 

Varan et al. [12] combined radiomics-based feature engineering with fine-tuned SVMs to 

improve classification accuracy. While effective, these methods often rely on manual feature 

selection and cannot adapt to image variation dynamically. Li et al. [15] proposed a dual-

attention model with feature autoencoders, improving the interpretability and performance of 

deep learning networks by highlighting discriminative image regions. Malibari et al. [16] 

explored the use of hybrid CNN architectures in biomedical imaging with good success, though 

the models still faced challenges in fine-grained Gleason grade discrimination. Hammouda et 
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al. [18] introduced a sliding-window approach over biopsy specimens, enabling localized 

analysis for grade classification but requiring extensive computational overhead. 

Large-scale validation efforts, such as the one by Tolkach et al. [13], have shown that 

AI-based Gleason grading can be trusted clinically when models are trained on diverse, 

international datasets. Similarly, the PANDA challenge, documented by Bulten et al. [14], 

provided conclusive evidence that deep learning systems can match expert-level performance 

in Gleason scoring when appropriately trained. However, despite these achievements, most 

models either focus on binary classification (benign vs. malignant) or fail to address the 

challenges of differentiating closely related Gleason patterns (e.g., 3+4 vs. 4+3), which are 

critical for clinical decision-making. Kusuma et al. [19] proposed a deep learning model called 

the Quadratic Luminance Vision Transformer Attention Network (QL-ViTAN) is used in 

medical image analysis to identify mitotic figures in breast histopathology images, increasing 

the sensitivity and accuracy of breast cancer grading. Ensemble learning techniques improve 

robustness and reduce overfitting, which makes deep learning models for skin cancer 

classification more dependable and clinically applicable in dermatological diagnosis, according 

to Tyagi et al.'s [20] study. 

These studies indicate that deep learning can radically transform the histopathology of 

prostate cancer as long as it is implemented correctly. However, their common drawbacks also 

manifest: dependency on shallow architectures, poor ability to handle multi-class tasks, non-

interpretability, and weak correspondence across institutions. These gaps show that it is 

necessary to have a strong hybrid algorithm to extract both local morphology features and 

global contextual relations in the tissue. To address these shortcomings, the proposed hybrid 

model combines the ResNet50 deep CNN, which learns rich spatial textures, with a model of 

long-range dependence and structural consistency of large patches of an image, aided by a 

Vision Transformer (ViT) component. The architecture supports high discriminative ability in 

six-class Gleason grading, providing high sensitivity in differentiating subtle patterns of cancer 

with generalizability and interpretability. In comparison with traditional CNNs, where the 

filters used are localized, the ViT module enables the model to contextualize glandular 

structures in a holistic manner, which is crucial for precise histopathological classification. The 

hybrid system therefore ensures that it overcomes the key limitations of existing systems by 

offering a balanced, scalable, and clinically relevant approach to the diagnosis of prostate 

cancer through automation. 

3. Proposed Work 

In Figure 2, the proposed model combines ViT and ResNet-50 to extract relevant image 

features, while the remaining process involves the performance of ViT training using ResNet-

50, which robustly and accurately classifies among six Gleason grades for biopsy samples. The 

data gets input, followed by multiple operations until the final evaluation is achieved. 
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Figure 2. Automating Histologic Assessment of Prostate Cancer System 

Pseudo Code 

Input: Image dataset 𝒟 = {x₁, x₂, ..., xₙ} ∈ ℝᴴˣᵂˣᶜ 

Output: Trained hybrid model ℳ and performance metrics ℳₚ 

𝒟ₚ ← 𝒫(𝒟)   ⊳ Preprocessing function 𝒫: ℝᴴˣᵂˣᶜ → ℝᴴ'ˣᵂ'ˣᶜ 

[𝒟ₜᵣ, 𝒟ₜₑ] ← Split(𝒟ₚ, ratio = 0.8 : 0.2) 

θ ← Tune(ℋ)   ⊳ Hyperparameter tuning over space ℋ 

Initialize ℳ: ℳ = f_θ(x), where f_θ = ViT_θ₁ ⊕ ResNet50_θ₂ 

ℳ ← Train(ℳ, 𝒟ₜᵣ) 

if Error(ℳ) = ∅ then 

     Save(ℳ) 

     ℳₚ ← Evaluate(ℳ, 𝒟ₜₑ)   ⊳ Compute {Accuracy, Precision, Recall, F1} 

     return (ℳ, ℳₚ) 

else 

   Report Error and exit 
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Notation key: 

⊕ : Feature fusion of Vision Transformer and ResNet-50 outputs 

𝒫(·) : Preprocessing function (e.g., resizing, normalization) 

θ₁, θ₂ : Trainable parameters of ViT and ResNet-50 respectively 

ℋ : Hyperparameter space (e.g., learning rate, batch size) 

3.1   Dataset Input 

The dataset on which the proposed model will built the publicly available PANDA. 

Resized Train Dataset (512x512) which can be found onKaggle at the following link 

https://www.kaggle.com/datasets/xhlulu/panda-resized-train-data-512x512. This dataset is a 

downsampled or resized version of the original high-resolution dataset from the Prostate 

Cancer Grade Assessment (PANDA) competition, organized by Radboud University Medical 

Center and Karolinska institute. The available dataset consists of thousands of RGB image 

tiles, each 512x512 pixels, extracted from the digitized whole-slice images (WSIs) of prostate 

biopsy samples. Each tile includes a Gleason grade of 0-5, indicating various levels of tumor 

differentiation and aggressiveness, by pathological standards. The model processing, however, 

takes place at smaller tile sizes, making it efficient in terms of computational power while 

preserving essential histological features of the tissue, such as glandular architecture and 

nuclear morphology, This ensures that the deep learning model can achieve significance with 

a low computational cost in diagnosing clinical relevance. The dataset's size, variability, and 

quality of annotations make it well-suited for automatic Gleason grading and other 

histopathological image analysis initiatives. Also, dataset selection approach, tile extraction 

procedure, and Gleason label assignment follow a standard procedure that permits 

consistencies and experimental reproducibility. 

3.2   Data Preprocessing and Augmentation 

To ensure the consistency of histopathological biopsy images and maximize the 

generalization of a model, they must pass through a long preprocessing pipeline prior to feeding 

the data into the hybrid model. Firstly, all whole-slide images (WSIs) were cropped and divided 

into smaller non-overlapping patches of 512 x 512 pixels. Secondly, they were center-cropped 

to a fixed size of 224 x 224 pixels to be used as input to the pre-trained backbone networks, 

such as ResNet50. The preprocessing was performed to standardize the pixel distributions and 

to enable transfer learning by utilizing ImageNet normalization, ensuring compatibility with 

the pre-trained feature extractors. The patch selection is carried out based on tissue content 

thresholds, so that only regions with sufficient tissue coverage (having over a certain 

percentage of pixels with a non-white value) are retained, while regions of background or blank 

areas are removed during the noise removal process. Filters make manual comments on the 

patches by identifying those that contain diagnosis-relevant regions based on the Gleason 

patterns. In addition, to maximize model robustness and minimize overfitting, training 

augmentations involving techniques such as random horizontal flips, 90-degree rotations, color 

jittering (referring to variations in brightness, contrast, and saturation), and small affine 

transformations are applied. These augmentations also simulate real-world differences in 

staining and imaging. This process resulted in a balanced training set of 500 images in each of 

the 6 Gleason categories: Gleason patterns 3, 4, and 5, as well as combinations of Gleason 3 
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and Gleason 4, Gleason 4 and Gleason 3, and Gleason 5 and Gleason 4. The overall 

representation of all classes prevents the model from being biased toward the major classes in 

the distribution of the data, while maintaining high classification performance across all 

Gleason groups. 

3.3   Hybrid Architecture ViT and ResNet-50 Integration 

The architecture integrates Vision Transformers and ResNet-50, as is shown in Table 

1. First, the Vision Transformer module splits the input image into patches, provides the 

embedding, and finds correlations between the various parts of the image and their semantics 

with the help of self-attention. ResNet-50 receives the signal-disruption-corrected feature maps 

to train the model on its individual residual blocks that help in identifying the previously 

difficult-to-identify features. In combination of two different types of networks, the model 

obtains the recognition capacity inherent to ViT and the depth of both modes that the model 

has in the image (both spatially and structurally). 

Table 1. Hybrid Architecture of ViT + ResNet-50 

Module Layer 

(Depth 

Index) 

Input Shape Output 

Shape 

Parameters Trainable 

ViT_ResNet50_Com

bined 

 
[32, 3, 224, 

224] 

[32, 6] 
 

Partial 

VisionTransformer 1-1 [32, 3, 224, 

224] 

[32, 768] 151,296 False 

└── Conv2d 2-1 [32, 3, 224, 

224] 

[32, 768, 

14, 14] 

590,592 False 

└── Encoder 2-2 [32, 197, 

768] 

[32, 197, 

768] 

151,296 False 

└── Dropout 3-1 [32, 197, 

768] 

[32, 197, 

768] 

-- False 

└── Sequential 3-2 [32, 197, 

768] 

[32, 197, 

768] 

85,054,464 False 

└── LayerNorm 3-3 [32, 197, 

768] 

[32, 197, 

768] 

1,536 False 

└── Identity 2-3 [32, 768] [32, 768] -- -- 

ResNet 1-2 [32, 3, 224, 

224] 

 
2,049,000 

 

└── Conv2d 2-4 [32 3, 224, 

224] 

[32, 64, 

112, 112] 

9,408 False 
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└── BatchNorm2d 2-5 [32, 64, 112, 

112] 

[32, 64, 

112, 112] 

128 False 

└── ReLU 2-6 [32, 64, 112, 

112] 

[32, 64, 

112, 112] 

-- -- 

└── MaxPool2d 2-7 [32, 64, 112, 

112] 

[32, 64, 56, 

56] 

-- -- 

└── Sequential 2-8 [32, 64, 56, 

56] 

[32, 256, 

56, 56] 

 
False 

└── Bottleneck 3-4 to 

3-6 

[32, 64, 56, 

56] 

[32, 256, 

56, 56] 

~225,408 False 

└── Sequential 2-9 [32, 256, 56, 

56] 

[32, 512, 

28, 28] 

~1,000,464 False 

└── Sequential 2-10 [32, 512, 28, 

28] 

[32, 1024, 

14, 14] 

~5,000,000 False 

└── Sequential 2-11 [32, 1024, 14, 

14] 

[32, 2048, 

7, 7] 

~6,000,000 False 

└── 

AdaptivePool2d 

2-12 [32, 2048, 7, 

7] 

[32, 2048, 

1, 1] 

-- False 

└── Sequential 1-3 [32, 2048] [32, 6] 
 

True 

└── Linear 2-13 [32, 2048] [32, 2816] 2,884,608 True 

└── ReLU 2-14 [32, 2816] [32, 1024] -- -- 

└── Dropout 2-15 [32, 1024] [32, 1024] -- -- 

└── Linear 2-16 [32, 1024] [32, 6] 6,150 True 

In the proposed approach, a hybrid architecture with a mixed deep learning model will 

be used, i.e., Vision Transformer (ViT) and ResNet50, as the backbone for automating the 

Gleason grade of prostate biopsy images. The architecture is a hybrid between convolutional 

and transformer-based structures to generate and capture the local and global contextual 

features of histopathology patches. The input image size of 224 x 224 is fed into the two 

branches simultaneously. The initial branch utilizes the Vision Transformer module, in which 

image patches are transformed into token embeddings and processed by a self-attention 

mechanism. The output of this branch is a 768-dimensional feature vector of high-level global 

features. The second branch follows the ResNet50 network, pre-trained on ImageNet, with a 

sequential arrangement of convolutional blocks, where each progressive block reduces spatial 

resolution and the depth of feature description. The ResNet blocks allow channel sizes to range 

from 64 to 2048 channels, and the layers in the blocks are not trainable but remain in their 

learned state. The last layers of the complete architecture have been left to be trained (around 

6,150 parameters), allowing for additional computational efficiency while reducing the risk of 

overfitting on small datasets of histopathology. Because the convolution and transformer 

features are concatenated for feature extraction, the transformation is passed to a set of fully 
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connected layers where ReLU activation is used, and dropout regularization is applied. This 

system enables the model to make use of fine-grained and rich recognition of locations and 

thus enhancing precision and accuracy regarding the classification of Gleason patterns. 

The topmost module, ViT_ResNet50_Combined, is a major innovation that integrates: 

• ViT (Vision Transformer), which comprises global spatial context through image 

space with self-attention. 

• ResNet-50, which enables effective batch hierarchical and localized feature 

extraction through deep convolutional layers. 

• Global feature learning by ViT (e.g. structural schema in prostate tissue). 

• Classification of local texture and cell morphology types by ResNet-50. 

• Modularity enables the seamless integration of ViT features with deep CNN layers. 

Table 2. Contribution and Novelty 

Component Contribution Novelty 

ViT Learns spatial relationships 

and global structure 

Long-range attention on image 

patches 

ResNet-50 (Frozen) Extracts textural and 

morphological features 

Computationally efficient with 

generalizable CNN features 

ViT+ResNet 

Fusion 

Enhances feature diversity Dual-stream pathway capturing 

both context and detail 

Final Classifier Outputs Gleason grade Trained with supervised learning 

on fused embeddings 

Table 2 represents a brief description of the major architectural elements of the 

proposed hybrid model, including a description of their contributions and the originality they 

bring to prostate cancer Gleason grading. This combination of both ViT and ResNet-50 leads 

to a dual perspective, combining global situational awareness with fine-grained morphological 

assignment to create a twice-as-powerful approach. 

3.4   Training and Optimization Details 

The hybrid model uses the approach of supervised training and uses the cross-entropy 

as a training objective. Learning rate of 1e-3 has been chosen resulting in fast responses by 

𝑡𝑜𝑟𝑐ℎ. 𝑜𝑝𝑡𝑖𝑚. 𝐴𝑑𝑎𝑚 optimizer that can also scale down or increase learning. It is 25 epochs 

of training of a balanced dataset that occurs before early termination when overfitting happens. 

Usually, the data is split into 80 and 20 percent training and validation part respectively. 

3.5   Performance and Evaluation 

Accuracy, precision, recall, F1-score, and the confusion matrix are all applied to 

evaluate the assessments after training. The model achieved a remarkable accuracy of up to 

99% in every single grading class, allowing us to identify the subtle differences in the biopsy 
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images. While ViT represents context in terms of the full image, ResNet-50 focuses on smaller 

details, making the network powerful and accurate enough to be suitable for clinical 

application. 

4. Results and Discussion 

The suggested model was implemented on the Google Colab platform, using the 

computing feature provided by the NVIDIA T4 GPU to accelerate deep learning performance 

and work with high-resolution histopathological images. Since the recovery of the resized 

PANDA dataset, located on Kaggle, resulted in unbalanced class representation, biopsy image 

samples were selected in the quantity of 500 per Gleason grade class. The data were separated 

into 80 percent for training and 20 percent for testing. The training was performed over 25 

epochs using the Adam optimizer with a learning rate of 0.001 to ensure consistent convergence 

in the model, which was trained using both local and global features in the captured data. This 

approach allowed for balanced learning, resulting in good performance in classifying all classes 

involved. Figure 3 shows patches of histopathological representations of the samples of each 

grade of the Gleason scale, from 0 to 5, each having 500 samples per class. This kind of visual 

diversity will emphasize morphological variations within graduating grades and will help the 

model learn discriminative features appropriately. 

 

Figure 3. Dataset Loading 

Figure 4 provides a detailed concept of the model's learning over 25 epochs. Training 

and testing accuracy are continuously and gradually increasing, as demonstrated by the 

accuracy plot (left). Notably, test accuracy reaches a value above 99% at the final epoch, 

indicating an incredibly high generalization power. The surprising aspect is that the accuracy 

on the test set remains higher than the accuracy on the training set throughout the epochs, 

suggesting that the model is developing representative features without overfitting. Similarly, 

the loss plot (right) indicates that both training loss and testing loss are significantly reduced, 

with test loss approaching zero in the last few epochs. The increase in training stability and 

high level of generalization is highlighted by the teaching and testing curves moving non-

differentially relative to each other. These dynamics reveal that the hybrid structure of 

ResNet50 and ViT, which were fine-tuned using augmented input information and 

regularization patterns, has achieved potent closeness and elevated classification related to 

histopathological Gleason grading. 
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Figure 4. Training Plots 

Figure 5 shows how the proposed hybrid ResNet50 + Vision Transformer model 

performs on the classification of each of the six Gleason grades (0 to 5) with 100 test samples 

each. The pattern in the matrix is nearly diagonal with insignificant deviations from the 

diagonal, where there is a low probability of misclassification and a high percentage of correct 

classification. Among the grades, however, grades particularly near each other and which have 

overlapping morphologic features (grades 3 and 4) are well differentiated, showing the model 

has the learning power to recognize fine and coarse patterns of tissues. These limited errors of 

misclassification—one grade 2 sample that is predicted as a grade 3—reflect entirely the 

clinical perplexity of separating borderline instances, yet the general F1-scores would be 

clinically satisfactory and close to or above 1.00. This immense strengthening of the approach 

was due to the usage of various data augmentation tools, e.g., random flip, random rotation, 

and random color jittering, modifying the generalization of the model to respective stain and 

morphological dissimilarities. Moreover, the introduction of a balanced dataset helped decrease 

the class imbalances, and the hybrid architecture was effective in addressing inter-patient 

heterogeneity and minimizing vulnerability to inter-observer variation in the Gleason labeling. 

The rates of false positives and false negatives were very low among all classes, and therefore, 

it affirms the credibility of this model in making clinical decisions with respect to two 

objectives: interpretation of under-diagnosis and over-diagnosis in prostate cancer screening. 

      

Figure 5. Confusion Matrix and Classification Report 

The simulated multi-class ROC based on the confusion matrix is depicted in Figure 6. 

What is evident in the figure is that it performs very well in the classification of all Gleason 
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grades. As we can see, the AUC of all classes is either close to or equal to 1, and the macro-

average is 0.997, showing the excellent discriminative abilities of the model with negligible 

overlap between the classes. 

 

Figure 6. AUC-ROC Curve 

Table 3. Comparative Analysis 

Model Parameters Epoch Accuracy Precision Recall F1-Score 

CNN + Transfer 

Learning [2] 

234,501,120 30 0.94 0.93 0.92 0.92 

Federated Attention 

Model [6] 

450,032,120 25 0.95 0.94 0.93 0.94 

Multi-label 

Ensemble CNN [10] 

379,807,760 50 0.96 0.95 0.96 0.95 

LSTM-DBN [11] 182,345,000 40 0.91 0.9 0.91 0.9 

ViT Modelling 860,00.000 25 0.88 0.85 0.86 0.87 

ResNet-50 256,00,000 25 0.89 0.88 0.89 0.88 

Proposed Hybrid 

ViT + ResNet-50 

114,246,446 25 0.99 0.99 0.99 0.99 

Table 3reflects the proposed architecture of the hybrid ViT + ResNet-50 model, and its 

comparisons are indicated with other approaches based on deep learning involved in the 

Gleason gradings, including standard systems such as CNN and LSTM-DBN, as well as more 

complex ones, including joint CNNs, federated attention models, and standalone systems of 

ViT and ResNet-50.Figure 7 depicts the graphical comparison of the performance evaluation 

(accuracy, precision, recall, and F1-score) of all of the deep learning techniques used in 

recognition of the ocular disease crimes. The trained model in all categories of metrics 

performed better than the others. 
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Figure 7. Comparative Analysis with Existing Models 

Table 4. K-Fold Validation 

K-Fold Accuracy Precision Recall F1-Score 

1 0.96 0.97 0.97 0.96 

2 0.95 0.97 0.96 0.95 

3 0.97 0.96 0.95 0.97 

4 0.98 0.97 0.97 0.96 

5 0.99 0.99 0.99 0.99 

It is shown in Table 4 that the proposed model effectively generalizes in the 

identification of models with one-holds when subjected to K-Fold cross-validation. Other than 

fold 3, the accuracy level was maintained at 95-99 percent (with fold 5 achieving 100 percent 

errorless results in all criteria). The model demonstrates a high degree of generalization, as well 

as a high degree of robustness.By scoring the same on each of the evaluation metrics—

accuracy, precision, recall, and F1-Score—at 0.99 each, and having a reasonable number of 

114.2 million parameters, the hybrid model stands out as the best among them all. Among 

models such as multi-label ensemble CNN and federated attention models, despite having 

many more parameters (379.8M and 450M respectively), their performance scores are lower. 

There is bad news for ViT and ResNet-50 alone, as each records lower accuracies and recalls, 

indicating the usefulness of the combined features of the convolution and transformer with high 

accuracies. 

5. Conclusion 

The hybrid deep learning model comprises ResNet50 and Vision Transformer 

architecture to perform the automatic classification of prostate cancer Gleason patterns in 

histopathological biopsy images. The model has amazing results: an accuracy of 0.99 with a 

US precision, recall, and F1 score. The obtained metrics indicate statistically significant 

improvements compared to currently used methods, which is supported by the similarity of 

improvement across all the other metrics measured and confirmed using stratified five-fold 

cross-validation. Thus, it is possible to add that the ability of this model to focus both internally, 

0.75
0.8

0.85
0.9

0.95
1

1.05

Accuracy Precision Recall F1-Score
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i.e., on local glandular features, and externally, i.e., on global contextual information, has 

helped increase its discriminatory power. The classification performance attained, which is 

high on the clinical side, can be beneficial in addressing   the variation between observers 

during the Gleason grading procedure, as this has always been considered one of the 

problematic issues in conducting the diagnosis of prostate cancer. In this way, the model allows 

reproducible and consistent assessments, making   it possible to consider it a technical aid in 

decision-making   in conjunction with human professionals, particularly when a large amount 

of diagnostic activity is performed.  

Nevertheless, several limitations should be mentioned. To start with, the assessment 

relies on the PANDA reduced data, which might not adequately represent the variety of clinical 

data found in various institutions. These down-sampled patches of images work reasonably 

well at accomplishing their task, but numerous fine-grained histological clues might not be 

accessible in these patches created in full resolution compared to those created using whole 

slide images. Another requirement for deploying the current framework in a real environment 

is that it operates at the tile level without including the possibility of aggregating predictions at 

the slide or patient level. Although overlaid on Grad-CAM, interpretability is still a weakness, 

indicating a need to increase the openness of AI systems in medical operations. Future 

directions would include external validation on different data, combining multiple modalities 

of information (such as MRI or genomic data), and developing slide-level diagnostic 

approaches. Improving interpretability through explainable AI and ensuring it works within 

resource-limited devices will also play an important role in clinical translation and greater 

access.  
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