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Abstract 

Within the realm of computational pathology, the detection of mitotic cells poses a 

formidable challenge. Many existing approaches rely on hand-crafted features, which often 

result in poor generalization, as their performance degrades across different tissue types, 

staining processes, and the various scanners used for digitizing whole slide images. The Multi-

Patch Mitosis-Detect (MPMD) framework is suggested in the proposed work to detect mitosis 

from histology images. To identify mitotic reference regions, the proposed MPMD framework 

uses the detection module for segmentation by utilizing the Recurrent Residual Convolutional 

Unit (RRCU). The classification model then employs Inception Recurrence Residual 

Convolutional Neural Networks (IRR-CNN) to validate the mitotic regions. Furthermore, a 

novel confidence analysis and the MPMD technique are combined to improve the performance 

of the detection in the testing phase. The novelty of the proposed multi-patch approach is that: 

(a) Mean Squared Error (MSE) loss is used instead of Dice Coefficient (DC) loss for both 

training and testing; (b) Global Average Pooling is used in place of fully connected layers in 

the classification model to reduce the number of network parameters. Experimental findings 

demonstrate the performance improvement of the proposed approach compared to existing 

state-of-the-art methodologies.  

Keywords: Breast cancer detection, Mitosis detection, Multi patch similarity scheme, 

Recurrent Residual Convolutional Unit, Pathological images, Deep neural network. 

1. Introduction 

As per the 2018 publication by the International Agency for Research on Cancer, there 

was an estimation of 1 crore 81 lakhs novel instances of cancer along with 96 lakhs related 

demises. Breast cancer stands out as one of the prevalent malignancies in females globally, 

ranking high among the leading causes of mortality. Both the World Health Organization and 

the Nottingham Grading System identify three important features for evaluating breast cancer: 

the formation of tubules, the presence of abnormal nuclei, and the mitosis count. These data 

are highly essential for understanding, diagnosing, and treating breast cancer. Pathologists 

analyze High-Power Fields (HPFs) within Total Slide Images (TSI) to identify and count 

mitotic cells. The manual visual examination of histology slides by pathologists is 

characterized by tedium, susceptibility to errors, and time consumption. Consequently, there is 

a need for automatic approaches to mitotic cell detection within clinical settings. The detection 

of mitotic activity in E&H (Eosin and Hematoxylin) stained histopathological images poses 
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challenges due to various factors like subtle differences between different kinds of images, cell 

overlapping, heterogeneity of nuclei, and nuclei overlapping. Mitosis nucleus undergoes 

diverse transformation through four distinct phases, each phase exhibiting unique morphology 

and texture which complicates the detection. Further, mitosis detection becomes challenging 

because some cells may not be in focus. Accurate detection of mitotic cells is complicated due 

to certain cell types. Because there are so many HPFs in a Whole Slide Image (WSI), the 

process is laborious and error-prone. Assessing mitotic cells is subjective and not easily 

reproducible, making it hard for pathologists to conclude on the mitotic count. Early detection 

techniques are required to satisfy the needs of clinical applications. The histopathological 

images captured using an A-type and an H-type scanner are displayed in figure 1. 

     

                      (a)                                                                    (b) 

Figure 1.  Histology Images Captured using Both A Type and H Type Scanner: 

(a) Captured by the A-level Scanner (b) Captured by the H Scanner 

Given the critical nature of cancer severity determination, there has been a surge in 

research activity aimed at developing efficient methodologies for automatic mitotic cell 

detection in pathological images. Recent advancements in deep learning techniques have led 

to the emergence of numerous automatic mitosis detection systems, demonstrating markedly 

superior performance when compared to traditional machine learning approaches. One of the 

primary hurdles encountered in deep learning pertains to the acquisition of a sufficient volume 

of samples with labeling required for training significant neural network frameworks. Mitotic 

detection is a challenging task as seen in competitions like ICPR 2012, AMIDA 13, MICCIA 

2013, ATYPIA MITOSIS 2014 and TUPAC-16. Mitotic cells and non-mitotic cells are shown 

in figure 2. 

 

(a) 

 

(b) 

Figure 2. (a) Patches of Cells with Mitosis (b) Patches of Cells with no Mitosis 
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However, simple CNNs by themselves do not have cell-level monitoring, which 

frequently necessitates restricting the size of the input image. The size of the images is reduced 

to concentrate on localized areas of the image instead of the entire image context. Due to this, 

both objects and non-objects can be used to learn the sub- image features. Furthermore, in 

medical applications, accurate localization or object recognition is actually a more frequent 

challenge than full-image categorization. Therefore, deep learning techniques like R-CNN, 

Faster R-CNN, and Mask R-CNN were first created for object detection and have been adapted 

to target particular areas of the image referred to as ROI (Region of Interest). 

Selecting particular features to identify mitotic cells is challenging due to the complex 

and diverse areas of mitotic cells as well as the presence of confused cells. Consequently, in 

recent years, several mitosis detection systems employing deep learning techniques have been 

presented. These methods have improved accuracy compared to traditional methods [2]. The 

mitosis detection systems face two types of problems. Firstly, the classification problem 

involves extracting non-overlapping slides (patches) and employing Convolutional Neural 

Networks (CNNs) to classify whether the patch corresponds to a mitotic or non-mitotic region. 

[3]. However, the drawback is it is that not certain that the mitotic region will align with the 

central areas of the patches. Secondly, there are instances where patches only partially contain 

mitotic regions, leading to the model's failure in detecting mitotic cells.  

Alternatively, the problem in a segmentation task involves pixel-level classification to 

delineate mitotic regions rather than classifying patches [3]. Despite its potential, this method 

disregards regional context and is unsuitable for weakly annotated samples, such as single-

pixel annotations typical in datasets like the Atypia Mitosis 2014 dataset [4]. Recently, an 

article addressed the challenge of mitosis detection using a Faster Recurrent Convolutional 

Neural Networks (R-CNN) model. This model employs a fully connected Region Proposal 

Network for generating the target regions, followed by classification using a classifier. The 

system comprises two distinct models: firstly, a segmentation model to estimate the bounding 

boxes using a Fully connected Convolutional Network (FCN). Secondly, a detection model to 

enhance the classification of detected patches using ResNet based Recurrent Convolutional 

Neural Networks. However, there are issues with this detection model. The mitosis detection 

in openly available datasets lacks bounding box labels, posing a challenge for the detection 

model. This is addressed by applying a previously trained FCN model from the 2012 mitosis 

dataset on the 2014 mitotic dataset in order to create bounding boxes. Segmentation model 

output images are labeled. It is challenging to train the deep learning model to define accurate 

boundaries because the mitosis regions exhibit variations in size and appearance. In this paper, 

introduce a Multi Patch Mitosis Detection (MPMD) system based on multiple tasks, leveraging 

different models for classification, detection and segmentation. We simultaneously employ a 

segmentation model for region based annotated images and a detection model for pixel 

annotated images. By combining the output images of the segmentation and detection models, 

we extract the regions of interest areas for mitotic cells. Subsequently, a classification method 

is utilized to classify mitotic and non-mitotic cells. The following sections constitute the 

remaining manuscript as: Section 2 consists an overview of the literature. Section 3 describes 

the proposed method, the results and discussion are presented in section 4 and Section 5 shows 

the concluding part. 
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2. Literature Review 

With the availability of WSI over glass slides [5-7], automatic detection of mitotic 

activities in Hematoxylin and Eosin (H&E) examinations of stains has gained significant 

attention. In the past, handcrafted features were utilized to define morphologies, textures, and 

statistics-based attributes in regions of mitosis. However, these methods require extensive 

validation efforts and suffer from poor generalization due to insufficient representation of 

mitotic region features or characteristics, consequently yielding subpar accuracy. Recently, 

methodologies based on deep learning [8] have gained popularity among researchers for 

segmenting, detecting, and recognizing activities across various medical imaging modalities. 

Notable strides have been made in computational pathology over the past few years, along with 

the development of various deep learning methods specifically designed for detecting mitosis 

[9]. Groundbreaking advancements have occurred in pixel-based classification for histology 

images by applying deep neural networks in mitosis detection. These techniques are 

complemented by post-processing techniques to obtain better results. Experimentation 

conducted on the 2012 ICPR MITOSIS challenge yielded remarkable results, achieving the 

highest performance with an F1-score of 78.2%, marking a substantial improvement over 

existing feature-based method. The deep CNN methods demand computational resources and 

are time consuming.  

In 2016, a methodology [10] was introduced that utilized both coarse and fine 

approaches, employing a cascading framework involving two CNN models. Initially, candidate 

regions were extracted using the first CNN model, referred to as the framework for retrieving 

coarse information. Recognizing the challenge posed by the availability of labeled samples for 

training Deep CNN (DCNN) models, a CNN augmented with an additional crowdsourcing 

layer (AggNet) was proposed in 2016 to address this issue. Subsequently, a new framework 

was employed for classification purposes, distinguishing mitotic and non-mitotic regions 

exhibiting similar appearances [11]. For the classification model, a transfer learning technique 

was employed, involving training deep CNN frameworks over a vast dataset comprising 

naturalized images. Evaluation of frameworks had been conducted over both the 2012 ICPR 

MITOSIS and 2014 MITOS-ATYPIA examinations [4], yielding F1-scores of 78.8% and 

48.2%, respectively. Notably, the system's limitation lies in its evaluation and reporting solely 

on samples obtained from an A-type scanner.  

The detection process has been enhanced by Deep Regression Networks (DRNs) with 

fully convolutional kernels [12]. In a single forward propagation, these networks can generate 

a dense score map matching the original input size. Moreover, we've leveraged knowledge 

transfer from diverse domains to augment their generalization capabilities. The performance 

evaluation of DRN on the MITOSIS 2012 dataset exhibits an F1score of 78.9%. In 2018, 

another study was conducted for mitosis detection, presenting coarse and fine-based models 

[13].  The 37 distinct features were extracted based on color, texture and size. The Random 

forest classifier is used to select primary candidate regions. This study reported F1-scores of 

approximately 78.4% and 42.7% for the ICPR MITOSIS 2012 and ATYPIA MITOSIS 2014 

datasets respectively. They conducted experiments on only A-type scanners. 

 In early 2018, the DeepMitosis framework [14] was introduced, comprising 

segmentation, detection, and verification networks. The detection task utilized a Faster R-CNN, 

an area-based framework for detecting ConvNets incorporating totally convolution-based 

Networks of Proposals or Region or RPN for suggestion generation along with subsequent 

classification. The experimental evaluation was restricted to samples obtained from an Aperio 
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type, yielding F1 scores of 83.2% 2012 43.7% for the 2012 and 2014 datasets, respectively. In 

2019, a CNN based on a transfer learning approach [15], with random forest classifiers, was 

proposed for better feature extraction in mitotic detection. These methods were performed on 

the ATYPIA MITOSIS  2014 dataset and dataset prepared by cancer affected areas in 

Thiruvananthapuram, South Asia. This method shows a 15 percent performance improvement 

in mitosis detection.  

In 2022, an advanced deep learning framework Residual Cascaded Networks [16], was 

proposed to enhance the existing method for mitosis detection. This method discussed three 

improvements: Firstly, to reduce erroneous detection by relocating predictions around window 

borders to new windows for re-evaluation. Secondly, to enhance overall accuracy by adjusting 

the center of objects by improving consistency and subsequent classification. Thirdly, to 

identify informative example an active learning integration is performed by leveraging 

discrepancies between the two pipeline stages. This method achieves an F1 score of 0.82. 

In 2023, FoCasNet [17], an enhanced two-stage nuclei detection method, was 

introduced. It comprises two components: the initial stage is Mdet for detecting mitosis to 

capture as many instances as possible. The second stage is Mclass, which classifies the results 

from the previous stage by eliminating false positives. This method achieved state-of-the-art 

performance with an F1-score of 0.88 on the ICPR 2012 dataset. 

The classification issue involves identifying whether the non-overlapping regions 

match mitotic tissue or non-mitotic tissue. A disadvantage is that there is no guarantee that the 

mitotic region will always line up with the center regions of the patches. The issue with 

segmentation identifies mitotic areas using pixel-level classification as opposed to patch 

classification. The disadvantage is that it may not be appropriate for datasets with pixel 

annotations, such as MITOSIS ATYPIA 2014. To address these problems, a novel approach 

based on multi-tasking with a multi-patch mitosis detection technique is proposed in this paper. 

3. Proposed Methodology 

The existing CNN based networks are used to extract features by training on images. 

These methods are extended to medical images to identify the locations of mitotic regions. For 

recognizing mitotic figures both hand-crafted and CNN features are employed. Later, to 

recognize the mitotic figures within the patches of images, a sliding window approach is used 

to avoid the need for hand-crafted features.  A two-stage pipeline for detecting mitosis called 

Cascade Neural Networks [13] is initiated, where a semantic segmentation network first 

coarsely proposes mitotic cell locations, followed by refinement using a classification network 

for detailed prediction. DeepMitosis [14] shows significant improvement in performance by 

enhancing the detection algorithm in first stage where semantic segmentation is transformed 

into object detection. But the bounding boxes are estimated with the help of semantic 

segmentation networks for datasets that lack pixel-level annotations. 

The proposed method, MPMD, innovatively tackles the problem in the first stage by 

multi-patch based learning, training both segmentation and detection models concurrently. In 

both training and testing the Dice Coefficient loss is replaced with the Mean Squared Error loss 

in the proposed method. In the segmentation model to differentiate mitosis from non-mitosis 

regions, Gaussian density surfaces are generated with respect to the center points of the mitotic 

figures. Due to the mean squared error loss, the model is trained based on density surfaces 

instead of pixels. Because patches are applied as input to the model, it focuses on localized 
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features instead of focusing on entire context of the images. The model effectively detects 

mitotic and non-mitotic regions and improves the F1-score compared to other methods. In the 

proposed architecture, two distinct models are utilized for the detection phase, addressing 

detection and segmentation tasks, as illustrated in figure 3. 

 

Figure 3. Block Diagram of Multi Patch Mitosis Detection System 

For datasets featuring region-based annotations, the mitosis segmentation task employs 

the Recurrent Residual U-Net (R2U-Net) framework, while a regression model-based R2U-

Net is employed for datasets with single point annotations, facilitating mitosis detection. 

Patches are extracted from the input images in sizes of 128x128 non-overlapping sections for 

detecting the regions of interest. Patches are generated from each method and combined to 

create merged masks for the final prediction mask. Subsequently, a blob detection technique is 

employed over the merged masks to obtain the centers of the blobs. An integrated multi-patch 

reference scheme is then utilized for cropping patches measuring 64 x 64 pixels centered on 

the translated blob centers. Finally, the validation of cells that have undergone mitosis and non-

mitosis activities, including nearby candidates to cells that have undergone mitosis, is 

conducted utilizing Inception Recurrence Residual Convolutional Neural Networks IRR-CNN. 

3.1 Segmentation and Detection Models 

The segmentation framework architecture employed in the R2U-Net model shown in 

figure 4 follows the sequence: 128×128×3 → (64×64×32) → (32×32×64) → (16×16×128) → 

(8×8×256) → (8×8×512) → (8×8×256) → (16×16×128) → (32×32×64) → (64×64×32) → 

128×128. In each R2U net, M×N is the size of the input image or feature maps in the notation 

(M×N×K) and the number of filters is represented with K. Each convolutional layer employs 

3×3 kernels. 

Recurrent Residual Convolutional Units (RRCUs) consist of a combination of two 

ideas:  recurrence and residual learning. This method is best suited for segmenting and 

differentiating mitotic and non- mitotic regions accurately. RRCU applies the same 



Kusuma Sri M., Satheeskumaran S 

ISSN: 2582-4104  488 

 

convolutional layers repeatedly with shared weights to create deeper representations without 

expanding the number of parameters. 

 

Figure 4. Segmentation Model-Recurrent Residual Convolutional Unit 

The very important advantage of RRCUs is that they make it easy to train deeper 

networks and solve the vanishing gradient issue. Due to the integration of residual connections, 

they maintain significant lower layer weights integrated with the higher layer produced by 

recurrence. This fusion is essential for the input to avoid the recurrent convolutional block in 

the residual path. To enable the segmentation model in detection tasks, the mitotic cell center 

coordinates are used to construct a Gaussian density surface. At least one mitotic cell can be 

observed in most input data, resulting in matching Gaussian distributions, since learning the 

density surface is the final goal, Mean Squared Error (MSE) loss is used for both training and 

testing rather than Dice Coefficient (DC) loss. 

3.2 Classification Model 

 

Figure 5. Classification Model-Inception Recurrent Residual Convolutional Neural 

Networks (IRRCNN) 
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The IRRCNN architecture consists of both inception recurrent residual units (IRRU) 

and transition units. A softmax layer at the output, transition blocks, IRRUs, and many 

convolutional layers make up the architecture. Figure 5 shows a graphic illustration of the 

IRRU. The IRRU consists of inception units, recurrent convolutional layers, and residual 

layers. For different kernel sizes, recurrent convolution operations are applied to the inception 

units. The repeated structures in the convolutional layer are formed by combining the output 

of the present time step with the output of previous time steps. 

The classification model uses the positive and negative mitotic samples that were 

obtained from the segmentation and detection model's output. The inception model utilizes 

different dimensional filters, such as 3x3 and 1x1 in size. An inception unit followed by average 

pooling and then a 1x1 convolutional layer is used. When it comes to computer vision and 

medical imaging applications, our model performs noticeably better than other deep learning 

models. In the classification model, the number of network parameters is reduced by using 

global average pooling in place of fully connected layers. Finally, to calculate confidence 

probability, a softmax layer is used for separating mitotic and non-mitotic figures. 

4. Results and Discussion 

We implemented the MPMD method with the TensorFlow deep learning framework on 

GPU. Evaluation of the system was conducted across two distinct datasets, encompassing the 

2012 ICPR MITOSIS dataset and the 2014 MITOSIS-ATYPIA dataset. We used 450 images 

from ICPR MITOSIS 2012 and 340 images from ATYPIA 2014 with both A-type and H-Type 

of size 2084x2084. Patches of size 128x128 were extracted from these images and with the 

help of augmentation technique a greater number of images were generated by flipping, 

rotating and scaling.  The dataset is split into 80% for training and 20% for testing. The 

methodologies described in this section are evaluated against the latest findings. Most of the 

existing methodologies solely present results derived from A-type scanners, whereas the 

proposed approach utilizes training and testing with samples from either H or A type scanner. 

The regions indicating mitosis are identified with varying confidence scores: 1.0, 0.8, 0.6, 0.2, 

or 0. The model has been trained specifically on mitosis regions with confidence values equal 

to or greater than 0.6. 

4.1 Segmentation and Detection Results 

The Adam optimizer was used with default parameters: β1 = 0.9, β2 = 0.999, and ε = 

10-8. The segmentation model was trained using the cross-entropy loss function. The model 

experienced 300 epochs with a batch size of 16 during the training procedure. Figure 6 shows 

the segmentation model's accuracy throughout training and validation. At first, the model's 

training and validation accuracy fluctuated, but eventually, it stabilized and ended up with a 

validation accuracy of 97.78% DC score. For later use, the weights that showed the best 

validation performance during training were retained. With the exception of the loss function 

used, the detection model underwent the same training process. The detection model used the 

Mean Squared Error (MSE) as its loss function rather than the DC. The DC for two sets X and 

Y can be mathematically given as follows: 

    𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓. =
2|𝑌∩𝑍|

|𝑌|+|𝑧|
                                         (1) 
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         Figure 6. Accuracy Plots for Segmentation Model During Training and Validation 

 

Figure 7. Accuracy Plots During Training and Validation for Classification Model 

With a categorical cross-entropy loss function, a momentum of 0.9, and an initial 

learning rate of 10-2, the segmentation model is trained using the Stochastic Gradient Descent 

(SGD) method. For every 100 epochs, the learning rate drops by a factor of 10 according to a 

predetermined schedule. Training of the classification model uses a batch size of 16 and covers 

300 epochs. A graphical representation of the training and validation accuracy for the 

classification model is depicted in figure 7. The figure illustrates a validation accuracy of 

approximately 98 percent during the training phase of the classification model. Since the model 

is trained based on patches, the size of the images was reduced the segmentation model focuses 

on local features and separates the mitotic regions effectively. 
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Figure 8. Results Detecting Regions of Interest for Mitosis using the Dataset 2012 

MITOSIS (a) Input Images (b) Masked Images (c) Output Images of Detection Model 

Visual representations of incoming patches and results from the frameworks for 

detecting and segmenting have been showcased in Figure 8. Figure 8(a) shows the input images 

given to the model, 8(b) shows the masked images based on density levels, and 8(c) shows the 

output images of the detection model. The initial rows depict accurate detection of mitotic 

events by the model, a typical outcome observed in the proposed model. The following row 

shows outputs from the region of interest detection, focusing on extreme cases and emphasizing 



Kusuma Sri M., Satheeskumaran S 

ISSN: 2582-4104  492 

 

the need for frameworks that adapt to specific requirements in cases where detection and 

segmentation are successful. Consequently, a combined mask is generated for blob detection 

using these outputs. 

4.2 Classification Results 

The outputs of quality-based frameworks on mitotic activity detecting procedures that 

are under proposition across the ICPR MITOSIS 2012 dataset have been visually depicted in 

Figure 9. The top row images of Figure 9 are the results of the classification model for the A-

type scanner, and the bottom row images are the results of the classification model for the H-

type scanner. In these illustrations, bluish circles signify ground truths, while greenish circles, 

having associated magnitudes of confidence, represent these terminal predictions from the 

framework under proposition. 

  
  

    

Figure 9. Classification Results of Experiment on Dataset of 2012MITOSIS: Top Row: 

Results of Type-A Scanners. Bottom Row: Results of Type-H Scanners. Greenish Circles 

Demonstrate Detection of Mitosis for the Framework 

Usually, the overlapping of blue circles and green circles represents the detection of 

mitosis. Within the markings, the yellow writing indicates the confidence values. The 

frameworks' false detections are represented by green circles with confidence values. 

Conversely, false negative events from the model are indicated by blue circles that lack 

confidence values. 
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Figure 10. Result of Experiments on Dataset of 2014 MITOSIS Top Row: Result of 

HPF in Type-A Scanners. Bottom Row: Result of HPF in Type-H Scanners. Greenish and 

Yellowish Rounds Demonstrate Ground Truths and Detection of Mitosis for the Framework 

Detecting mitotic cells in the MITOSIS 2014 dataset poses greater challenges in 

comparison to the Databases of 2012-MITOSIS because of various factors. Initially, the 

appearance of the remaining muscle is more complex, and there is more variation in patterns 

and colors when it comes to mitotic cells, as shown in Figure 10. The images in the top row of 

Figure 10 are results of the classification model for the MITOSIS 2014 dataset using the A-

type scanner, while the bottom row images are results of the classification model for the H-

type scanner. 

4.3 Performance evaluation 

In order to create integrated binary masks of the same size as the HPFs, the system first 

ingests HPF images, after which mitotic region segmentation and detection techniques are 

performed successively on non-overlapping patches. The performance of the model to detect 

mitotic cells is assessed using the following performance metrics precision, recall and F1-score 

given in equations 2,3,4. 

   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (2) 

   𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
                         (3) 

  𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑒𝑛𝑒𝑠𝑠×𝑅𝑒𝑐𝑎𝑙𝑙𝑠

(𝑃𝑟𝑒𝑐𝑖𝑠𝑒𝑛𝑒𝑠𝑠+𝑅𝑒𝑐𝑎𝑙𝑙𝑠)
                        (4) 

Table 1. Comparisons of MPMD with Similar Different Methods for Mitosis 2012 

Citation Methodology F1-Score Recall Precision 

[13] Cas-NN(FCN+DCNN) 0.788 0.772 0.804 

[12] DRN+FCN+knowledge transfer 0.790 0.802 0.779 

[18] CNN 0.611 0.591 0.752 

[19] CLBP+SVM 0.712 0.73 0.71 

[20] Colour channels+ Laplacian of Gaussian 

+threshold +morphology +decision tree 

0.719 0.75 0.699 

[8] DNN 0.783 0.702 0.887 
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Table 1 tabulates these quantity-based results within frameworks on the 2012 MITOSIS 

dataset, providing a comparison with current approaches. The best results in identifying mitotic 

activity were reported by competitors in the 2012 ICPR competition. Since then, different 

techniques for handcrafted features and convolutional neural networks have surfaced. With an 

F1 score of 0.824, notable segmentation strategies include REMSS (Relativity-Entropies 

Maximum Scales Spaces) in conjunction with RF (Randomized Forests) classification. 

Numerous mitosis detection techniques based on convolutional neural networks, including 

CNNCas, SEGMITOSIS, and DeepMitosis, have been presented. In 2014, a technique that 

combined the features of CNNs and HCFs was also suggested. In order to detect mitosis and 

achieve an F1 score of 0.834, DeepMitosis, which was first presented in 2018, uses 

segmentation, detection, and validation models with an area-based convolutional neural 

networks, or CNN-R framework. The suggested MPMD, which uses a multi-patch-based 

methodology, shows a noteworthy F1 score of 0.891 for A-type scanners, which is a 4.6% 

improvement over the most recent results. MPMD experimental results on the MITOSIS 2012 

dataset obtained F1 scores, precision, and recall of 0.891, 0.887, and 0.893, respectively. 

Furthermore, during testing, MPMD produces an F1 score of 0.840 for H-type scanners; no 

other published findings are available for comparison. Figure 10 shows the qualitative results 

of the 2014 MITOSIS-ATYPIA in the situations of H-type and A-type scanners. Greenish 

circles indicate forecasts, while bluish circles indicate ground truth. The suggested model is 

able to identify mitotic areas in the majority of cases. 

Table 2. Comparisons of MPMD with Similar Different Methods for Mitosis 2014 

Citation Methodology F1-Score Recall Precision 

[13] FCN+DCNN 0.451 0.482 0.417 

[14] DEEPERMITOSIS(RPN+R-CNN) 0.452 0.458 0.447 

[23] Seg-mitosis (FCN + Gaussian 

filter+ concentric loss function) 

0668 0.786 0.496 

[21] Light Weight RCNN 0.667 0.671 0.663 

proposed MPMD (R2UNet+IRR-CNN) 0.771 0.799 0.753 

Apart from these, samples in the MITOSIS-2014 datasets have been narrowly annotated 

through unitary point annotations, where a unitary pixel represents the full region of mitosis. 

Consequently, the magnitudes of F1 in these experiments indicate reduced levels compared to 

those obtained through the 2012-MITOSIS datasets. However, the examination of the 

[21] Light weight RCNN 0.785 0.792 0.789 

[22] RRF 0.824 0.813 0.834 

[14] DEEPER-MITOSIS(RPN+R-CNN) 0.833 0.813 0.542 

[23] Seg-mitosis (FCN+Gaussian 

filter+concentric loss function) 

0.803 0.763 0.847 

[17] FoCasNet 0.881 0.823 0.856 

Proposed MPMD (R2UNet  + IRR-CNN) 0.891 0.893 0.887 
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performance in the proposition of MPMD, along with different present methodologies, is 

presented in Table 2. MPMD achieves an F1-score of 0.771, precision of 0.753, and recall of 

0.799 in the case of multiple patches methodologies based on references. LRCNN, or 

Lightweight CNN, introduced in 2018, reported F1-scores of 0.427 and 0.658 for outward and 

inward groups, respectively. DeepMitosis has notably not performed well in the 2014 

MITOSIS dataset. Although it doesn't work as effectively as two other methods on these 

datasets, it still offers many advantages over existing approaches. Figure 9 shows qualitative 

outputs for both H and A types of scanning, demonstrating highly accurate detection of mitotic 

cells. 

5. Conclusion 

This paper presents a deep learning-based multi-patch approach for mitotic 

identification through detection, classification, and segmentation. While the classification 

model divides regions into mitotic and non-mitotic groups, the segmentation and detection 

models are used to select regions of interest. To improve overall testing accuracy, we also 

provide a novel confidence analysis approach and an integrated multi-patch reference method. 

Popular publicly available datasets, such as MITOSIS 2012 and MITOSIS 2014, with the 

Aperio (A) and Himamasthu-Tx (H) scanners were used to evaluate our suggested mitosis 

detection algorithm. When compared to recently published data, experimental results show 

higher performance. In summary, the effectiveness of the mitosis detection system is not solely 

reliant on robust training methodologies but also hinges on the efficiency of the testing strategy 

to enhance overall accuracy in identifying mitotic cells. MPMD is designed to tackle these 

issues by analyzing multiple neighboring patches during testing. Though the proposed method 

exhibits improved performance compared to state-of-the-art methods, there is room to improve 

the performance of the model when applied to unlabeled datasets like TUPAC 2016 and real-

time clinical datasets.  
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