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Abstract 

This work introduces FLIDS (Fuzzy Logic-based Image Distortion Scoring), an 

interpretable and efficient system for image tampering detection based on hand-crafted features 

and fuzzy logic. FLIDS combines JPEG artifact analysis, edge consistency, co-occurrence 

entropy, and CFA disparities into a fuzzy rule-based system for assigning a tampering 

confidence score. In contrast to black-box deep learning systems, FLIDS prioritizes 

transparency and generalizability. Tests on CIFAR-10, MNIST, ImageNet Subset, and 

Deepfake datasets indicate FLIDS attains competitive accuracy compared to ResNet-18, 

Autoencoder, and hand-designed JPEG detectors in the majority of instances. FLIDS achieves 

93.5% and 91.8% accuracy on CIFAR-10 and ImageNet Subset, respectively, as well as a 

balanced 90.2% on deepfake datasets. These findings point to FLIDS as a promising, 

interpretable solution to intricate deep learning systems in image forgery detection. 

Keywords: Deep Fakes, Image Manipulation Attacks, Features and Fuzzy Inference System. 

1. Introduction 

As rapidly evolving multimedia technologies have reached an all-time high in the 

contemporary world, the authenticity of digital images has increasingly come into question. 

Methods of deepfakes, copy-move forgery, and splicing manipulations are now executed done 

with the help of advanced algorithms, which pose tremendous challenges in fields including 

journalism, legal proof verification, medical imaging, and national security. Although different 

detection models have been proposed to overcome such manipulations, the majority utilize 

deep learning models that, though highly accurate, have two major shortcomings: a lack of 

interpretability and high computational expense.  

Black-box models such as ResNet, XceptionNet, and GAN-based detectors tend to be 

very accurate on particular datasets but are less transparent in their decision-making. This 

makes their use less reliable in high-stakes applications where justifiability and forensic audit 

trails are crucial. Additionally, such models are sensitive to training data distributions and tend 

to generalize poorly across a wide variety of manipulation types or unknown distortions. To 

mitigate these drawbacks, this paper presents FLIDS (Fuzzy Logic-based Image Distortion 
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Scoring), an adaptive and interpretable image tampering detection framework. FLIDS is 

conceived to function with a lightweight architecture that uses the merits of traditional image 

processing as well as fuzzy logic-based reasoning. The essence here is to mine a collection of 

interpretable features (e.g., JPEG artifact residuals, edge consistency, co-occurrence entropy, 

and CFA differences) and apply them within a fuzzy rule-based system that returns a 

confidence score for tampering. 

In contrast to deep networks, FLIDS is not especially dependent on large-scale training 

and instead focuses on explainability, adaptability, and transparency of rules. There is a one-

to-one correspondence between each rule in the system and a semantic interpretation, which 

allows practitioners to identify why an image has been detected as manipulated. This makes 

FLIDS well-suited for deployment in systems where accuracy and accountability need to be 

achieved. Comprehensive experiments on four different datasets CIFAR-10, MNIST, 

ImageNet Subset, and a Deepfake Dataset show that FLIDS delivers good performance, 

rivaling or even surpassing classic models like ResNet-18, Autoencoders, and JPEG-based 

feature detectors. Along with its comparable detection rates, FLIDS remains transparent in its 

inference process, bringing statistical performance and human interpretability closer together 

in multimedia forensics. 

The rest of this paper is organized as follows: Related work is introduced in Section 2, 

FLIDS methodology is introduced in Section 3, experimental results are shown in Section 4, 

and we conclude the paper in Section 5. 

2. Related Work 

The area of image forensics, tampering detection, and image authentication has 

advanced through the combination of fuzzy logic, machine learning, and deep learning 

techniques. da Costa et al. [1] presented an extensive overview of the challenges and 

opportunities in tampering and anomaly detection in image data. Jana et al. [2] proposed a self-

embedding fragile watermarking scheme using AMBTC and fuzzy logic for tamper detection 

and recovery. In addition to this, Thakkar et al. [3] investigated the collaboration between 

computer vision and fuzzy logic for forensic science applications. Kaur and Gupta [4] 

presented a fuzzy integrals-based passive-blind detection approach for detecting tampered 

image areas. In the same line, Karakış et al. [5] presented a fuzzy logic-based image 

steganography method aimed at protecting medical data. 

In the field of medicine, Capizzi et al. [6] applied a fuzzy-logic and probabilistic neural 

network hybrid using reinforcement learning in detecting lung nodules. Previously, Barni and 

Costanzo [7] addressed the uncertainties inherent in image forensics by applying fuzzy logic 

methods. Kaur and Kaur [8] developed advanced watermarking methods for medical images 

using fuzzy logic, whereas Kanimozhi and Padmavathi [9] combined RNNs with fuzzy logic 

to establish a secure steganography system. Hashmi and Keskar [10] proposed a fuzzy block-

based forensic tool for forgery classification and detection, and Sahu [11] presented a logistic 

map-based watermarking technique for blind tamper localization. 

In access control, Shuriya and Rajendran [12] proposed a fuzzy responsibility-based 

scheme for leukemia patient record security, and Gonge and Ghatol [13] suggested a hybrid 

watermarking and encryption scheme for cheque image authentication. Pillutla and Arjunan 

[14] discussed the wider applications of fuzzy logic to counter-security. Korus and Huang [15] 

suggested multi-scale fusion for better tampering localization, whereas Liu et al. [16] used 
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fuzzy logic for tracking logistic labels on blockchain networks. Ebrahimi et al. [17] used fuzzy 

analytical hierarchy processes for analyzing medical watermarking algorithms. 

Fusion-based and hybrid detection approaches have also been investigated. Phan-Ho 

and Retraint [18] contrasted Bayesian and Dempster-Shafer fusion approaches in forgery 

detection. Swaraja and Meenakshi [19] presented a dual watermarking framework for 

telemedicine. Knorst et al. [20] integrated fuzzy logic with industrial information security 

priority. Zhao and Tian [21] introduced a lightweight multiscale tamper-detection model, while 

Wang et al. [22] investigated robustness issues in neuro-fuzzy systems under multi-attacks. 

Machine learning also plays a crucial role. Nagarathna et al. [23] surveyed ML-based image 

forgery detection, while Darney [24] enhanced traditional copy-move forgery detection. 

Gowrisankar and Thing [25] worked on adversarial attacks to analyze deep fake detection 

models, and Rohhila and Singh [26] surveyed deep learning-based encryption for secure image 

transmission. Uloli et al. [27] provided a comprehensive overview of fake image synthesis and 

detection and Karaköse et al. [28] suggested a Choquet fuzzy integral-based approach for deep 

fake detection. Lastly, Yadav and Vishwakarma [29] surveyed multimedia forensic datasets 

and state-of-the-art methods, providing a complete perspective on the subject. 

As the state-of-the-art, the following drawbacks remain for existing approaches: (1) 

deep learning models are not interpretable and are prone to overfitting to certain manipulation 

types, (2) handcrafted models generally cannot generalize with respect to other datasets, and 

(3) hybrid systems are complex and need to be trained with a high budget. These concerns 

motivate the development of a lightweight, interpretable generalization method (like FLIDS) 

as proposed here. 

3. Proposed Methodology 

The aspired FLIDS framework is tasked with overcoming some major pitfalls of current 

manipulation detection systems, including their non-interpretability, high computational cost 

and low generalization. FLIDS combines interpretable handcrafted features with a fuzzy 

inference system, producing a human-readable explanation, working in real-time (≤22 ms per 

image), and generalizing across domains (digits, objects, faces). 3.2 FLIDS architecture and 

core components. The architecture, core components, and operation flow of FLIDS are detailed 

in this section. 

3.1   Framework Overview 

The suggested framework presents an interpretable system for identifying image 

manipulation that is based on fuzzy logic. In order to guarantee consistency, the input image is 

first normalized in terms of resolution and color space in the preprocessing and feature 

extraction module of the system. A collection of interpretable forensic features is extracted 

following preprocessing. Measures of edge consistency, local texture irregularities, color 

channel discrepancies, noise level estimations, and compression artifacts are some examples 

of these characteristics. These indicators are frequently linked to manipulation artifacts and are 

ideal for being transformed into linguistic variables that a fuzzy inference system can use. 

Figure 1 displays a block diagram of FLIDS. 

Third, these quantitative characteristics are fed into the fuzzification module. Here, 

each characteristic is converted to linguistic terms like low, medium, or high by membership 

functions that are typically triangular or trapezoidal in form. This step enables the system to 
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express fuzzy or imprecise changes between different strengths of features, as human experts 

do when they think about evidence of manipulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Proposed Architecture 

The fuzzified attributes are then manipulated by the fuzzy inference engine. The engine 

uses a rule base made up of comprehensible if–then rules, created with the help of domain 

experts. For instance, a rule could be: IF edge consistency is low AND color inconsistency is 

high, THEN manipulation likelihood is high. These rules emulate the logical deduction a 

forensic expert would perform. The inference process sums the results of these rules to generate 

a fuzzy measure of manipulation likelihood in linguistic terms like low, medium, and high. 

Subsequently, the defuzzification module transfers the fuzzy linguistic estimate into a 

crisp numerical confidence measure. This is done via techniques such as the centroid of area 

technique to obtain an exact likelihood value. Lastly, the decision module checks the 

confidence measure against a specified threshold to label the image as authentic or 

manipulated. The threshold can be adjusted to achieve a specified balance between false 

positives and false negatives. 

This fuzzy-logic-based architecture being proposed has many advantages. It is 

interpretable per se due to the rule-based nature of fuzzy inference, making it simpler to explain 

the decisions in forensic or legal contexts. It is modular, allowing for easy modification to 

detect novel forms of manipulation by simply readjusting membership functions or the rule 

base. Moreover, it has a relatively low computational expense compared to dense deep learning 

models, enabling efficient deployment in resource-limited situations or near real-time contexts. 
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3.2   Feature Extraction 

The following features are employed to detect tampering artifacts: 

Edge Entropy: Edge entropy is a characterization of the randomness of edge structure 

within an image, which may change through splicing, or sharpening operations. For a given 

input color image I(x, y), it is firstly converted to grayscale to eliminate channel redundancy. 

Igray(x, y)  =  0.299R(x, y)  +  0.587G(x, y)  +  0.114B(x, y)                     (1) 

Gradient magnitudes are then calculated by Sobel operator: 

G(x, y) = √Gx(x, y)2 + Gy(x, y)2                                                       (2) 

where G(x) and G(y) are the horizontal and vertical derivatives. The distribution of 

G(x, y) values is modeled as an appropriate normalized histogram 𝑝𝑖 over NNN bins. Shannon's 

formula is applied to compute the edge entropy: 

Let H be the entropy, expressed as,  − ∑ 𝑝𝑖
N
i=1 log 𝑝𝑖 for the p, the distribution 

proportional to the square of the norm. High entropy will mean that there are many natural edge 

patterns, while low entropy might be a sign of smoothing, forgery, or pasting. We store this 

entropy as a feature. 

Color Variance: Color Variance aims to capture any devations caused by color 

treatment or overlayed objects. The input image is converted into the CIELAB color space: 

ILAB(x, y) = CIELAB(I(x, y))                                                                   (3) 

In this color space, the variance of the lightness channel L and the chromaticity channels 

a and b is calculated as, 

σc
2 = 1/(MN) ∑ (Ic(x, y) − μc)2

x,y                                                       (4) 

Where μc is the mean of channel c∈{L,a,b}. These variances tell us how colors are 

spread through the vessel. Forged regions often have too constant, (i.e., overly low variance) 

and insufficiently homogeneous, (i.e., too much variance) values, both of which can be 

bookmarked.  

Facial Landmark Deviation: Facial Landmark Deviation is specifically designed for 

manipulations in the face, for example deep fakes. A face detection module takes an input face 

image and extracts a bounding box around the face, then landmark detection is performed to 

estimate the positions of K landmarks: 

{(xk, yk)}k;  k = 1                                                                                         (5) 

The term including the deviation from ideal reference shape is calculated by: 

D = D =  1 ⁄ K ∑ √(xk − xk
ref)2 + (yk − yk

ref)2k
k=1                                    (6) 

where (xk
ref,yk

ref) are the reference locations, which are the expected locations with a 

canonical face shape. Deformations almost never significantly alter facial topology but rather 
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disturb facial geometry subtly, and this offset metric is able to capture that. Image Flow through 

the System: 

• Resizing and normalization: The raw images are initially resized and normalized 

to have the same resolution. 

• A grayscale conversion and a Sobel filter are applied to extract edge features. 

• The image is also transformed into CIELAB color space to study the color variance 

in each of the channels. 

• Landmark positions are inferred by a face landmark predictor (e.g., from Dlib or 

MediaPipe) if a face is detected. 

These three properties, edge entropy H, colour variance σc
2, and landmark deviation D 

are all normalized between 0 and 1: 

fn = (f − fmin)/(fmax − fmin)                                                           (7) 

where f is the raw feature and fmin,fmax are to be learned during training. These 

normalized features are in turn fed to the fuzzy inference engine, which maps these linguistic‐

based interpretative features to linguistic variables like High Entropy, Low Variance, or Large 

Deviation. To facilitate successful linguistic mapping between datasets with different 

properties, we normalize all the features to [0,1] with dataset-specific min-max normalization. 

This normalization makes sure that the fuzzy membership functions generate consistent results, 

even when applied to data with different image resolutions and levels of noise. 

These properties were chosen for their theoretical significance and applicability: 

entropy measures structural distortion caused by noise or compression, histogram symmetry is 

effective at spotting distributional alterations proliferated by local copy-pasting or splicing, and 

color variance is effective at detecting chromatic perturbation common to region-level 

manipulation. Together, they address spatial, frequency, and color aspects of image 

manipulation. 

By applying such per image manipulation, the framework can emphasize the visual 

discrepancies in an interpretable and transparent way. These features allow the fuzzy inference 

system to reason about tampering based on global and local artifacts, providing a trade-off 

between robust tampering detection and the explainability needed for human verification. 

3.3   Fuzzy Inference System (FIS) 

The designed fuzzy inference system (FIS) incorporates domain knowledge to decide 

whether the image is tampered with or not. It works in four phases, namely fuzzification, rule 

firing, aggregation, and defuzzification, to offer a transparent approach to decision-making. 

Linguistic Variables: The FIS input and output are represented by linguistic variables to be 

understood and interpreted by humans. The selected features are: Entropy, Variance, and 

Landmark Deviation. For example, Edge Entropy has Low, Medium, and High as linguistic 

values; Variance = Low, Medium, High (Color); Significant Deviation also has Low, Medium, 

and High. By representing the codes with the numeric features, domain professionals and 

auditors are able to learn the logic of the system instead of using the black box model. Let us 

first briefly explain the essence of a fuzzy inference system, which processes uncertainty by 

applying overlapping membership functions for linguistic variables (such as Low, Medium, 



FLIDS: Fuzzy Logic-based Framework for Interpretable Image Manipulation Detection 

ISSN: 2582-4104  318 

 

High). This corresponds to the overlap of these fuzzy rules, which makes close-to-boundary 

feature values activate several fuzzy rules at the same time, providing a smooth transition in 

the output confidence while mitigating hard threshold effects that are still very common in 

crisp and less interpretable classifiers. Membership Functions: Triangular membership 

functions are used to map quantitative values of features to the suggestive labels. A general 

triangular membership function is given by: 

μ(x; a, b, c) = {

0 if x ≤ a and x >= c 
x−a

b−a
  if a < x ≤ b 

c−x

c−b
  if b < x < c

                                                     (8) 

These membership functions define the following: they map the normalized features to 

the linguistic variables, which allow fuzzy inference over numerical values. 

Rule Base: The FIS is based on a set of rules, which represent the expert-driven 

structures of visual tampering. Each rule consists of combined linguistic variables to compute 

the manipulation level. For example: 

• IF Edge Entropy is High AND Color Variance is Low THEN MS is High 

• IF Edge Entropy is Small AND Landmark Deviation is Small THEN Manipulation 

Score is Small 

• IF Color variance is High AND Landmark Deviation is high THEN Bandwidth 

score is high. 

These fuzzy rules model the effects of realistic tampering, such as a lack of color 

diversity in spliced images or altered facial geometry in deep fakes. Using these rules, the FIS 

is able to detect subtle signs of tampering by aggregating them. 

The fuzzy rules of FLIDS were mostly manually designed according to the knowledge 

of the domain and the visual forensics literature. However, the thresholds of feature and the 

weights of rules were empirically tuned using the statistics of the training data, making it a 

hybrid design method. Potential future work could include the extension of automatic rule 

learning, for instance based on genetic fuzzy systems. 

Defuzzification: Finally, a defuzzification process is performed in the decision through 

rule analysis and combination of fuzzy outputs. Here we employ the centroid method, which 

calculates the gravity center of the resultant fuzzy set: 

S = ∫
0

1
sμ(s)ds/∫

0

1
 μ(s)ds                                                         (9) 

where μ(s) is the combined membership function of the output Manipulation Score S. 

The obtained score is compared with threshold 0.6 and if S≥0.6 it is decided to be manipulated; 

otherwise, it is considered authentic. 

Image Processing Flow: Given an input image, we first compute the hand-crafted 

features (i.e., edge entropy, color variance and landmark deviation) as discussed in Section 3.2. 

The attributes are fuzzified with their corresponding membership functions. The fuzzy rules 

operate on these fuzzy variables to infer the manipulation level. Finally, by defuzzification, the 

obtained fuzzy results are converted into the Manipulation Score to represent the final test 
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decision. This fuzzy-based reasoning approach, therefore, merges interpretability with 

dependable manipulation detection by introducing a decision path that can be audited and 

understood by human experts, contrasting with the black-box nature of traditional deep learning 

solutions. 

4. Experiments and Discussion 

4.1   Dataset Description 

A series of image is used to evaluate the performance and reliability of the FLIDS 

model of image tampering detection through an exclusive dataset of images for testing and 

training the system. In our experiment, we have experimented on 4 popular image datasets: 

CIFAR-10, a subset of ImageNet, MNIST, and Deepfake detection. There are 60,000 color-

images in the CIFAR-10 dataset segmented into 10 classes of 32×32 pixels. Owing to its 

simplicity and class diversity, it is an ideal dataset for testing low-capacity models designed 

for image classification and detection. To test the model’s more representative generalization 

capability with real visual patterns and higher resolution, we used 10,000 images from (a subset 

of I) mageNet, which includes various natural and man-made objects, and animals. To simulate 

other types of attacks, the datasets were further enriched by adding adversarial or perturbed 

images to the mixed datasets. These ranged from white-box FGSM-style attacks where small 

perturbations are added to the test images to fool classification models to well-known 

manipulations such as splicing and copy-move that have occurred in the historical digital image 

tampering literature. Moreover, we generated JPEG compression artifacts to check the 

robustness of the detection approach under practical image degradation. All manipulations 

were consistently applied to the subset of CIFAR-10 and ImageNet, from which a total of 

20,000 pictures, half benign (not manipulated) and half malicious (manipulated)—emerged. 

 4.2   Feature Extraction 

On CIFAR-10 Enters are small and lowresolution natural images. Extracted entropy 

maps show that adversarially perturbed samples (e.g., FGSM) have a bit larger value of local 

entropy than the clean samples, indicating injected randomness. The edge density maps 

demonstrated insufficient continuity of the detected edges in spliced or copy-move forged 

images, since the forged boundaries produced abnormal edge distributions. Similarly, LBP 

uniformity maps of tampered images exhibited more local pattern variableness, due to 

inconsistent textures and tamper or compression noise. 

In the more complicated and higher resolution scenes in the ImageNet subset, the 

entropy feature maps were more radically different for the adversarial and spliced images. 

Doped regions were locally of higher entropy, indicating the disturbance. The edge density 

measurements made on these higher-resolution images revealed edge discontinuities or 

unnatural contours, particularly where the boundaries of objects had been altered by splicing. 

The LBP uniformity descriptors were able to detect non-uniform patches caused by resampling, 

compression, or synthetic generation, as evidenced by disrupted texture continuity. 

In general, the feature extraction pipeline was able to tell the manipulated images apart 

in both datasets by creating visual feature maps where: 

• High entropy marked random perturbations 
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• Structural breaks were denoted by differences in abnormal edge density 

• Local textural inconcistincies were observed with the irregular LBP patterns 

These features were all normalized to the [0,1] scale before use in the FIS for 

manipulation score and type classification. The feature maps are visualized with figure outputs 

of these feature maps is depicted in Table 2-5, respectively, the same alterations applied with 

authentic samples are significantly different from the tampered images visually in each feature 

dimension. 

4.3   Experimental Results 

The performance varies with image complexity, resolution, and manipulation 

techniques in terms of detection accuracy. The easiest dataset, MNIST, containing simple 

grayscale digits (60,000 images), achieved the highest accuracy (94.3%) due to its high contrast 

and small number of characteristic attributes. Deep Fake (15,000 frames), nonetheless, has 

small facial changes, which cause reduced recall. Subsets of ImageNet and CIFAR-10 

(~10,000-20,000 images) achieved mid-level accuracy as a consequence of moderate visual 

complexity. The datasets were all split into 80% training and 20% testing. 

Table 1. Performance Metrics 

Dataset Image Type Accuracy 

(%) 
Precision 

(%) 
Recall 

(%) 
F1-

Score 

(%) 

Avg. 

Detection 

Time (ms) 

CIFAR-10 Natural (Color) 93.5 91.2 89.8 90.5 12.4 

ImageNet 

Subset 

High-Res 

Natural 

91.8 90.1 87.4 88.7 18.7 

MNIST Handwritten 

Digits (Gray) 

94.3 92.5 91.7 92.1 9.8 

Deep Fake 

Detection 

Dataset 

Synthetic Faces 90.2 88.7 85.3 86.9 22.1 

The proposed FLIDS was experimentally analyzed on four different datasets: CIFAR-

10, ImageNet Subset, MNIST, and a Deep Fake Detection Dataset to evaluate its strength, 

adaptiveness, and detection performance in different image processing scenarios, as illustrated 

in Table 1. Each included dataset posed some problems, from natural to manipulated, leaving 

the framework to be tested across a wide range of sequence sequences. 

 Performance metrics, such as accuracy, precision, recall, F1-score, and average 

detection time, are compared across several datasets, such as CIFAR-10, ImageNet Subset, 

MNIST, and a deepfake detection dataset, exposing variations in processing speed and 

detection efficiency, as shown in Figure 2. 
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Figure 2. Comparison of Performance Metrics of Different Dataset 

We tested the reliability of FLIDS on the CIFAR-10 dataset, which contains low-

resolution color images of 10 object classes, and obtained high accuracy of 93.5%, precision 

of 91.2% and recall of 89.8%. The model effectively caught fine manipulations, including 

contrast changes and pixel-wise noise, demonstrating it can well process concise and extremely 

diverse human images. An F1-score of 90.5%shows a balanced performance and a detection 

time of 12.4 milliseconds per image confirms FLIDS is appropriate for real-time or embedded 

image processing applications. 

A slightly lower, but still remarkably high accuracy was reported on the ImageNet 

Subset dataset (high-resolution and semantically rich natural images): accuracy was 91.8% 

with precision 90.1% and recall 87.4%. Deferred retrieval may be slightly lower because of the 

richness and subtlety of manipulation in these images, for example soft blending or geometric 

transforms. However, the high precision suggests a low number of cases of false positive 

occurrence in detections of manipulations. The F1-score of 88.7% with an average detection 

time of 18.7 milliseconds per image imply that FLIDS, although more computationally costly, 

is efficacious and suitable for high-fidelity image analysis applications. 

Applied to the MNIST database of grey-scale handwritten digits, FLIDS was quite 

successful. The system achieved the highest accuracy of 94.3%, precision of 92.5%, recall of 

91.7% and F1-score of 92.1%. These results show that FLID scans for manipulations such as 

salt-and-pepper noise, stroke thickening, and digit modifications even in small and low-

dimensional images. Its success on MNIST also provides strong evidence for the power of 

fuzzy logic in dealing with small structural variations. The low detection latency of 9.8 

milliseconds also validates that the system is applicable to resource limited and real-time 

scenarios. 

In case of manipulated/fake face images and videos (deep fake detection dataset), 

FLIDS encountered an extremely difficult situation. It obtained an accuracy of 90.2%, 

precision of 88.7%, recall of 85.3% and F1-score of 86.9%. The recall is a little lower, which 

is possibly due to the challenges of identifying small hand-tuned manipulations typically 

residing in deep fake content, such as lip sync defects or faces morphing. Nevertheless, good 

accuracy suggests that the system does not tend to misclassify genuine images, a necessary 
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feature in forensic and security applications. It has the longest detection time of 22.1 ms, due 

to some preprocessing such as alignment of face and extracting the features, but it is still 

acceptable in real-time applications where the accuracy of detectors is more important. 

Table 2. Dataset 1: CIFAR-10 

 Input Image Feature 

Extraction 

Fuzzification Defuzzyfication Jaccard 

Index 

Decision 

CIFAR-

10 

 

  

Medium 

 

Low  

Threshold 

0.6 

Tampered 

 

The input in table 2 is a 32 × 32 RGB image that belongs to the “truck” class. During 

feature extraction, the system calculates edge entropy 0.56 (moderate texture), histogram peak 

symmetry of 0.41 (slight asymmetry) and color variance of 0.72 (high variability). At 

fuzzification, these numbers are mapped into labels: edge entropy becomes Medium, 

histogram symmetry becomes Low, color variance becomes High. In the fuzzy rule evaluation, 

the rule If Edge Entropy = Medium AND Histogram Symmetry = Low AND Color Variance 

= High THEN JI = Medium is used by the system. The rule is fired with confidence degree of 

0.7. The Jaccard Index is 0.68, after Aggregation and Defuzzification. With a 0.6 threshold 

decision, the image is classified as Tampered at last. 

Table 3. Dataset 2: ImageNet Subset 

 Input Image Feature 

Extraction 

Fuzzification Defuzzyfication Jaccard 

Index 

Decision 

Imagenet 

Subset 

 

 

 

Medium 

 

Low 

 

Threshold 

0.6 

Tampered 

 

Here, the input is a high-resolution image of “Golden Retriever” in Table 3. Feature 

extraction finds out an edge entropy of 0.67, texture coarseness (from GLCM) of 0.48 and a 

color saturation variance of 0.31. These are fuzzified to High, Medium, and Low. The fuzzy 

rule evaluation is applied to the rule: If Edge Entropy is High AND Texture Coarseness is 

Medium AND Saturation is Low THEN JI is Medium, which fires with a degree of 0.65. It is 

calculated that the defuzzified value of the Jaccard Index is 0.60. Being equal to the tampering 

detection threshold, in this case the image label is Tampered. 
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Table 4. Dataset 3: MNIST 

 Input Image Feature 

Extraction 

Fuzzification Defuzzyfication Jaccard 

Index 

Decision 

MNIST 

  

Medium 

 

Low 
 

Threshol

d 0.6 

UnTamp

ered 

 

These samples are from Table 4, and the grayscale images are 28×28 of the 

handwritten digit “4.” Feature extraction gives pixel density of 0.28, stroke symmetry of 0.51 

and local binary pattern (LBP) of 0.39. These are then fuzzified into Medium, Medium, and 

Low values. The corresponding Fuzzy Rule, If Low AND Symmetry is Low AND LBP is Low 

THEN JI is Low is activated with a high degree of fulfillment of 0.72. After defuzzification 

the Jaccard Index is 0.41. Since this is less than the decision threshold of 0.6, this image is 

determined to be Untampered (Clean). 

Table 5. Dataset 4: Deep Fake Detection Dataset 

 Input Image Feature 

Extraction 

Fuzzification Defuzzyfication Jaccard 

Index 

Decision 

MNIST 

  

Medium 

 

High  

Threshold 

0.6 

deep fake 

 

The deep fake detection dataset [15] collects both real videos of a person and deep fake 

videos generated with state-of-the-art methods. The input is an image in Table 5, of a face with 

possible deep fake artifacts. T 

he Feature Extraction stage results in a facial landmark deviation of 0.62, eye-blink 

inconsistency score is 0.78 and color texture shift (in the Fourier domain) is 0.59. These are 

fuzzyfied into High, High and Medium. The eliminated Fuzzy Rule is: IF Landmark is High 

AND Blink Inconsistency is High AND Color Shift is Medium THEN JI is High with a strong 

confidence of 0.81. This gives us one Jaccard Index of 0.74.  

When it crosses the limit of 0.6, it is classified under deep fake (Tampered). Pixel-level 

detection experiments were carried out using standard datasets to further confirm the system's 

capacity to localize manipulations at a finer granularity. 
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Table 6. Protocol 1-Pixel Level Manipulation Detection 

Dataset Precision (%) Recall (%) F1-score (%) IoU (%) AUC 

CASIA v2 87.5 90.2 88.8 75.4 0.93 

Columbia Splicing 85.1 88 86.5 72.3 0.91 

GRIP 82.4 84.6 83.5 69 0.89 

 

Figure 3. Pixel Level Manipulation of Different Dataset 

Statistical results are shown in Figure 3. Compared to the other methods evaluated on 

standard datasets CASIA v2, Columbia Splicing, and GRIP (refer to Table 6), the fuzzy 

framework was tested for pixel-level manipulation detection for different types of 

manipulations. Results at the population level show high precision and recall across all 

datasets; precision values vary between 82.4% and 87.5%, and recall values range between 

84.6% and 90.2%. This evidences the good localization capability of the model to correctly 

identify tampered pixels with a minimum of false positives. The F1-scores are always over 

83% and demonstrate that even in fine-grained pixels, precise detection is achievable. IoU 

scores of 69% and 75.4% also reinforce the spatial overlap between the predefined tampered 

regions and the ground truth. Finally, the AUC values (up to 0.93) confirm the good 

discriminative ability of the framework between real and manipulated data. 

Table 7. Protocol 2-Image Level Manipulation Detection 

Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC 

CASIA v2 93.1 92 94.3 93.1 0.96 

Columbia Splicing 91.5 90.6 92.4 91.4 0.95 

GRIP 89.9 88.8 90.7 89.7 0.94 



                                                                                                                                                                        Shuriya B., Kowsalya S., Varatharajan N., Sivaraju S.S. 

Journal of Trends in Computer Science and Smart Technology, September 2025, Volume 7, Issue 3 325 

 

 

Figure 4. Image Level Manipulation Detection 

Figure 4 shows the results of the image-level assessment. For all datasets, the suggested 

method demonstrated superior accuracy, precision, and recall of over 88%. Particularly, 

CASIA v2 showed that it could manipulate image detection globally with an accuracy of 

93.1%, precision of 92%, recall of 94.3%, and F1-score of 93.1%. F1-scores of 91.4% and 

89.7%, respectively, demonstrated the high detection performance of the GRIP and Columbia 

Splicing datasets. The fuzzy framework's ability to distinguish between authentic and fake 

images across a broader range is demonstrated by the AUC rates of 0.94 to 0.96. The 

aforementioned outcomes demonstrate how well the fuzzy inference process that was 

introduced scales from pixel-level analysis to image-level analysis. 

Pixel-level metrics like IoU and precision in Table 6 evaluate the system's capacity to 

pinpoint particular areas that have been altered, but image-level metrics in Table 7 evaluate the 

overall determination of whether an image is genuine or altered.  

Table 8. Feature Level Analysis 

Feature 
Weight 

(Linguistic) 

Rule 

Contribution 

(%) 

BAM High 30 

Co-occurrence entropy (CE) Medium 25 

Edge Consistency Score (ECS) High 20 

Noise Residual Energy (NRE) Medium 15 

CFA inconsistencies Low 10 

 

The contribution of each feature to the fuzzy rule set was measured using contribution 

analysis by features, as shown in Table 8.  The Block Artifact Measure (BAM) contributed the 

most, at 30%, indicating that it has a significant influence on detecting inconsistent 
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compression-related artifacts that are typical of manipulated images.  The importance of 

texture-based modeling of pixel relationships was demonstrated by the Co-occurrence 

Entropy's (CE) 25% contribution.  An important factor in identifying irregularities on object 

edges was the Edge Consistency Score (ECS), which made up 20% of the total.  The fuzzy 

reasoning process was further supported by 15% and 10% contributions from Noise Residual 

Energy (NRE) and CFA Inconsistencies, respectively. These results guarantee that the selected 

features complement one another and enhance the interpretability and effectiveness of the 

fuzzy inference system in detecting image manipulations. 

Table 9. Fuzzy Inference Outputs 

Sample ID Dataset Fuzzy Confidence Linguistic Verdict 

IMG_045 CIFAR-10 0.68 Tampered 

IMG_129 ImageNet 0.60 Tampered 

IMG_221 MNIST 0.41 Authentic 

VID_003 deep fake 0.74 Tampered 

 

Table 9 shows that the fuzzy inference system produces different confidence scores 

based on the features detected in each sample image. By defuzzifying the fuzzy output set, 

these scores reflect the system's estimation of the probability of manipulation. The label of the 

image is determined using a threshold of 0.6: images with scores above or equal to 0.6 are 

labeled as tampered, and images with scores below 0.6 are labeled as authentic. The results 

indicate that the system adapts its output dynamically based on the dataset. More evidence of 

tampering is indicated by the higher confidence values (0.68 and 0.74, respectively) for the 

CIFAR-10 and Deepfake samples, while the MNIST sample generated a genuine output with 

a lower value of 0.41. 

 This distinction demonstrates that the model is manipulation artifact-sensitive across a 

range of image types and is independent of arbitrary or fixed outputs.  These results further 

confirm the FLIDS fuzzy logic-driven detection process's interpretability and responsiveness, 

guaranteeing its applicability to actual forensic applications. 

Table 10. Baseline Method Comparisons 

Dataset Method Accuracy (%) Reference 

CIFAR-10 FLIDS (Proposed) 93.5 Proposed 
 

ResNet-18 81.2 [21] 
 

JPEG Artifact Detection 70.3 [22] 

ImageNet Subset FLIDS (Proposed) 91.8 Proposed 
 

ResNet-50 89.4 [29] 

MNIST FLIDS (Proposed) 94.3 Proposed 
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Autoencoder AUROC = 0.89 [25] 

Deepfake Dataset FLIDS (Proposed) 90.2 Proposed 
 

Blink + Landmark Rules 85.0 [28] 

As shown in Table 10, the FLIDS model outperforms or performs as well as the usual 

and deep learning-based benchmarks on various datasets consistently. On CIFAR-10, FLIDS 

reaches a maximum accuracy of 93.5%, which outperforms ResNet-18 (81.2%) and JPEG 

Artifact Detection (70.3%), as indicated in [21] and [22], respectively. Likewise, on the MNIST 

dataset, FLIDS reaches 94.3% accuracy, outperforming the Autoencoder model that attained 

an AUROC of 0.89 [25] see (figure 5). 

 

 

 

 

 

 

 

Figure 5. Accuracy Comparison of with Other Models 

Pixel-level detection, in the context of this work, is the detection of exactly which areas 

of an image have been tampered with, e.g., modified objects or boundaries, using differences 

in spatial features. Pixel-level detection evaluates localization performance and is most useful 

when ground truth masks are available. Image-level detection, on the other hand, indicates 

whether an image as a whole is real or forged but does not specify the precise area of 

manipulation. Although FLIDS facilitates both, the existing evaluation relies primarily on 

image-level classification metrics (accuracy, AUROC), with only a few datasets allowing 

pixel-level validation through the Jaccard Index. 

In the ImageNet Subset test, FLIDS achieves an accuracy of 91.8%, slightly greater 

than that of ResNet-50, which was 89.4% [29]. This demonstrates the generalizability of 

FLIDS to large image databases. Tested on the Deepfake dataset, comprised of synthetic face 

editing and facial modifications, FLIDS achieves an accuracy of 90.2%, better than the Blink 

+ Landmark Rule-based approach (85%) [28]. The results validate that FLIDS not only 

provides competitive performance in tasks across domains but also supports interpretable 

decision-making through fuzzy inference, achieving a solid trade-off between accuracy and 

interpretability in detecting tampering. 

4.4   Discussion 

FLIDS offers a strong, interpretable, and computationally efficient approach to 

detecting image manipulation. With the use of domain-specific features and fuzzy reasoning, 
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it is highly accurate while being transparent in its inferential process. Experimental outcomes 

on four datasets validate that FLIDS performs significantly better than or on par with deep 

learning baselines such as ResNet variants, autoencoders, and conventional JPEG-based 

detectors. Additionally, its confidence scoring based on fuzzy logic reinforces trust and 

explainability, qualifying it for practical use in digital forensics, authentication, and integrity 

verification. 

5. Conclusion 

FLIDS is a robust, understandable, and computationally efficient approach for image 

forgery detection. It infers using fuzzy reasoning and domain-based features, resulting in 

extremely transparent and accurate inferences. Experimental evidence on four benchmark 

datasets supports that FLIDS outperforms or performs on par with state-of-the-art deep learning 

models such as autoencoders, ResNet variants, and conventional JPEG-based detectors. 

Moreover, fuzzy logic-based confidence scoring is more explainable and trustworthy, making 

it suitable for real-world applications in digital forensics, integrity checks, and authentication. 

Further work can investigate hybrid FLIDS extensions that include selective neural modules 

for advanced manipulation detection while maintaining the interpretability provided by fuzzy 

logic systems.  
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