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Abstract 

Proper detection of insecticides is also vital since it is the determinant of agricultural 

safety, efficiency, environmental protection and environmental compliance. In this paper, a 

modified ChemNet architecture is introduced, which is modified to the classification of 

insecticide in fruits. Compared to the traditional ChemNet, which leaves out chemical priors 

and residual learning, the proposed model has certain improvements: Squeeze-and-Excitation 

(SE) blocks for adaptive channel recalibration, residual blocks coupled with SE units to 

improve feature extraction, Self-Attention mechanism to learn long-range dependencies, and 

the swish activation function to support gradient flow and non-linear representation. Also, the 

network applies progressive dropout, early stopping, and class-weighted loss to address 

overfitting and unbalanced samples. The validation and training of the proposed model were 

trained using the Kaggle Banana Insecticide Dataset comprising a total of 6,103 images. The 

data is grouped into six distinct categories: monohigh (high level of banana treated with mono-

type insecticide), monolow (low level of mono-type insecticide), novahigh (high level of nova-

type insecticide), novalow (low level of nova-type insecticide), natural (banana samples that 

were never treated) and rotten (samples of banana that were biologically spoiled). This 

composition ensures that the dataset encompasses a wide range of levels of insecticide 

contamination and natural spoilage, enabling a strong foundation for training and evaluation. 

This will ensure the quality of the model in the classification of the data. The experimental 

findings show that the modified ChemNet achieves an overall classification accuracy of 

81.02% and demonstrates good generalization across the chemically heterogeneous classes. 

These outcomes indicate the effectiveness of the proposed modifications to transform ChemNet 

for image-based insecticide detection in agricultural images and suggest its potential 

application as a tool for food safety monitoring that can be expanded.  

Keywords: Insecticide, Vegetables and Fruits, Chemnet Model, Health Issues. 

1. Introduction 

The large-scale use of insecticides in contemporary farming has promoted the growth 

of crop yield to a considerable extent and has also provided protection to crops against 

predators, fungi, and weeds. However, this development comes at the price of the continued 

presence of insecticide residues in fruits and vegetables that form a significant segment of our 



 Jubaira Mammoo, Malin Bruntha P 

ISSN: 2582-4104  518 

 

daily meals. These chemical residues may stay on the surface, or they may enter the inner 

tissues of the produce presenting a direct path of exposure to human consumers. 

The residues can be the result of different phases of the agricultural process - direct 

application at the moment of cultivation, environmental contamination, and post-harvest 

treatment. Regulatory bodies have established maximum residue limits (MRLs) in food to 

promote food safety but there is scientific evidence that MRLs are not sufficient to ensure food 

safety when it comes to chronic, low-level doses of multiple pesticides over time. 

Health risks linked to insecticide residues are both acute and chronic. Short-term 

exposure can lead to signs and symptoms that include skin irritation, gastrointestinal distress, 

and respiratory troubles. More concerning, long-term exposure, even in low concentrations, 

has been associated with cancers, neurological disorders (including Parkinson's and 

Alzheimer's), hormonal imbalances and reproductive complications. Susceptible populations-

vulnerable groups, such as infants, children, pregnant women and farmworkers, at greater risk 

either physiologically or occupationally. 

 The correct and quick classification of insecticide residues on fruits and vegetables can 

be very difficult despite the rising awareness. Conventional methods of testing (e.g. 

chromatography, mass spectrometry) are accurate, but time-consuming, costly, and involve 

specialized equipment and expertise. These constraints have stimulated the development of 

non-invasive, image-based detection systems, especially those based on deep learning to 

identify visual signs of contamination by insecticides of various categories. 

In this paper, we propose to use a deep learning framework to classify the level of 

insecticide contamination of fruit samples with a focus on developing a robust and scalable 

framework. To address this pressing concern, this paper formulates a powerful and scalable 

artificial intelligence model to categorize the level of insecticide contamination in fruit 

samples. The aim is to develop a precise, real-time, and accessible solution that complements 

regulatory systems to improve food safety and reduce health risks posed by chemical 

exposures. 

Verger Philippe et al [1] showed that as many as 61% of the fruit and vegetables were 

above international Maximum Residue Limits (MRLs). The important finding is that 87% of 

the total 6,727 samples examined had MRL exceeding rates of more than 7% which contrasts 

with the 0.78% and 1.4% of samples exceeding limits in the USA and EU respectively. The 

presence of pesticide residues is a significant threat to public health, more so when most 

consumers in the area consume fruits and vegetables without washing or cooking them, 

subjecting them to further exposure to toxicants. Types of pesticides present include 

organophosphates and carbamates, which were the most common residues. The study also 

indicated that many of the samples contained numerous pesticides, which is a concern in terms 

of cumulative exposure effects on health. The study identified a lack of surveillance and control 

regarding pesticide application in the EMR. Improved policies, training of farmers on the safe 

use of pesticides and sensitization of people to the dangers of pesticide residues are necessary. 

To cope with health hazards, the paper proposes improvements in monitoring systems for 

pesticide residues, the implementation of stricter regulations on pesticide use, and the 

promotion of safer agricultural production methods among farmers. It is also proposed that 

public education campaigns be used to sensitize consumers to the proper handling of fruits and 

vegetables, thereby reducing exposure. In general, the present paper highlights a serious public 

health concern in the EMR involving agricultural operations and food safety, which must be 

addressed immediately since pesticide residue contamination poses a serious threat. 
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Renata Kazimierczak et al [2] evaluate the occurrence of pesticide residues in organic 

fruits and vegetables (apples, potatoes, carrots, and beetroots) marketed in Poland. Researchers 

analyzed 96 samples collected directly from organic producers in open markets using LC-

MS/MS and GC-ECD/NPD systems to detect 375 pesticides. The findings indicated that 89 

samples (92.7%) were pesticide residue-free. Nevertheless, 7 samples (7.3%) of carrots (5) and 

potatoes (2) contained detectable residues, one sample (1.0%) of which was above the 

maximum residue limit (MRL). Apple and beetroot samples contained no detectable residues. 

The research implies the necessity of intensifying monitoring of pesticides in organic produce, 

training farmers, and increasing public awareness of the dangers of unauthorized pesticide use 

to preserve the image of the organic industry. 

The article by Mireya Povedano et al [3] discusses the levels of pesticide residues in 

organic vegetables and fruits (apples, potatoes, carrots, and beetroots) that are sold in Poland. 

Researchers processed 96 samples of food products taken directly from organic producers at 

open markets and tested them for 375 pesticides. During the analysis, pesticides were found to 

be free in 89 samples (92.7%). However, 7 (7.3%) out of 100 potato and carrot samples had 

pesticide residues and 1 (1.0%) of them was above the maximum residue limit (MRL). No 

pesticide residues were found in beetroot and apple samples. The authors propose enhancement 

of pesticide surveillance, training of farmers, and sensitization regarding the illegal use of 

pesticides to defend the brand image of the organic sector. 

Narenderan et al. [13] provided a critical review of pesticide residues in fruits and 

vegetables analysis, as well as conventional techniques like GC and HPLC and new techniques 

involving nanotechnology and sensor development. Grimalt & Dehouck [15] reviewed 

analytical techniques used to identify pesticide residues in grapes and by-products, focusing on 

the fact that mass spectrometry combined with chromatography provides reliable results. Baca-

Bocanegra et al. [18] investigated the possibility of using portable micro-NIR spectroscopy 

instruments to screen vineyards with respect to extractable polyphenols in red grape skins, and 

the results showed the potential of the method to evaluate quality without destroying the 

product. Lemos et al. [19] applied ATR-MIR spectroscopy with multivariate analysis to assist 

in the process of selecting clones of grapes from a variety called Tempranillo, successfully 

discriminating among grapes based on geographical origin and vintage year. Fernandez-

Novales et al. [22] applied on-the-go VIS + SW-NIR spectroscopy to real-time measure grape 

composition in vineyards, aiding in making timely decisions regarding grape harvesting and 

processing. Costa et al. [23] constructed predictive models of quality and maturation stages of 

wine grapes based on VIS-NIR reflectance spectroscopy to optimize harvest times and enhance 

wine quality. 

Jiang et al. [32] provide an innovative method for the non-destructive and rapid 

identification of pesticide residue in Brassica narinosa (black vegetable). The authors 

developed a multi-classifier combination algorithm, MCEWM (Multi-classifier Entropy 

Weight Method), that combines machine-learning classifiers SVM, Random Forest, and 

XGBoost with hyperspectral imaging. Alghawas et al. [34] establish the background and 

context of utilizing machine learning models to identify the presence of pesticide residues. The 

report discusses the widespread use of pesticides on farms, noting that much of this use has 

contributed to increased agricultural output. Concurrently, it highlights the dangers associated 

with pesticides, including environmental destruction and potential threats to consumers via 

food contamination. This paradox underlines the significance of adequate monitoring systems 

to keep food safe. The literature review examines traditional methods of identifying pesticide 

residues, which usually rely on chemical analysis. These methods are effective but labor-
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intensive, expensive, and equipment-dependent techniques. This is why the task is one of the 

areas where machine learning techniques can introduce more effective solutions. The paper 

identifies previously conducted studies that have successfully applied machine learning 

techniques to various applications, such as food safety. It notes that machine learning 

algorithms are capable of handling large-scale data and identifying patterns that may not be 

detectable through more traditional means. This renders them suitable for the detection of 

pesticide residues in food samples. Another issue briefly addressed in the research is the 

necessity to compare different machine learning models to understand their applicability in 

specific applications. The research aims to contribute to the field of food safety by building on 

past studies and making contributions through the analysis of models such as K-Nearest 

Neighbors, Logistic Regression, Quadratic Discriminant Analysis, Naive Bayes, and Support 

Vector Machine. The survey reveals gaps in the current research, particularly in applying 

machine learning to detect pesticide residues. It emphasizes the need for further research and 

verification of these models to enhance their precision and effectiveness in real-life situations. 

To sum up, this survey clarifies the relevance of detecting pesticide residues with the help of 

new methods like machine learning while acknowledging the inefficiency of traditional 

techniques and the need for further studies in this direction. Figure 1 shows the proposed 

framework for the architecture of the modified Chemnet Model. 

 

Figure 1. The Architecture of Modified Chemnet Model 

2. Related Work  

The study conducted by El-Sayed A et al [4] considers pesticide residues in vegetables, 

and fruits sold in farmer markets in Sharkia Governorate, Egypt, using LC-MS/MS and GC-

MS/MS to identify the dietary risks involved. Forty of the pesticides were determined and the 

most prevalent were the insecticides. Cucumber and apple samples had the highest residues of 

pesticides. The mean residue levels were within 7-951 and 8-775 µg kg -1 of vegetable and 

fruit respectively. 35 (40.7%) out of 86 pesticide residues on vegetables and 35 (38.9%) out of 
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90 pesticide residues on fruits exceeded maximum residual limits (MRLs). Spinach, zucchini, 

kaki, and strawberry have acute or chronic risks at 0.1 and 0.2 kg day-1 consumption rates of 

lambda-cyhalothrin, fipronil, dimothoate, and omethoate, respectively. The results of the 

research emphasize the role of the constant control or monitoring of the pesticide residues on 

fruits and vegetables to maintain food safety and security. 

Nabaasa Evarist et al [5] established a model to identify pesticide residues in common 

vegetables (tomatoes, cabbages, carrots and green pepper) sold in the city of Mbarara in 

Southwestern Uganda, based with image analysis. There were 1094 images of contaminated 

and uncontaminated vegetables taken on an InfiRay P2 pro Night Vision Go Mini Infrared 

Thermal camera. Noise removal, grayscale conversion, and image standardization were 

performed to do the Image Preprocessing. A python script was used to cluster the dataset with 

regards to chemical concentration rates. In Feature Extraction, a segmentation type of neural 

network that contained convolutional neural network, ReLu, max pooling, and fully connected 

layers was utilized in the extraction of features related to pesticide detection (mancozeb, 

dioxacarb, and methidathion). The images were classified according to pesticide concentration 

using Feature Classification by Convolutional neural networks transfer learning models 

(Inception V3, VGG16, VGG19, and ResNet50) and a scratch model. The research shows that 

the employment of artificial intelligence and infrared technology to check the presence of 

pesticide residues on vegetables is possible and will assist in solving problem of chemical 

contamination of food and food safety. 

A model presented by Yating Hu et al. [6] was able to identify the presence of pesticide 

residues in the edible portions of tomatoes, cabbages, carrots, and green peppers. The 

researcher sought to establish a model to be used in detecting the presence of pesticide residues 

on common vegetables (tomatoes, cabbages, carrots, and green peppers) being sold in Mbarara 

City, Southwestern Uganda. Data collection involved taking 1,094 pictures of contaminated 

and non-contaminated vegetables with an InfiRay P2 Pro Night Vision Go Mini Infrared 

Thermal Camera. Noise elimination, conversion into grayscale, and standardization were used 

in image preprocessing. A Python script was run to cluster the data based on the rates of 

chemical concentration. A segmentation neural network consisting of convolutional, ReLU, 

max pooling, and fully connected layers was trained to extract features pertaining to the 

detection of pesticides (mancozeb, dioxacarb, and methidathion). The images were classified 

according to pesticide concentration using convolutional neural network transfer learning 

models (Inception V3, VGG16, VGG19, ResNet50) and a scratch model. The research shows 

that it is possible to identify pesticide residues on vegetables by means of artificial intelligence 

and infrared technology. A paper by Borza et al. [7] titled "Influence of Insecticides Used to 

Protect Stored Grain on the Technological Properties of Winter Wheat" was an attempt to test 

the effectiveness of varying doses of a pyrethroid insecticide against wheat weevil (Sitophilus 

granarius) and how it affected the quality of stored winter wheat. The test, which took three 

years on different grain silos, used 0.125 percent, 0.25 percent, 0.5 percent, and 1 percent 

dosing of the insecticides. Results showed that all the levels successfully destroyed the weevils 

in 8 hours, with the 1 percent dose recording the shortest time. Interestingly, the chemical 

composition and alveograph parameters analysis showed that the insecticide treatments did not 

negatively affect the technological quality of the wheat, allowing one to suppose that the 

insecticide may be used without negatively impacting grain quality. The ash content was very 

positively associated with the protein content. 

Zhilong Kang, Yuchen Zhao et al. [8] experimented with the effectiveness of different 

concentrations of a liquid pyrethroid insecticide against Sitophilus granarius (wheat weevil) 
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and its influence on the technological properties of stored winter wheat. A three-year field 

experiment in grain warehouses tested the insecticide concentrations of 0.125%, 0.25%, 0.5%, 

and 1%. The results of the tests showed that all the concentrations were effective in killing the 

weevils within 8 hours, with the 1% dose being the fastest. It is interesting to note that the 

insecticide treatments did not reduce the quality of the winter wheat, as shown by chemical 

composition and alveograph parameters. Statistical analysis further showed that there was a 

significant positive correlation between protein and ash content. The study concludes that the 

tested formulation of pyrethroid can be used for the protection of stored grain without 

influencing the technological properties of wheat. Li et al. [9] applied near-infrared (NIR) 

spectroscopy and chemometric tools to perform a qualitative study on the determination of 

pesticides in purple cabbage. The research was very accurate, universal and suggestive of the 

use of NIR as a fast non-destructive test that could be used frequently. 

Gowen et al. [10] studied hyperspectral imaging (HSI) as a new food quality and safety 

control method. HSI is a combination of imaging and spectroscopy to generate large volumes 

of spatial and spectroscopic data that are particularly suitable for measuring   contaminants 

such as pesticides. Sun et al. [24] presented a quantitative method of detecting composite 

pesticide residues on lettuce leaves based on hyperspectral approaches. The method provided 

precise, non-destructive identification, and focused on the potential of HSI in monitoring 

pesticide residues. Jia et al. [25] suggested a hyperspectral imaging method to study pesticide 

residues on the surface of apples. This paper showed that HSI is viable and effective in sensing 

surface pesticide contamination. Moeder et al. [11] set up a procedure using membrane-assisted 

solvent extraction together with high-performance liquid chromatography-tandem mass 

spectrometry (HPLC-MS/MS) to measure 18 pesticides in red wine. The protocol provided 

good sample preparation and detection. 

 Simonetti et al. [14] compared gas chromatography (GC), liquid chromatography (LC), 

and capillary electrophoresis (CE) in determining Mancozeb, which is a commonly used 

pesticide. The paper discussed the pros and cons of each method and provided information 

about best practices in analytics. Zhang et al. [17] established and confirmed the technique of 

chiral separation and determination of diniconazole enantiomer residues in tea, apples, and 

grapes using supercritical fluid chromatography combined with quadrupole time-of-flight mass 

spectrometry (SFC-Q-TOF/MS). Bouagga et al. [12] analyzed 64 samples of Tunisian table 

grapes over 3 years, during which various pesticide residues were encountered in each sample, 

with an average of 11.6 residues. Of interest to consumers were the results of their exposure 

risks to pesticides. 

Research Gaps Identified 

Despite the high level of progress in pesticide detection with the help of analytical 

methods, machine learning, and deep learning revealed in the examined literature, several 

essential limitations still exist: 

1. Excessive dependence on analytical methods developed in the laboratory. The current 

results provided using GC, HPLC, and LC-MS/MS have high accuracy but are not 

only time-consuming and expensive; they are also not applicable in real-time and 

large-scale applications. This limits their usage in the field. 

2. Small dataset diversity and scope. The field has several methods that use small or 

region-specific data (e.g., a few hundred images or chemical samples). This is a major 
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limitation that makes the models weak and unrepresentative in terms of their 

application to various agricultural produce in different circumstances. 

3. Binary detection focus. Previous studies focus mostly on binary classification 

(contaminated or uncontaminated). Multiclass classification to differentiate the level 

of exposure to pesticides is not emphasized much, which is important for monitoring 

food safety in detail. 

4. Problems in sensitivity and specificity. Although machine learning algorithms and 

CNN-based models demonstrate promising results, they tend to fail in terms of 

sensitivity and specificity when detecting traces of pesticide residues or various types 

of pesticides in a single sample. 

5. Explainability of deep learning models. More sophisticated deep neural networks, 

such as CNNs (Inception, ResNet, VGG16), have been implemented; however, they 

are less credible due to their explainability and lack of transparency and will be subject 

to regulatory restrictions. 

6. Lack of scalable and real-time solutions. Few research papers have attempted to 

develop models for real-time automated pesticide detection. This underlines a 

discrepancy between research prototypes and deployable systems in food supply 

chains. 

3. Proposed Work 

To fill the gaps mentioned above, this paper presents a modified ChemNet architecture 

trained on an insecticide dataset (6,103 banana images in six exposure categories). The 

suggested method combines self-attention, SE blocks, and Swish activation, to enhance 

sensitivity, specificity, and interpretability. The model will be multiclass rather than binary as 

in previous methods because the subtle conditions of insecticide exposure require it. It aims to 

go beyond purely laboratory-based solutions and create a robust, scalable, efficient deep 

learning model to be used in the practical application of agricultural food safety. 

Table 1 presents a comparative analysis of various methods for pesticide residue 

detection, highlighting the study, findings, methodologies, and recommendations from each 

research article. This underscores the need for a novel method that addresses these challenges 

and enhances the overall effectiveness of pesticide residue detection systems. 

Table 1. Comparative Analysis of Various Methods for Pesticide Residue Detection 

Author(s) Objective Methodology Key 

Findings 

Conclusion 

Verger Philippe  

et al [1] 

Review pesticide 

residue levels in fruits 

and vegetables 

Literature 

review on MRL 

exceedances 

Up to 61% of 

samples 

exceeded MRLs 

Need for stricter 

control on 

pesticide residues 

Renata 

Kazimierczak et al 

[2] 

Evaluate pesticide 

residues in organic 

produce in Poland 

96 samples 

analyzed using 

LC-MS/MS and 

GC-ECD/NPD 

92.7% 

pesticide-free 

7.3% 

Strengthen 

monitoring and 

educate organic 

farmers 
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 contaminated 

(mainly carrots 

and potatoes) 

Mireya Granados-

Po et al [3] 

Similar to povedan 

(duplicate study) [2] 

Same 

methodology as 

[2] 

Same findings 

as [2] 

Same conclusion 

as [2] 

El-Sayed A. 

El-Sheikh et al [4] 

Investigate pesticide 

residues in Egyptian 

fruits and vegetables 

LC-MS/MS and 

GC-MS/MS on 

samples from 

markets 

40 pesticides 

detected, many 

exceeded 

MRLs, 

 health risks 

noted 

Continuous 

monitoring 

emphasized for 

food safety 

Nabaasa Evarist et 

al [5] 

Detect pesticide 

residues via image 

analysis in Uganda 

Infrared 

imaging + CNN 

models 

(Inception V3 

best) 

Inception V3 

achieved 

96.77% 

accuracy 

AI shows potential 

in pesticide 

detection 

Yating Hu et al [6] (Duplicate of [5]) 

Detect pesticide 

residues via image 

analysis 

Same as [5] Same as [5] Same as [5] 

Borza, Gavrila˘ et al 

[7] 

Assess 

impact of insecticides 

on stored wheat quality 

Tested 

different 

insecticide 

concentration 

against weevils 

Effective 

elimination, no 

negative effect 

on wheat quality 

Pyrethroid safe for 

grain storage 

Zhilong Kang, 

Yuchen Zhao et al 

[8] 

(Duplicate 

of [7]) Effectiveness of 

pyrethroid  insecticide 

on wheat 

Same as [7] Same as [7] Same as [7] 

4. Methodology 

Under this proposed method, the model will load images of fruits (bananas) to be 

analyzed. The raw images are then followed by a series of preprocessing steps to ensure that 

the data is of high quality and uniformity. These steps include resizing, normalization, and 

noise removal. Rotation, flipping, zooming, and shifting data augmentation methods were used 

so that the training set could be further extended and better models could be generalized. Figure 

3 shows the general flow of the chemical detection process. The proposed deep learning models 

were trained after preprocessing and augmentation to categorize the fruits as pesticide-

contaminated or pesticide-free. This approach uses the performance of our model against 

standard baselines to evaluate the feature extraction capacity. To make decisions, the 

classification module of the model offers the probability of each image belonging to the various 

classes, which is compared to a specified threshold value. Finally, the learned model is applied 

to make predictions on new data, generating actionable outcomes that represent the toxicity 
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status of each fruit. This setup is relevant for training and testing deep learning models in 

PyTorch. Classes: [’monohigh’, ’monolow’, ’natural’, ’novahigh’, ’novalow’, ’rotten’]. Using 

this structured pipeline, the deep learning method described in this paper would yield a highly 

accurate and reliable solution to the problem of pesticide contamination in fruits. The training, 

testing, validation, and development phases of the proposed modified Chemenet architecture 

are represented in Figure 2. 

 

Figure 2. Testing, Validation and Development Phase of the Proposed Modified Chemenet 

Architecture 

The architecture has an input layer that takes RGB images of 224x224x3 and 

normalizes them to ImageNet statistics. Low-level features of edges and color gradients are 

extracted by an initial convolutional layer with a 7x7 kernel, a stride of 2, batch normalization, 

and Swish activation. This is followed by a sequence of residual block layers, the first of which 

contains two 3x3 convolutional layers with batch normalization, a Swish activation function, 

and a Squeeze-and-Excitation (SE) block within a ResNet style, skip connection to provide 

channel wise feature recalibration, The second residual block layer increases filter depth 

(64→128) and down samples to capture more abstracted representations and address   spatial 

resolution, while the third residual block further increases channel depth (128→256), with SE 

blocks and Swish activation to learn deeper semantic patterns. To supplement these local 

properties, a query key value self-attention mechanism and a parameterized parameter are 

added to the model, to establish long-range range spatial connections and connect the spread 

apart contamination areas. The result of hierarchical feature extraction is compressed into the 

spatial dimensions by global average pooling, and is further fed into fully connected layers 

with batch normalization, Swish activation, and dropout regularization, to make final 

predictions through a Softmax classifier across six classes (monohigh, monolow, novahigh, 

novalow, natural, and rotten). To further enhance generalization and stability in training, the 

model employs regularization methods like early stopping on validation loss, weighted cross 

entropy loss to address class imbalance, and as many data augmentation methods as possible 

like rotation, flipping, and normalization. Such an integrated architecture effectively combines 

residual learning, attention, and adaptive feature recalibration to generate robust and accurate 

insecticide residue classification. 
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4.1 Flow Diagram 

Flow diagram of the proposed Modified ChemNet-based insecticide classification 

framework is shown below in Figure 3. 

 

Figure 3. Flow Diagram 

4.2 Dataset 

The model is proposed to be trained, tested, and validated using different datasets from 

public repositories. The creation of the dataset has been done using the Kaggle banana 

insecticide datasets [31]. Table 2 illustrates how the datasets contribute to the formulation of 

the proposed framework. The data utilized in this research paper consists of banana images that 

are categorized according to different insecticide conditions. The Table 2 dataset distribution 

of insecticide image classification provides a summary of the dataset that was used in the 

training and testing of the insecticide model. The study utilized a total of 6,103 images, with 

5,082 for training and 1,021 for testing. It is a typical machine learning setup in which most 

data is held out to train a model, but a small, separate set is used to test its capacity to work on 

previously unseen data. The data is a collection of photos with various insecticide states on 

fruits or vegetables and forms the foundation for training deep learning models to classify and 

identify the correctness of insecticide presence. This training set is large and balanced, which 

ensures good learning, and the testing set provides a good estimate of the generalization 

performance of the model. The categories present in the dataset are monohigh, monolow, 

natural, novahigh, novalow, and rotten; this allows training the models to distinguish small 

differences that relate to the application of insecticides and the resultant conditions. The sample 

images of the banana dataset are in Figure 4. The banana dataset classification is as follows. 

1. Monohigh: Bananas treated with a high level of monotype insecticide. These often 

show minimal surface alterations due to chemical residue. 
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2. Monolow: Bananas treated with a low-level monotype insecticide. They have a more 

natural appearance but contain mild chemical effects. 

3. Natural: Untreated bananas, where no insecticides or chemicals have been applied. 

These serve as the control sample for comparison purposes. 

4. Novahigh: Bananas treated with a high dose of nova-type insecticide. The surface 

might develop discoloration or residue impacts from more intense chemical treatment. 

5. Novalow: Bananas with a reduced nova-type insecticide dosage, showing little 

residue and largely maintaining a natural appearance. 

6. Rotten: Bananas that have been biologically spoiled. These exhibit visible decay, 

discoloration, or texture loss, useful in distinguishing chemical versus natural 

spoilage. 

Monohigh       

Monolow       

Natural       

Novahigh       

Novalow       

Rotten       

Figure 4. Six Sample Images from Each Class 

Table 2. Dataset Distribution for Insecticide Image Classification 

Data Condition Training Testing Total 

Insecticide Images 5082 1021 6103 
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4.3 Feature Extraction 

Squeeze-and-Excitation (SE) block is formulated in feature extraction, an element in 

deep neural networks that behaves adaptively to recalibrate channel wise feature responses. It 

starts with an adaptive average pooling layer which decreases the spatial dimensions to 1x1, 

i.e. squeezes the spatial information into a single value per channel. These values are then down 

scaled by a factor of reduction, the ReLU activation is applied and then scaled back to the 

original dimension using a sigmoid activation to produce scaling factors between 0 and 1. 

During the forward pass, input data is first squeezed into a smaller shape after which it is run 

through these fully connected layers to generate scaling factors, and then stretched back to 

original input dimensions. Finally, these scaling factors multiply the original input and in effect 

they rescale the importance of each channel in the feature maps. The operation allows the model 

to channel selectively what to listen to and gives it better performance when used in tasks like 

image classification and object detection. The feature extraction process that is employed in 

this study to develop the proposed modified Chemnet architecture is presented below in Figure 

5. 

 

Figure 5. Feature Extraction Process Adopted in this Research for the Development of the 

Proposed Modified Chemnet Architecture 

4.4 Classification 

We have already applied the Residual Block in deep learning classification which is the 

building block of ResNet architectures. The Residual Block is designed to learn residual 

functions with respect to the layer inputs, which can be helpful in training deeper networks. It 

consists of two convolutional blocks (conv1 and conv2, each possessing batch normalization) 

and a Squeeze-and-Excitation (SE) block, which is used to dynamically weigh channel 
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importance. The first convolution (conv1) can down sample the spatial dimensions in terms of 

stride, while   the second one (conv2) will retain them. The identity connection has optional 

downsampling when spatial dimensions need to be down sampled. The forward pass includes 

these layers and the SE block to which the input is fed and added to the identity connection 

(which might be downsampled). The result is then passed through a Leaky ReLU activation 

function so that the block can learn sophisticated representations without destroying the 

negative values. This structure does not suffer from the problem of vanishing gradients and 

enhances the model's capability to learn deep representations. 

The Residual Block, which is a core building block in ResNet models, is applied to 

train deep neural networks where learning occurs in residual functions. This block starts with 

two convolutional layers (conv1 and conv2), each followed by a batch normalization block, 

and a Squeeze-and-Excitation (SE) block that allows for dynamically changing the relative 

importance of channels. Conv1 uses a given stride to reduce the spatial dimensions whereas 

conv2 keeps the spatial dimensions unchanged. The identity connection can be assigned a 

downsampling path (downsample), if spatial dimensions need to be downsized. These layers 

plus the SE block are used in a forward pass to process the input through the layers, and the 

identity connection (which may be downsampled). The output is then subjected to a Leaky 

ReLU activation function which introduces nonlinearity without removing negative values. 

The architecture helps reduce vanishing gradients and can also better learn powerful 

representations as it specializes in the differences between the layers rather than attempting to 

learn the entire input-output mapping. 

SelfAttention:  The SelfAttention class calculates self-attention on convolutional 

feature maps to enable the model to form long distance connections. It first applies 1x1 

convolutions to generate query (Q), key (K) and value (V), with Q and K downsampled in 

dimension to save computation cost, while V maintains the same number of channels. The 

attention scores are obtained by taking the dot product of Q and K and normalizing them with 

a softmax. The V matrix is then weighted using the attention map generated, reinforcing 

important elements in space. The output is the combination of the initial input and attention 

weighted features multiplied by a learnable parameter (gamma) that is initialized to 0, allowing 

the network to gradually the impact of attention. This mechanism can help improve feature 

representation showcasing important areas with a residual connection to stable learning. 

ChemNet architecture is a convolutional neural network, applied to analyze chemical 

images, and includes   residual blocks and self-attention. It begins with a downsampling 

convolution (3x3, stride 2) which halves the spatial resolution but expands to 32 channels, 

followed by batch normalization and LeakyReLU activation. These residual block levels 

successively increment feature depth (64 - 128 - 256 channels) and opportunistically use 

stride=2 convolutions to reduce spatial dimensions. The self-attention module in the deepest 

layer enables the mapping of long-distance spatial relationships in the feature maps. 

Classification utilizes adaptive average pooling to downsize spatial dimensions that 

follow the features into a multi-layer classifier that has batch normalization, leaky ReLU 

activations and progressive dropout (0.5→0.4) regularization. The design is a trade-off 

between hierarchical feature extraction (through residual blocks) and global context modeling 

(through attention), which is especially a good fit to the tasks of chemical structure recognition 

where both local pattern recognition and global compositional interpretation are needed. The 

core training infrastructure for ChemNet involves (1) instantiating the model with the output 

neurons corresponding to the number of classes in the dataset and mounting it to the targeted 

hardware (GPU/CPU), (2) configuring CrossEntropyLoss to work on multi-class classification 
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by estimating the difference between logits and true labels, and (3) initializing the Adam 

optimizer with the learning rate set to 0.001 to update the model weights via the gradient. The 

components are connected during training, and the model is fed the input data (forward pass), 

The loss measure is calculated as the degree of accuracy of the prediction, the gradients are 

calculated (backward pass), and Adam updates the parameters to reduce the loss. This 

configuration is especially useful in the analysis of chemical data, where adaptive learning rates 

(Adam strength) can help overcome different feature scales, and the implicit softmax loss 

function can be beneficial in tasks that involve categorical losses such as chemical 

classification tasks. To improve performance, one can add learning rate scheduling or class 

weighting later in the case of imbalanced chemical data. 

The train model function performs an entire training iterates that repeatedly loops over 

a set of epochs, executing forward propagation, loss computation, backpropagation and 

parameter updates with the training data loader, and validating performance periodically. Each 

epoch begins by putting the model in train () mode (enabling dropout/batch normalization), 

looping through batches with a transfer of data to the compute device (GPU/CPU), computing 

predictions and loss, and then resetting any previous gradients (zero grad()) before error 

backpropagation and weight updating by optimizer.step(). The loss during training is 

cumulative and averaged over each epoch, and intermediate results are printed as it progresses.  

After every training step, the validate model function is invoked (presumably in evaluation 

mode and with gradients turned off) to evaluate the validation set. This framework allows for 

cyclical parameter optimization and helps avoid overfitting with regular validation by allowing 

batch wise processing of large chemical data, which can be processed efficiently using a small 

amount of memory. Figure 6. refers to the suggested approach for the classification of 

pesticides. 

 

Figure 6. Proposed Methodology of Pesticide Classification 
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4.5 Model Training 

The validate model command performs model testing by disabling gradient calculations 

and entering eval() mode (disabling dropout/batch normalization). It then traverses the 

validation batches, calculates prediction accuracy, and collects all the predictions/labels to 

measure performance. It transfers data to the target device (GPU/CPU), calculates model 

outputs, retrieves predicted classes using torch.max (argmax), and stores predictions/labels in 

the CPU to calculate the metrics for every batch. The purpose is to keep track of total samples 

and correct predictions to calculate accuracy, while also yielding a complete set of prediction-

label pairs to enable detailed metrics such as confusion matrices or F1 scores. This architecture 

offers memory efficiency (in terms of batch processing) and reproducibility (detached tensors) 

that is suitable for testing chemical classification models, where performance or certainty of 

decision within each class is of interest. All the gathered predictions and labels can be utilized 

later in combination with other libraries like scikit-learn to perform additional analytics. 

The train model line initiates the training process of the ChemNet model within a 

stipulated time frame in terms of epochs. The call to the function uses the train model function 

mentioned above, which takes essential inputs: the model architecture (model), training data 

loader (train loader), validation data loader (val loader), loss function (criterion), and optimizer. 

The model will repeatedly perform forward and backward passes on batches of training data to 

minimize the loss in each epoch. After the training for each epoch is complete, the model's 

performance will be tested using the validation data loader to determine its generalization 

capacity. This cyclical process allows for continual refinement of the accuracy and reliability 

of the model in predicting chemical classifications, and performance statistics are printed at the 

end of each epoch to monitor progress and guide any potentially necessary changes to the 

training strategy or hyperparameters. The confusion matrix measures the performance of a 

model on a validation dataset and displays the outputs in a confusion matrix. This function 

retrieves predictions and true labels of all examples using the validate model, then computes 

the confusion matrix and other important measures such as accuracy, precision, recall, and F1-

score. It is important to note that these measures are scaled by a reference value, which seems 

to be in error (in most cases, metrics are scaled by 100 to represent a percentage). The seaborn 

heatmap is plotted with annotations and labeled axes to indicate the predicted and actual 

classes. Finally, the function prints the measures and shows the plot. This provides a full 

perspective of the classification performance of the model in terms of the strengths and 

weaknesses of the classes. The scaling factor ref should probably be set to 100 in order to 

achieve a normal percentage interpretation. 

4.6 Model Parameters 

Parameters of each layers are shown below 

Layer Output Shape Parameters 

Conv2d-1 [-1, 32, 112, 112] 
896 

BatchNorm2d-2 [-1, 32, 112, 112] 64 
LeakyReLU-3 [-1, 32, 112, 112] 0 

Conv2d-4 [-1, 64, 112, 112] 18,432 

BatchNorm2d-5 [-1, 64, 112, 112] 128 

LeakyReLU-6 [-1, 64, 112, 112] 0 

Conv2d-7 [-1, 64, 112, 112] 36,864 
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BatchNorm2d-8 [-1, 64, 112, 112] 128 

AdaptiveAvgPool2d-9 [-1, 64, 1, 1] 0 

Linear-10 [-1, 4] 256 

ReLU-11 [-1, 4] 0 

Linear-12 [-1, 64] 256 

Sigmoid-13 [-1, 64] 0 

SEBlock-14 [-1, 64, 112, 112] 0 

Conv2d-15 [-1, 64, 112, 112] 2048 

BatchNorm2d-16 [-1, 64, 112, 112] 128 

ResidualBlock-17 [-1, 64, 112, 112] 0 

Conv2d-18 [-1, 64, 112, 112] 36,864 

BatchNorm2d-19 [-1, 64, 112, 112] 128 

LeakyReLU-20 [-1, 64, 112, 112] 0 

Conv2d-21 [-1, 64, 112, 112] 36,864 

BatchNorm2d-22 [-1, 64, 112, 112] 128 

AdaptiveAvgPool2d-23 [-1, 64, 1, 1] 0 

Linear-24 [-1, 4] 256 

ReLU-25 [-1, 4] 0 

Linear-26 [-1, 64] 256 

Sigmoid-27 [-1, 64] 0 

SEBlock-28 [-1, 64, 112, 112] 0 

ResidualBlock-29 [-1, 64, 112, 112] 0 

Conv2d-30 [-1, 128, 56, 56] 73,728 

BatchNorm2d-31 [-1, 128, 56, 56] 256 

LeakyReLU-32 [-1, 128, 56, 56] 0 

Conv2d-33 [-1, 128, 56, 56] 147,456 

BatchNorm2d-34 [-1, 128, 56, 56] 256 

AdaptiveAvgPool2d-35 [-1, 128, 1, 1] 0 

Linear-36 [-1, 8] 1024 

ReLU-37 [-1, 8] 0 

Linear-38 [-1, 128] 1024 

Sigmoid-39 [-1, 128] 0 

SEBlock-40 [-1, 128, 56, 56] 0 

Conv2d-41 [-1, 128, 56, 56] 8192 

BatchNorm2d-42 [-1, 128, 56, 56] 256 

ResidualBlock-43 [-1, 128, 56, 56] 0 

Conv2d-44 [-1, 128, 56, 56] 147,456 

BatchNorm2d-45 [-1, 128, 56, 56] 256 

LeakyReLU-46 [-1, 128, 56, 56] 0 

Conv2d-47 [-1, 128, 56, 56] 147,456 

BatchNorm2d-48 [-1, 128, 56, 56] 256 

AdaptiveAvgPool2d-49 [-1, 128, 1, 1] 0 

Linear-50 [-1, 8] 1024 

ReLU-51 [-1, 8] 0 

Linear-52 [-1, 128] 1024 

Sigmoid-53 [-1, 128] 0 

SEBlock-54 [-1, 128, 56, 56] 0 

ResidualBlock-55 [-1, 128, 56, 56] 0 

Conv2d-56 [-1, 256, 28, 28] 294,912 
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BatchNorm2d-57 [-1, 256, 28, 28] 512 

LeakyReLU-58 [-1, 256, 28, 28] 0 

Conv2d-59 [-1, 256, 28, 28] 589,824 

BatchNorm2d-60 [-1, 256, 28, 28] 512 

AdaptiveAvgPool2d-61 [-1, 256, 1, 1] 0 

Linear-62 [-1, 16] 4096 

ReLU-63 [-1, 16] 0 

Linear-64 [-1, 256] 4096 

Sigmoid-65 [-1, 256] 0 

SEBlock-66 [-1, 256, 28, 28] 0 

Conv2d-67 [-1, 256, 28, 28] 32,768 

BatchNorm2d-68 [-1, 256, 28, 28] 512 

ResidualBlock-69 [-1, 256, 28, 28] 0 

Conv2d-70 [-1, 256, 28, 28] 589,824 

BatchNorm2d-71 [-1, 256, 28, 28] 512 

LeakyReLU-72 [-1, 256, 28, 28] 0 

Conv2d-73 [-1, 256, 28, 28] 589,824 

BatchNorm2d-74 [-1, 256, 28, 28] 512 

AdaptiveAvgPool2d-75 [-1, 256, 1, 1] 0 

Linear-76 [-1, 16] 4096 

ReLU-77 [-1, 16] 0 

Linear-78 [-1, 256] 4096 

Sigmoid-79 [-1, 256] 0 

SEBlock-80 [-1, 256, 28, 28] 0 

ResidualBlock-81 [-1, 256, 28, 28] 0 

Conv2d-82 [-1, 256, 28, 28] 589,824 

BatchNorm2d-83 [-1, 256, 28, 28] 512 

LeakyReLU-72 [-1, 256, 28, 28] 0 

Conv2d-73 [-1, 256, 28, 28] 589,824 

BatchNorm2d-74 [-1, 256, 28, 28] 512 

AdaptiveAvgPool2d-75 [-1, 256, 1, 1] 0 

Linear-76 [-1, 16] 4096 

ReLU-77 [-1, 16] 0 

Linear-78 [-1, 256] 4096 

Sigmoid-79 [-1, 256] 0 

SEBlock-80 [-1, 256, 28, 28] 0 

ResidualBlock-81 [-1, 256, 28, 28] 0 

Conv2d-82 [-1, 256, 28, 28] 589,824 

BatchNorm2d-83 [-1, 256, 28, 28] 512 

LeakyReLU-84 [-1, 256, 28, 28] 0 

Conv2d-85 [-1, 256, 28, 28] 589,824 

BatchNorm2d-86 [-1, 256, 28, 28] 512 

AdaptiveAvgPool2d-87 [-1, 256, 1, 1] 0 

Linear-88 [-1, 16] 4096 

ReLU-89 [-1, 16] 0 

Linear-90 [-1, 256] 4096 

Sigmoid-91 [-1, 256] 0 

SEBlock-92 [-1, 256, 28, 28] 0 

ResidualBlock-93 [-1, 256, 28, 28] 0 
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Conv2d-94 [-1, 32, 28, 28] 8224 

Conv2d-95 [-1, 32, 28, 28] 8224 

Conv2d-96 [-1, 256, 28, 28] 65,792 

SelfAttention-97 [-1, 256, 28, 28] 0 

AdaptiveAvgPool2d-98 [-1, 256, 1, 1] 0 

Flatten-99 [-1, 256] 0 

Linear-100 [-1, 512] 131,584 

BatchNorm1d-101 [-1, 512] 1024 

LeakyReLU-102 [-1, 512] 0 

Dropout-103 [-1, 512] 0 

Linear-104 [-1, 256] 131,328 

BatchNorm1d-105 [-1, 256] 512 

LeakyReLU-106 [-1, 256] 0 

Dropout-107 [-1, 256] 0 

Linear-108 [-1, 10] 2570 

 

 
Total params  4,317,578 

Trainable params  4,317,578 

Non-trainable params  0 

Input size (MB)  0.57 
Forward/backward pass size (MB) 194.91 

Params size (MB) 16.47 

Estimated Total Size (MB) 211.95 

 

4.7 Implementation Details 

The neural network model (ChemNet) is ready to be trained, or inference is run. First, 

it verifies that a GPU is available with PyTorch and, if possible, sets the computation device to 

CUDA (GPU) otherwise, it uses the CPU. It is then instantiated as a model (num classes=e.g., 

10 classes in the case of classification, input channels=3 in the case of RGB images) and 

transferred to the chosen device via .to(device) in order to use GPU acceleration. Its input size 

is (3, 224, 224) which is the standard size of the input (channels, height, width) of a model such 

as ResNet. Lastly, the summary operation (probably torchinfo or torchsummary) produces a 

complete summary of the model architecture and shows the layer-by-layer statistics, output 

dimensions, and memory requirements to check the network structure as well as to ensure that 

it will work with the size of the input. This arrangement is to ensure that the model is correctly 

set up to be effectively trained or evaluated on accessible hardware. 

The given model summary shows that there are 4,317,578 parameters in the neural 

network, all of which are trainable parameters, i.e., they are to be updated during the training 

process. All parameters are trainable, and they do not include the frozen weights or those that 

are not updated during training. The input size is approximately 0.57 MB but the memory 

required for a forward and backward pass is significantly larger with the values reaching 194.91 

MB. The parameters of the model by themselves occupy approximately 16.47 MB of memory. 

The approximate size of the estimated model, including input, forward/backward passes, and 

parameters is approximately 211.95 MB. Such a summation provides immense insights into 
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the complexity of the model and memory consumption, which are vital in optimizing resource 

usage and performance during training and deployment. 

4.8 Evaluation Criteria 

The evaluation criteria are relevant ways to scrutinize the competency and effectiveness 

of a method. Based on this, the evaluation metrics proposed to approximate the recommended 

architecture are Accuracy, Precision, Recall and F1 Score. These are explained as follows: 

Table 4 presents the most important evaluation metrics applied to evaluate the performance of 

the proposed model of insecticide classification, such as accuracy, precision, recall, and F1-

score. These parameters are important in the interpretation of the model with respect to its 

capability of recognizing and categorizing various bug-killers. 

Accuracy denotes the percentage of correct predictions of the model across all classes. 

It is obtained by the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

TP: True Positives  

TN: True Negatives  

FP: False Positives  

FN: False Negatives 

The accuracy of the proposed model was 81.02%, which means that the number of 

correct predictions was about 8 correct predictions out of 10, demonstrating the overall 

effectiveness of the model in dealing with the classification problem. 

Precision is used to measure the rate of true positive predictions to the total positive 

predictions the model makes. It is a measure of how well the model avoids false positives. 

It is a formula where: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 

The model has a strong sense of reliability in its positive predictions;85.34% of the 

cases of insecticide are identified correctly with minimal false positives. 

Recall measures the capacity of the model to recognize all the relevant cases (i.e. all 

true positives). It has special importance when the cost of failing to detect a positive case is 

high. 

 The formula is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
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An 81.02% recall means that the model has managed to recall a substantial proportion 

of the actual insecticide cases, which is important in the actual detection application, where 

omitting contaminants may present dangerous health implications. 

The F1-score is the harmonic average of precision and recall providing a balanced 

measure, which takes false negatives and false positives into account. It is calculated as: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

The training epochs, learning rate, and batch size are hyperparameters. This has been 

done repeatedly in such a way that the best training environment, which would not only 

maximize the accuracy of the model but also provide stable and convergent training, would be 

achieved. The learning rate was the determinant of the balance between training pace and 

training steadiness, and the training behavior was influenced by the batch size, although both 

had an impact on the generation capability. 

The test set classification accuracy of the modified ChemNet topped 81% after the final 

evaluation, not bad given that the insecticides were highly heterogeneous in structure. The 

model framework was developed as a tool to accommodate the domain-specific information of 

the chemistry that enabled the isolation of the multifaceted relationships in the properties of 

the molecule and to come up with the most definitive classes. 

 

Figure 7. Confusion Matrix 

As shown in Figure 7, the confusion matrix evidences that the suggested Modified 

ChemNet model shows a high level of classification performance in all six insecticide exposure 

categories. Monohigh and novahigh are highly accurate, and there are few misclassifications 

in the case of novalow and natural, which means that these two groups are similar visually. 

This demonstrates the ability of SE blocks and the attention module to improve feature 

discrimination. A confusion matrix is a summary of the model's performance regarding the 

numbers of TP, TN, FP, and FN predictions. The computation of important performance 

measures such as precision, recall, and F1 also depends on the matrix, accuracy score, and 

overall accuracy. The training confusion matrix assesses the model's performance using the 
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training dataset and detects overfitting or underfitting problems. Figure 8 depicts the confusion 

matrix that gives a graphical representation of the model's predictions within the banana 

insecticide datasets. Confusion matrix analysis further shows the performance of the model on 

an individual class. The findings revealed that Modified ChemNet was consistent in most 

categories of insecticides. However, there was a slight reduction in accuracy for the classes 

containing rare chemical scaffolds, which were poorly represented in the training set. This 

highlights a general issue in cheminformatics: learning biased or uncommon molecular 

patterns. The accuracy of the model and the training loss are plotted in Figure 8. 

 

Figure 8. Accuracy and Loss Graph 

Figure 8 shows that training accuracy increases steadily and approaches an accuracy of 

approximately 81.01%. This indicates a good generalization of the model without significant 

overfitting. This confirms the effects of the Swish activation function and cyclic learning rate 

scheduling. Figure 8 also shows trends in training loss. Loss decreases slowly and reaches 

epoch 40, demonstrating stable optimization. This monotonic decline highlights the benefits of 

both early stopping and class balancing in preventing overfitting and underfitting. 

However, the general results of the studies are more favorable toward the utility of 

ChemNet and other chemically informed neural networks in the automatic classification of 

compounds, due to their generalizability, even among structurally diverse insecticides, and 

their applicability in the real world for pesticide recognition, regulatory screening, and 

environmental safety. 

Table 4. Proposed Model Results 

Model Accuracy Precision Recall F1 Score 

Proposed 

Model 

81.01% 85.33% 81.01% 75.04% 

Table 4 shows the results of the proposed model. The specified model recorded an 

accuracy of 81.02%, a precision of 85.34%, a recall of 81.02% and an F1 score of 75.04%. 

Figure 9. presents the performance metrics for the testing data, 
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Figure 9. Performance Metrics for Testing Data 

4.9 Comparison with traditional models 

Table 5 provides a comparative overview of some traditional deep learning approaches 

employed in fruit classification and pesticide detection problems, along with the development 

of model performance in various research works. In most past models, relatively simple CNN 

structures, such as 3-layer networks or versions of LeNet, have been applied to fruits like 

mangoes, apples, tomatoes, and grapes. The accuracy of these models was usually mediocre 

(75.6-80.1%), and they tended to perform poorly due to limitations such as small data sets, lack 

of data augmentation, shallow feature extraction, and poor adaptation to spectral variability. 

For example, Jiang et al.[32] applied the SVM model and achieved an accuracy of 73.20%, 

which is confined to one experimental dataset. Differences in lighting, temperature, and leaf 

texture were not taken into account. Analysis by Alghawas et al.[34] showed that the machine 

learning models used in their study attained an overall accuracy of 75% in detecting pesticide 

residues. Figure 10 indicates the comparison of accuracy among deep learning models in 

detecting pesticides, demonstrating that these models have high potential for detecting residues 

in food samples. Overall, the limitations of the paper raise the following issues: the 

representativeness of data, the variability of model performances, the problem of an unbalanced 

data set, the possibility of missing variables, and the necessity for more sophisticated modeling 

methods. These factors should be considered when interpreting the results and transferring 

them to general contexts. The new ChemNet model, specifically trained with a chemically 

aware architecture, outperformed these previous models with an accuracy of 81.01% on banana 

samples. The model demonstrated superior generalization, especially across insecticide classes 

of different chemical structures, validating its usefulness in the automated detection of 

pesticides in crops. 

Table 5. Comparison of Traditional Model Accuracy with Proposed Model 

Author(s) Model/ Approach Accuracy Notes 

Jiang et.al. [32] SVM 73.20% Currently limited to a single 

experimental dataset  
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Variations in lighting, 

temperature, and leaf texture 

were not considered 

Alghawas et al. [34] KNN, Logistic 

Regression, Na¨ıve 

Bayes, S V M  

75% Real-world dataset; identifies 

improvement areas and 

contributes to better food safety 

practices 

Proposed Model ChemNet Architecture 81.01% Shows effective generalization 

across structurally diverse 

insecticide classes. 

 

Figure 10. Comparison of Accuracy of Deep Learning Models for Pesticide Detection 

5. Conclusion 

This paper presents a slight modification to the ChemNet architecture to detect 

insecticide residues on fruits specifically bananas. The incorporation of the latest components 

like Squeeze-and-Excitation (SE) blocks, Residual Units, and Self-Attention mechanism 

allowed the model to extract the chemically important features and spatial patterns related to 

the presence of pesticides contamination. The proposed model was tested on a heterogeneous 

and diverse banana insecticide dataset. The model produced a classification accuracy rate of 

81.02%, a precision rate of 85.34%, a recall rate of 81.02%, and an F1-score of 75.04%. These 

findings indicate that the enhanced ChemNet is considerably more precise and general than the 

conventional models (SVM and simple CNNs) especially when applied to insecticides that are 

structurally different. 

Moreover, the fact that this model can perform consistently across different classes, 

even when the patterns representing them are visually similar, or rare, demonstrates its strength 

and applicability in real-world settings. The confusion and comparative evaluation demonstrate 

the high generalization ability of the proposed system. This study forms the basis for 

implementing automated pesticide detection systems using deep learning for agricultural 

inspections and food safety monitoring. In the future, it will be investigated how to incorporate 

multi-modal data fusion, spectral-spatial attention, and ensemble learning to make the models 

more accurate and reliable.  
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