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Abstract 

Neurological diseases present a considerable impact on individuals by affecting their 

quality of life leading to disability and mortality. Gait represents the pattern of human walking, 

which serves as a chief indicator of health status, functional impairment, and treatment 

prognosis. Gait analysis (GA) plays an essential part in the assessment of neurological 

disorders, with patterns helping as reliable factors of potential disorders in the future. 

Alzheimer's disease (AD) adjacent profound concerns across universal healthcare networks 

demanding timely monitoring and suitable intervention. In this analysis, we present an 

innovative approach to model the time-based dependence in AD progression by integrating gait 

inspection with cognitive performance metrics and functional neuroimaging using recurrent 

neural networks (RNNs). By encompassing LSTM, the longitudinal nature of AD data allows 

movement patterns to be utilized as a supplemental marker to capture subtle changes in 

cognitive function as well as mobility over time. By inspect consecutive data gathered from 

individuals at risk or diagnosed with AD. Our approach aims to forecast future cognitive 

decline, with biological markers indicative of disease progression helping in early diagnosis. 

With accuracy, recall as 0.98, precision, F1-Score and AUC-ROC as 0.99 our integrated 

framework makes use of an indigenous dataset to offer a holistic understanding of the 

multifaceted dynamics in AD progression, paving the way for personalized care and treatment 

strategies tailored to suit individual cognitive and motor impairments.  

Keywords: AD, Gait Analysis, RNN, LSTM, AUC-ROC. 

1. Introduction 

Central nervous system disorders comprise a varied spectrum of conditions that affect 

the brain, spinal cord and peripheral nerves, often producing substantial impairments and 

challenges for individuals. Alzheimer's Disease (AD) can be considered a progressive 

neurodegenerative illness that contributes to memory loss and cerebral deterioration, while 

Parkinson's is characterized by tremors, rigidity, and complications in motion [1]. Multiple 

Sclerosis (MS) occurs due to inflammation and impairment in nerve fibers resulting in 

numbness, weakness, and visual impairments. Amyotrophic Lateral Sclerosis (ALS) causes 

muscle weakness and paralysis [2]. Epilepsy manifests itself in the form of persistent seizures 
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owing to unusual electrical activity in the brain, while stroke results from a disruption of blood 

flow leading to a sudden neurological breakdown [3]. Other cognitive diseases include 

Huntington's disease, migraine, traumatic brain injury and cerebral palsy, each with its own 

distinct symptoms and challenges. Regardless of their diversity, these clinical afflictions share 

the distinguishing trait of affecting major neurogenic processes, imposing comprehensive 

management and assistance for people in need [4].  

Among these types of disorders, Alzheimer's Disease (AD) remains one of the most 

demanding due to its absence of a definitive diagnosis, progressive cognitive decline and 

insidious onset. finding in the very early stage plays a major role in managing AD, as it can 

help slow its progression and enhance patient outcomes.   In the patient recent past, gait 

analysis has emerged as a promising non-invasive biomarker for neurological disorders, 

specifically AD, as motor impairment often precedes visible cognitive symptoms. Combining 

advanced computational methods such as Genetic Algorithms and Long Short-Term Memory 

networks shows significant potential in pinpointing these subtle gait changes. This study 

investigates such an interdisciplinary approach aiming to bridge the gap between clinical 

diagnosis and real-time therapeutic applications by leveraging AI-driven gait analysis for early 

AD monitoring. 

1.1   Neurophysiological Disease Monitoring Through GA and IoMT 

By incorporating GA in clinical practices, enhanced diagnostic precision can be 

accomplished through customized treatment planning strategies and patient’s health along with 

their quality of life can be upgraded [5]. Through proper consideration on the effect of rhythmic 

pattern and coordinated movement of body parts on individual’s well-being, GA has 

transformed the field of biomechanical research, offering valuable insights into several 

cognitive conditions and functional deficits [6]. GA holds great promise in diagnostic review, 

rehabilitation and investigation across numerous domains such as athletics, biomedical science, 

prosthetics, physiotherapy, rehabilitation and robotic engineering. Understanding individual's 

movement patterns provides crucial information about their musculoskeletal health, 

neurological function and overall mobility [7]. Deviations from normal gait patterns can signify 

underlying pathologies, injuries or functional limitations, making gait analysis an invaluable 

diagnostic and prognostic tool. GA encompasses a plethora of methods and approaches to 

assess human locomotion.  

 

Figure 1. Gait Analysis based IoMT Framework (Source:Kidziński et al,2020) 
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There are various types of gait analysis (GA) that are commonly utilized in clinical and 

research settings, such as functional gait assessment, visual observation, temporal-spatial 

analysis, kinematic analysis, kinetic analysis, dynamic balance assessment, and 

electromyography (EMG) signals-based analysis, which can be used individually or in 

combination to comprehensively evaluate various aspects of human locomotion and carry out 

clinical decision-making, treatment planning, and rehabilitation interventions (Fig 1). Recent 

advancements in sensor technologies have revolutionized the field of GA, enabling more 

precise and comprehensive assessments of human motor activities [8].  Emergence of 

advanced technologies like IoT, AI, ML and DL has catalyzed transformative innovations in 

healthcare, notably through the Internet of Medical Things (IoMT) which presents a paradigm 

shift in healthcare delivery by integrating medical devices, sensors and data analytics within 

interconnected networks, facilitating remote monitoring, personalized treatment and proactive 

health management [9]. Concurrently, DL models designed to process sequential data have 

emerged as powerful tools for pattern recognition and temporal modeling. By efficiently 

incorporating IoMT and DL into the GA framework, an innovative network can be created that 

assesses human locomotion patterns through biomechanics and holds immense potential for 

diagnosing and monitoring various medical conditions, specifically neuro disorders and 

rehabilitation [10]. 

Existing studies have employed support vector machines (SVM), random forests (RF), 

and convolutional neural networks (CNN) for Alzheimer's disease (AD) monitoring. However, 

due to its non-invasiveness and sensitivity to early cognitive-motor decline, traditional GA-

based models focus on static snapshots of gait parameters but fail to capture longitudinal 

dynamics. Since gait data must be investigated continuously as it reflects subtle changes in 

motor and cognitive function, the extraction of spatial features from gait waveforms must 

consider the temporal dependencies as well. AD is a time-evolving disease; the majority of the 

models offer a unimodal focus as they do not model the progressive deterioration in AD stages. 

Our work aims to address this by utilizing long short-term memory (LSTM) networks to study 

longitudinal data. Specifically, they explicitly model temporal sequences by observing gait 

trends over a period of time and utilize heterogeneous input through hidden states. Their 

memory gates mitigate vanishing gradients in long-term AD progression trajectories. They also 

address the vanishing gradient problem and capture long-range dependencies, making them 

effective for time-series prediction [11].  

Motivation 

Conventional diagnostic approaches rely mainly on cognitive tests and neuroimaging 

which are costly, time-consuming and may not be effective in detecting early-stage cognitive 

decline. Gait patterns are unobtrusive and its measurable characteristic serve as valuable 

biomarker for the preliminary prediction of AD. However, existing studies focus solely on 

static medical data and employ ML/DL models that fail to capture the temporal progression of 

symptoms. This motivated us to develop a time-aware DL framework that integrates GA with 

cognitive data to predict disease progression.  

Objectives of the Study 

Our aim is to design a more holistic, cost-effective and early predictive model for AD. 

The major objectives are:  

• To explore the use of gait data in AD detection along with an LSTM-based model 

that captures temporal patterns in multi-modal data. 
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• To contribute to the development of a scalable tool for early AD diagnosis and 

monitoring. 

• The novelty of our proposed GA model can be listed as: 

• Utilization of IoMT for remote patient monitoring and continuous assessment of 

patients' gait patterns offers overall health status outside conventional clinical 

settings. 

• Longitudinal monitoring of patients' gait patterns via LSTMs helps in analyzing 

trends and detecting changes in their locomotion to carryout informed decisions. 

• Indigenous datasets comprising gait data, clinical variables and outcomes can be 

used for research purposes. Novel biomarkers can be identified and modern 

diagnostic and therapeutic strategies can be developed. 

Through effective integration of GA with an LSTM-based framework, multi-modal, 

temporally aware prediction of AD progression has been recommended. This comprehensive 

approach enables personalized intervention through continuous monitoring of patients with 

neurological disorders and explores coordination between gait data and cognitive decline. The 

organization of study is as follows: Section 1 presents an overview of the proposed research 

topic, including the importance and relevance of studying the relationship between GA and 

neurological diseases along with other modern technologies. Section 2 conducts a thorough 

review of existing literature and identifies relevant studies, theories and methodologies in 

relation with proposed study. Section 3 explains the recommended research methodology 

followed by interpretation of findings and discussion of results in section 4. Conclusion in 

section 5 summarizes the main findings of proposed study along with potential enhancements 

in future. 

2. Literature Review 

This section discusses relevant theoretical frameworks that are utilized in our study 

along with previous studies that have been investigated to understand the relationship between 

advanced technologies like AI, ML and DL in management of neurological diseases. Through 

the synthesis of key findings alongside the examination of various methodologies, the review 

has uncovered gaps in existing studies. 

Tolea et al. [2025] emphasized that the decline in physical functionality is a critical 

aspect that indicates cognitive impairment, especially while distinguishing normal cognition 

from dementia. The assessment of gait patterns and the evaluation of relationships between GA 

and imaging biomarkers help in the identification of specific measures that cause severe AD. 

The authors studied various aspects such as balance, speed, step length, and single-leg support 

within a logistic regression framework to achieve classification of various AD stages. The 

association between imaging biomarkers, such as atrophy score and white matter volumes with 

GA, was analyzed through ANCOVA [12]. 

 Mohammadi et al. [2025] investigated gait and turn features of patients with cognitive 

impairment using a dual Kinect sensor setup. Walking and turn dynamics were studied to 

understand the impact of covariates in connection with cognitive function, along with gait-

related measures. Turn dynamics demonstrate segmental peak speeds, which have a stronger 
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influence, whose p-values, along with linear regression analysis, had a stronger relationship 

with brain function and memory, suggesting a more distinct correlation between cognitive 

performance and turn features along with GA [13]. 

 Singh et al. [2024] put forward an innovative IoMT framework for uninterrupted stress 

recognition to ensure mental wellness through a hybrid DL approach that involuntarily 

procures features and classifies them into diverse stress states. The system gathers data from 

wearable physiological sensors and feeds it into CNN-LSTM, a hybrid DL classifier that 

focuses on specific traits acquired through human interaction to analyze outliers [14]. Ahmed 

et al. [2024] attempts to deal with the repercussions of data fusion in IoMT by presenting 

related security confrontations along with prospective elucidations. Data acquired from IoT 

sensors has a direct impact on prediction accuracy owing to its quality, quantity, and 

significance. The Naïve Bayes algorithm, cryptography, and blockchain technology have been 

used to detect epileptic seizures and secure the IoMT-based system [15]. 

 Nigar et al. [2023] presented an integrated approach that takes into account various 

perceptions for the timely identification and monitoring of COVID, heart disease, and 

Alzheimer’s. The performance of the proposed approach is evaluated in a cloud environment 

where real-world datasets are deployed as metrics. Empirical and statistical analyses on the 

datasets produce significantly different outcomes in terms of accuracy and precision [16]. Mao 

et al. [2023] pointed out several constraints regarding IoMT, such as limited power, human 

compliance with sensors and their intelligence, and recommended a robust and smart system 

that encompasses wearable tribo-electric sensors and DL-enabled data analysis. By integrating 

these into a smart gadget like a wristband, the movements of patients suffering from 

neurological diseases can be monitored. Through DL-assisted intelligent healthcare 

monitoring, surveillance and interaction with patients are made possible through location 

tracking and identity recognition [17]. 

 Misgar et al. [2023] addressed the need for a real-time on-demand health diagnostic 

system to detect mental health-related ailments. The authors proposed a novel Deep CNN 

framework with a split attention mechanism to analyze human activity data. By means of an 

imputation method and a sampling technique based on a sliding window, class balancing is 

achieved. This methodology aims to contribute to non-invasive mental healthcare services [18]. 

Ziyad et al. [2023] proposed an intelligent healthcare system to observe and alert caregivers of 

AD patients using an AI model in Python. An ensemble ML algorithm is used to perform 

classification of fall episodes and monitor daily life activities, updating caregivers and medical 

professionals through mobile apps installed on smart devices [19]. Zhang et al. [2022] explored 

a fuzzy intelligence learning-based IoMT structure where biomedical data analysis is carried 

out through a decision-making approach. Dual hesitant fuzzy information is used to detect 

patients for Parkinson's symptoms using these devices. Realistic group decision information, 

along with probabilistic rough sets, is utilized to obtain parallel relations. This joint decision-

making approach is constructed based on validity, efficiency, and expediency to arrive at 

reasonable diagnostic conclusions [20]. Manna et al. [2022] suggested a remote neuro-

rehabilitation framework to assist patients in carrying out therapeutic exercises recommended 

by clinicians. This system enables patients to securely interact with doctors through a secure 

video conferencing portal. Wearable activity tracking sensors are embedded to collect data 

seamlessly from patients while they perform physical activities [21]. 

 R de Fazio [2021] came forward with an innovative smart insole designed to monitor 

both plantar pressure distribution and gait characteristics. This technology utilizes a 

piezoresistive sensing matrix, which operates based on a Velostat layer converting applied 
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pressure into an electrical signal. Primarily, the study provides a detailed characterization of 

pressure sensors, considering their size variations, support materials and pressure trends. This 

cost-effective and dependable piezoresistive sensing matrix employs a sandwich structure to 

accomplish reliability [22]. Khan et al [2021] suggested an innovative methodology to address 

accuracy related inconsistencies using GA to detect osteoarthritis by integrating features into 

the Kernel Extreme Learning Machine framework. The approach encompasses two pre-trained 

CNN models on publicly available gait datasets using TL techniques and extracts features from 

their fully connected layers. Subsequently, Euclidean Norm and Geometric Mean 

Maximization are applied to select the most significant discriminative features. Through the 

aggregation of these parameters using Canonical Correlation, the resultant features are 

subjected to varied classifiers for ultimate recognition [23]. 

Zhang et al [2020] details gait analysis scenario based on wearable gadgets where 

several limitations, like excessive fabrication costs, high energy consumption and suboptimal 

analysis methodologies often lack integration with advanced techniques or rely mostly on 

inadequate models that demand extensive training datasets. Cheaper tribo-electric intelligent 

socks have been proposed by the authors which are equipped with self-powered functionality 

to facilitate information regarding users' identity, health status and activity levels which 

harnesses waste energy from low-frequency body movements to transmit wireless sensory data. 

An optimized DL model operates directly on these signals captured by socks for GA [24]. Zuo 

et al [2019] studied gait recognition using smart-phones that collects inertial gait data under 

unconstrained circumstances which in contrast to conventional methods requires the person to 

walk along specific path or at a normal walking pace. DL techniques are adopted to learn and 

model the gait biometrics based on walking statistics. A hybrid deep NN is proposed where 

features in spatial and temporal domains are successively abstracted using CNN [25].  

Camps et al. [2018] put forward an effective method to deal with FOG (Freezing of 

Gait) episodes in Parkinson-affected patients, which result in frequent falls and reduce life 

expectancy. Precise assessment of FOG would require comprehensive information for 

neurologists about patients’ conditions and the physiognomies of their symptoms. Thus, 

through DL technology, the detection of FOG episodes in PD patients has been accomplished 

through data collected from sensors embedded in patients' wearables. The monitoring system 

has been designed using information collected from PD patients who had previously 

manifested FOG episodes [26]. 

 Limitations in Existing Studies 

Current approaches are based on neuroimaging and cognitive assessments, which are 

not feasible to implement in resource-constrained settings that require constant expert 

supervision. Moreover, they may not be suitable for large-scale screening. GA has been 

researched in isolation and not integrated with other clinical indicators, which further 

discourages its real-time application. Classical ML models limit their abilities by focusing on 

static analysis, yet temporal dependencies play an inherent role in longitudinal health data, 

especially since gait changes can be noticed only after observing for a specific period of time. 

Present research offers less interpretability of predictive features, which further reduces its 

implementation. Moreover, DL studies that have incorporated time series data focus on either 

imaging or speech while neglecting gait patterns. These constraints present the need for an 

integrated time-aware model that combines multi-modal information to improve early 

detection and disease progression prediction. 
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3. Proposed IoMT Architecture for Monitoring Alzheimer Disease  

Our GA based IoMT framework for Alzheimer's disease progression monitoring has 

the following components namely. 

Data Collection 

This module involves the utilization of wearable IoT technology to gather gait data 

from participants. Individuals who volunteered for the study wear lightweight sensors, such as 

accelerometers, on their lower limbs during specific walking tasks. By continuously recording 

the motion and acceleration data as participants walk, significant gait parameters are captured. 

This information is wirelessly transmitted to a centralized storage system, where it undergoes 

quality control to ensure accuracy. Throughout the study, participants' gait patterns are 

monitored longitudinally, thus facilitating valuable insights into disease progression. This 

continuous data collection process enables effective identification of subtle changes in gait 

dynamics associated with Alzheimer's disease, contributing to the development of customized 

monitoring tactics within the IoMT framework. 

Pre-Processing and Feature Extraction Segment 

Gait data acquired from wearables is conditioned to eliminate noise, outliers and 

artifacts arising due to sensor inaccuracies or participant movements. Data cleaning techniques 

are applied to transform the data and improve its quality [27]. After preliminary processing, 

the structured stream is fragmented into individual strides, corresponding to discrete walking 

cycles. By identifying major occurrences, such as heel strikes and toe-offs, each gait cycle is 

segmented accurately. To guarantee uniformity across diverse volunteers and sessions, the 

processed gait data is normalized by scaling each feature to mutual range. Variability is 

minimized and fair comparisons between individuals with varied gait characteristics are 

accomplished. Relevant features are extracted to capture indispensable aspects of gait 

dynamics [28]. Prominent attributes considered are: 

• Step Length and time: Distance measured between heel strikes of the same foot and 

its duration. 

• Stride Time Variability: Time period between strides. 

• Swing Phase: Part of the gait cycle where the foot is off the ground and moving 

forward. 

• Stride Velocity: Average speed of walking during a complete gait cycle. 

• Step Symmetry: Compares the movement of the left and right legs. 

• Variability Metrics: Asymmetry indices reflects the consistency and symmetry of 

movement patterns. 
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Figure 2. Proposed Process Pipeline 

Fig.2 illustrates the process of gait feature extraction using IMUs placed on the right 

and left ankles. The right ankle IMU provides input for calculating stride time variability and 

swing phase, while the left ankle IMU is used to determine step symmetry. These extracted 

gait features are then fed into LSTM model for further analysis. 

Preprocessed and feature-extracted gait data is represented in a suitable format for input 

into LSTMs. Feature selection methods such as forward selection, backward elimination and 

regularization techniques are employed to identify the most informative subset of features for 

modeling. Forward selection initiates with no features and adds the most significant one at each 

step, while backward elimination starts with all features and removes the least significant one 

iteratively. The effectiveness of this approach is validated by comparing model performance 

before and after feature selection. The reduced feature set led to improved accuracy, reduced 

computational complexity and minimal risk of overfitting, especially when using high-

dimensional gait and cognitive data. The proposed architecture is provided in Fig.3 

 

Figure 3. Proposed GA Architecture 
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LSTM Module  

 Before feeding the data into the LSTM, spatiotemporal gait features were derived 

directly from raw sensor signals captured by lower limb wearables. A minimally processed 

pipeline is utilized to preserve fine-grained temporal dynamics. Gait segmentation was 

performed to enable the extraction of cycle-level windows that include sequences of 

normalized kinematic data across multiple gait cycles. Additionally, missing values were 

imputed using temporal linear interpolation, and denoising was conducted via wavelet filtering 

to enhance signal quality without distorting subtle patterns. This allows the proposed model to 

learn latent spatiotemporal representations directly, rather than relying on pre-defined 

statistical gait metrics like stride length or cadence, thereby improving sensitivity to AD gait 

deviations. The LSTM introduces a memory cell and several gates such as the input, forget and 

output gate to regulate the flow of information through the cell, allowing it to remember or 

forget information over time [29]. Our model differentiates subtle gait variations associated 

with early-stage AD from normal aging by leveraging the temporal dynamics captured through 

high-resolution signals from our indigenous lower limb wearable dataset. Our architecture is 

modeled on sequential dependencies and learns micro-patterns such as increased stride-to-

stride variability, asymmetry and delayed swing phases. These characteristics are often 

observed in prodromal Alzheimer’s but not in typical aging. The preprocessing pipeline further 

ensures that subtle yet clinically meaningful patterns are preserved and enhanced for robust 

classification. The LSTM's memory cell enables it to store information for long periods, 

making it better suited for processing sequences with dependencies. LSTM cells have more 

parameters than traditional RNN cells due to additional gating mechanisms whose layers are 

as follows: 

• Input Layer: Takes sequences of gait data as input. 

• LSTM Layers: Stacked to capture temporal dependencies in the data. 

• Fully Connected Layer: Maps the output to the desired prediction space. 

• Output Layer: Output layer with a single unit for binary classification.  

The LSTM architecture used in the proposed model can be represented as: 

Input Representation: 

   - Let xt(i) denote the input features at time step t for ith sample. 

   - Input sequence x(i) is represented as  

x(i)=(x1(i),x2(i),...,xT(i))                 (1) 

 where Ti is sequence length. 

LSTM Cell: 

   - At each time step t, cell updates its hidden state ht(i) and cell state ct(i) based on 

input xt(i) and previous hidden state ht−1(i) and cell state ct−1(i).   LSTM equations are as 

follows: 

Forget Gate: ft=σ(Wf ⋅[ht−1, xt]+bf)      (2) 
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Input Gate: it=σ(Wi⋅[ht−1, xt]+bi)                 (3) 

Cell State Update: C~t=tanh(WC⋅[ht−1, xt]+bC)     (4) 

Ct=ft∗Ct−1+it∗C~t                   (5) 

Output Gate: ot =σ(Wo⋅[ht−1, xt]+bo)                 (6) 

Hidden State Update: ht =ot ∗tanh(Ct)     (7) 

  Where ft(i), it(i), and ot(i) are forget, input, and output gate activations, respectively 

.~t(i) is candidate cell state.σ denotes sigmoid activation function and * represents element-

wise multiplication. W is weight matrix and b is bias vector for each gait [30]. Final output ht(i) 

can be used for downstream tasks for classification. 

Loss Function: 

For AD progression monitoring based on the binary classification, binary cross-entropy 

loss function is used. Given a set of N training samples with binary labels and predicted 

probabilities ŷi the loss function is defined as: 

Binary Cross-Entropy Loss −
1

𝑁
∑  𝑁

𝑖=1 [𝑦𝑖log (𝑦
^

𝑖) + (1 − 𝑦𝑖)log (1 − 𝑦
^

𝑖)] (8) 

Where ŷi is the model's predicted probability for sample i, and yi is the true label (either 

0 or 1). 

Fine-Tuning Equations: 

Adam optimizer combines the advantages of two other extensions of stochastic gradient 

descent: AdaGrad and RMSProp[31]. Here are the update equations for each parameter θ at 

iteration t. Initialize t, model parameters θ as well as first and second moment estimates m0=0 

and v0=0.Computation of gradients of the loss function with respect to each model parameter:  

g t =∇θLoss      (9) 

Biased first moment estimate and second moment estimate are updated 

mt =β1⋅mt−1+(1−β1)⋅gt               (10) 

vt =β2⋅vt−1+(1−β2)⋅gt2               (11) 

 Bias-corrected first moment estimate and second moment estimate are computed as  

        𝑚
^ 

𝑡 =
𝑚𝑡

1−𝛽1
𝑡                           (12) 

           𝑣
^

𝑡 =
𝑣𝑡

1−𝛽2
𝑙                            (13) 

Updated parameters: 𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣
^

𝑡+𝜖

⋅ 𝑚
^

𝑡                    (14) 

Where:β1 and β2 are the exponential decay rates for the moment estimates (typically 

set to 0.9 and 0.999, respectively)[32].η is the learning rate.ϵ is a small constant to prevent 
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division by zero (typically on the order of 10−810−8) and t is the iteration number[33].In this 

mathematical representation, LSTM cell's equations describe how it processes input sequences, 

updates its internal states and generates output sequences, enabling the model to capture 

temporal dependencies and dynamics in sequential data for gait analysis and AD  progression 

monitoring within an IoMT framework. The trained LSTM model is integrated into the IoMT 

framework for continuously monitoring gait patterns in real-time using data from wearable 

sensors and the LSTM model analyzes it to predict the likelihood of AD progression. These 

predictions are updated dynamically as new data becomes available, enabling timely 

intervention and keeping track of disease progression. Alerts and notifications are generated 

based on predefinite thresholds and significant changes in gait patterns which prompt further 

assessment or intervention. 

4. Results Analysis and Discussion 

With the aim of initiating a collective effort between research academics and the Centre 

for Healthcare, an endemic dataset for AD progression monitoring channel GA was carefully 

compiled. In this work, we contacted individuals throughout India between January 2024 and 

January 2025, following approval from our institution. For this study, 60 individuals clinically 

diagnosed with early AD were included, along with 100 volunteers and 40 healthy individuals 

with cognitive abilities aged between 60 and 85, who were able to walk independently and 

inherently participated after being briefed about the purpose of the study. Gait data was 

collected using wearable inertial sensors placed on the lower limbs during a standardized 5-

meter walking task.  

Table 1. Demographic Details of Participants 

Variable Healthy Controls (n=30) MCI (n=40) AD (n=30) 

Age (years) 58.3 ± 5.1 62.7 ± 6.4 65.2 ± 7.8 

Female, n (%) 15 (50%) 22 (55%) 18 (60%) 

Education (years) 12.1 ± 3.0 10.8 ± 2.7 9.5 ± 3.2 

MMSE Score 28.5 ± 1.1 24.2 ± 2.3 18.6 ± 3.5 

Gait Speed (m/s) 1.15 ± 0.12 0.98 ± 0.15 0.82 ± 0.18 

Stride Variability (ms) 32.1 ± 8.3 45.6 ± 12.7 58.9 ± 15.2 

Diabetes, n (%) 3 (10%) 12 (30%) 11 (37%) 

Movement and acceleration data in real time were collected and transmitted to a 

centralized system for quality control and analysis. In addition to gait parameters, cognitive 

assessments, age and gender were recorded. Persons with psychiatric issues, specific motor 

impairments and other neurological conditions were not included. Written informed consent 

was obtained from all volunteers prior to their participation. A mini mental state examination 

was conducted (MMSE) which is a universal screening tool to assess cognitive function. If 

score is below 28, they fall under AD if not they belong to the healthy controls group. 

Demographic details are presented in Table 1 and our dataset is presented in Table 2. 
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Table 2. Indigenous Dataset for Proposed Model 

t Age Gender Group MMSE Gait Speed 

(m/s) 

Stride 

Length 

(cm) 

Cadence 

(steps/min) 

Step 

Time 

(s) 

P01 74 Male AD 22 0.76 85.2 88 0.68 

P02 71 Female Control 29 1.21 105.7 108 0.56 

P03 68 Male AD 24 0.84 91.4 95 0.63 

P04 70 Female AD 23 0.78 87.6 89 0.67 

P05 66 Male Control 30 1.15 102.3 110 0.55 

P06 73 Male AD 20 0.69 82.5 85 0.70 

P07 75 Female AD 21 0.72 84.3 87 0.69 

P08 69 Male Control 28 1.10 100.8 107 0.56 

P09 72 Female AD 19 0.65 80.1 82 0.73 

P10 65 Female Control 30 1.17 104.2 112 0.54 

P11 76 Male AD 18 0.61 78.3 80 0.75 

P12 67 Female AD 25 0.82 90.0 94 0.64 

P13 71 Male Control 29 1.12 101.4 108 0.55 

P14 69 Female AD 22 0.79 86.9 90 0.66 

P15 68 Male Control 30 1.18 103.6 110 0.54 

P16 73 Female AD 20 0.70 83.1 86 0.71 

P17 66 Male AD 21 0.75 85.6 88 0.68 

P18 70 Female Control 28 1.13 100.2 106 0.57 

P19 69 Male Control 30 1.14 102.5 109 0.56 

P20 75 Female AD 19 0.63 79.4 81 0.74 

P21 68 Male AD 23 0.77 86.7 89 0.66 

P22 71 Female Control 28 1.10 100.0 105 0.57 

P23 72 Male AD 20 0.69 82.2 84 0.71 

P24 65 Female Control 29 1.16 103.0 110 0.54 

P25 70 Male AD 22 0.74 85.1 87 0.68 
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P26 74 Female Control 30 1.20 105.3 111 0.54 

P27 67 Male AD 21 0.73 84.7 88 0.69 

P28 68 Female AD 24 0.81 89.5 92 0.65 

P29 66 Male Control 30 1.19 104.7 110 0.54 

P30 69 Female Control 28 1.09 99.5 106 0.57 

 

We used the Xsens DOT, a small and wireless motion sensor made by Movella, to 

collect gait data. This device includes three types of sensors: an accelerometer, a gyroscope, 

and a magnetometer, each measuring movement in three directions. The sensors were securely 

placed on the outer side of both ankles using elastic straps to track leg movements accurately. 

Data were collected at 120 times per second (120 Hz) and sent through Bluetooth 5.0 to a 

mobile phone for live viewing and saving. This wearable device is known for its accurate 

tracking with low error, making it useful for measuring walking features like how consistent 

the steps are, how long one foot is in the air, and how evenly steps are taken on both sides. 

Pre-Processing Pipeline  

Signal collection in Fig.4 shows successful preservation of gait events at 0.8Hz 

dominant frequency while improving SNR from 12dB to 28dB is crucial for detecting the 

characteristic 22.7% slower stride times in AD (1.35±0.15s vs Healthy 1.10±0.08s). The 

original signal had a low signal-to-noise ratio (SNR), which made it noisy and harder to 

interpret. After applying filtering (SNR = 28 dB), the gait pattern became much clearer. The 

patient's walking speed was measured at 0.82 m/s, with a stride time variability of 58.9 

milliseconds, indicating there may be some instability in their gait. Detailed results from the 

raw signal analysis are shown in Table 3. 

Table 3. Pre-Processing Pipeline Results 

Metric Before Cleaning After Cleaning Method 

Signal Noise (RMS) 0.12 ± 0.05 g 0.02 ± 0.01 g Wavelet denoising (sym5) 

Missing Data 8.7% 0.4% Linear interpolation 

Sampling Irregularity 12% gaps 0% Cubic spline resampling 
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Figure 4. SNR of Raw Vs Filtered Signals 

Fig.5 illustrates the signal filtering process, where the vertical acceleration signal 

recorded from a patient with MCI along with detected heel strikes (n = 19) marks the start of 

each gait cycle. The estimated stride time is 0.27 ± 0.07 seconds, reflecting moderate 

variability.  

 

Figure 5. Vertical Acceleration and Heel Strike Detection in an MCI Patient 

 Heel-strike detection in MCI patients achieved 98% accuracy, capturing the 

intermediate gait pattern between healthy and AD groups.  
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Figure 6. Sensor Shift Artifact Correction 

Fig.6 demonstrates the correction of a sensor shift artifact, which occurs when a sudden 

displacement of the IMU sensor causes a baseline shift in the recorded signal. The red line 

represents the original signal, which includes an artifact appearing after 2.5 seconds, while the 

blue line shows the corrected version. This pre-processing step helps maintain the smoothness 

and accuracy of the data, which is crucial for dependable gait analysis and 

extracting key features. 

 

Figure 7. Test–Retest Reliability Using Bland–Altman Plot 

The plot in Fig.7 shows the test-retest differences in gait speed measurements for 

healthy individuals. Bias is very low at 0.002 m/s, indicating high consistency. Limits of 

agreement (LoA) are ±0.054 m/s, suggesting good measurement reliability for gait speed 

assessments in healthy controls.  
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Table 4. Feature Extraction Reliability 

Parameter ICC (95% CI) CV (%) 

Stride Time Variability 0.94 (0.91-0.96) 3.2 

Swing Phase Duration 0.89 (0.85-0.93) 4.7 

Gait Speed 0.97 (0.95-0.98) 1.8 

To test the reliability of our measurements, we used the Intraclass Correlation 

Coefficient (ICC) and the Coefficient of Variation (CV) [see Table 4]. Among all features, gait 

speed showed the highest reliability, with an ICC of 0.97 and a CV of just 1.8%, meaning it 

stayed very consistent across sessions. Stride time variability also showed excellent reliability, 

while swing phase duration had good reliability. These findings suggest that the gait features 

we measured are stable and repeatable, making them suitable for clinical and long-term studies. 

To account for differences between individuals, we applied z-score normalization for 

each participant. This helped adjust for natural variations in height, strength, and walking 

styles, while still keeping each person's internal gait patterns intact and important factor for 

detecting health conditions. We also ensured our training data was evenly split by group to 

avoid class imbalance. Finally, we used cross-validation with subject-wise splits, so the model 

could learn to recognize patterns across different people, instead of just memorizing 

one person's gait 

IoMT Integration Framework 

Low-power accelerometers (BHI260AP, 50 Hz) with on-device noise reduction 

(median filtering) minimize data transmission load. Raspberry Pi 4 hubs are used for temporary 

data caching. Real-time anomaly detection is achieved through sensor detachment alerts via 

SMS. Encryption (AES-256) is applied before cloud transmission. Time synchronization with 

cognitive/neuroimaging data follows IEEE 11073 SDC standards for IoMT interoperability. 

Automated QC via Python scripts is initiated if gait speed exceeds 2 m/s. The system is 

benchmarked against the GAITRite walkway with 100 participants. Gait parameters are 

correlated with MMSE scores and test-retest reliability in a 15-day sub-study. Patient 

anonymization is ensured through MAC address scrambling, geotag removal, and synthetic ID 

generation. The system is compliant with ICMR Ethical Guidelines (2017) and the Digital 

Personal Data Protection Act (2023). Sensors are tested on traditional attire for motion artifact 

minimization with real-time participant feedback. TernPro is a lightweight, 6-axis IMU sensor 

(accelerometer + gyroscope) attached to both ankles using adjustable straps, with a sampling 

rate of 50–100 Hz. It captures micro-gait changes and parameters such as stride time, swing 

phase, and symmetry. Placement is near the lateral ankle, with walking tests for 5 m walks. 

This wearable streams data wirelessly to the LSTM model for real-time analysis.  

Table 5. Simulation Parameters and Values of Proposed IoMT Model 

Parameter Values 

Sensor Type Accelerometer 

Sampling Rate 50-100 Hz 
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Duration of Data Collection 5-10 minutes 

Number of Participants Dozens to hundreds 

No of LSTM layers 2 

LSTM units 100 

Training Epochs 100 

Learning Rate 0.001 

Batch Size 64 

Drop Out rate 0.3 

Optimizer Adam 

Hardware requirements includes wearable sensors for gait data acquisition, such as 

accelerometers and gyroscopes, along with standard computing equipment for data processing 

and analysis. PyTorch is used for LSTM model development and data preprocessing 

frameworks were utilized. The LSTM model was trained and evaluated using an indigenous 

dataset, with meticulous attention to ethical considerations and data privacy. The proposed 

model parameters are provided in Table 5 while those of existing methods are presented in 

Table 6.  

Table 6. Hyper Parameters of Baseline and Proposed Models 

Model Key Hyperparameters 

Logistic 

Regression 

Solver: liblinear, Penalty: L2, Max Iterations: 1000 

CNN Conv Layers: 2, Filters: [32, 64], Kernel Size: 3x1, Pooling: 

MaxPooling1D, Activation: ReLU, Optimizer: Adam, LR: 0.001, Batch 

Size: 32, Epochs: 100 

CNN + LSTM CNN Layers: 2, Filters: [32, 64], Kernel Size: 3x1, LSTM Units: 64, 

Dropout: 0.3, Optimizer: Adam, LR: 0.001, Batch Size: 32, Epochs: 100 

Proposed 

GA+LSTM 

LSTM Layers: 2, Hidden Units: 64, Dropout: 0.3, Activation: tanh, 

Optimizer: Adam, Learning Rate: 0.001, Batch Size: 32, Epochs: 100, 

Loss Function: Binary Crossentropy 

 

Confusion matrix is provided in Fig 8 which evaluates the performance of our model 

in predicting AD progression stages based on gait analysis data. We have four disease 

progression stages: Normal (N), Mild Cognitive Impairment (MCI), Moderate Alzheimer's 

Disease (AD) and Severe Alzheimer's Disease (SAD).  
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Figure 8. Confusion Matrix for the Proposed Model 

Data collected from a cohort of individuals at various stages of AD progression includes 

their walking pattern, step length, step width, gait speed, and cadence. GA parameters can be 

used to categorize them into different disease stages.  

1. Gait Speed: Slower values are commonly associated with cognitive decline and 

can indicate the presence of MCI or AD. 

2. Stride Length: Shorter stride lengths are observed in patients with SAD and AD 

in comparison to those with normal cognition. 

3. Stride Width: Increased variability or irregularity can be observed in individuals 

with cognitive impairment.  

4. Cadence: Irregular or inconsistent step timing, may be indicative of cognitive 

impairment. Patients with SAD often exhibit alterations in cadence compared to 

those with MCI or normal cognition. 

Participants wear ankle-mounted IMUs during a standardized 5M walk. Raw data is 

processed using a 5-layer LSTM (Python/PyTorch) to extract gait biomarkers such as stride 

variability, and swing asymmetry etc., Results visualize on a clinician dashboard (Plotly Dash) 

with alert thresholds set at ±2SD from age-matched norms.  
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Figure 9. ADGaitMonitor Clinical Dashboard 

Fig.9. provides the interface shown for patient Neha Patel (ID: 045) highlighting a 

critical alert indicating a 25% reduction in gait speed over three months (from 1.10 m/s to 0.82 

m/s) alongside a decline in MMSE score from 24 to 22, suggesting and increased risk of 

progression from MCI to AD. The dashboard displays key gait metrics, including stride time 

(1.15 s) marked as borderline abnormal and step symmetry (85%) within the normal range.  

 

 

Figure 10. Patient Interface Showing Critical Alert 
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Fig.10 indicates critical gait decline detected over a 3-month period. Her gait speed 

dropped by 25% and stride variability increased to 48 ms, which is 35% above normal, both 

indicators of motor-cognitive decline. Step symmetry fell to 78%, below the normal threshold 

(85–95%), further supporting motor irregularities. The MMSE score declined to 22/30, 

indicating MCI. The interface in Fig 11 presents the gait sessions and their duration statistics 

which allows clinicians to quickly assess risk progression, view longitudinal trends and initiate 

timely intervention planning for early AD detection. 

 

Figure 11. Gait Sessions Window 

 

Figure 12. Healthy Controls Dashboard 

Fig.12 shows stable gait and cognitive metrics of a patient with a gait speed is 1.15 m/s, 

well within the normal range and stride variability is 32 ms, indicating consistent walking 

rhythm. A high step symmetry score of 94% (normal: 85–95%) reflects balanced bilateral leg 

movement. Her MMSE score of 29/30 confirms no cognitive impairment. The 12-month trend 

chart demonstrates stable gait speed over time, closely aligned with age-matched normative 

data, reinforcing her low risk for neurodegenerative progression. This profile serves as a 

reference benchmark for comparison with at-risk patients. 
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Figure 13. Gait Metrics 

Fig.13 provides clinicians with real-time visualization of gait-cognitive metrics. The 

interface compares individual patients (e.g., 68 y/o MCI patient with 0.82 m/s gait speed) 

against healthy controls (e.g., 65 y/o female, 1.15 m/s), with automated alerts for deviations 

>2SD from age-matched norms. Data streams from wearable IMUs (100Hz sampling) are 

processed via an LSTM pipeline, generating progression trends and risk scores. To enhance 

the interpretability of our model, we incorporated SHAP analysis to quantify the contribution 

of each input feature such as gait speed, stride length and MMSE to the model's decision-

making process [Fig.14]. SHAP values were computed post-hoc on the trained model using 

our dataset. The results revealed that decreased gait speed, increased stride variability and 

lower cognitive scores were the most influential predictors of early-stage Alzheimer’s 

classification [Fig.15].  

 

Figure 14. Feature Importance SHAP Plot 
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Figure 15. SHAP Summary Plot 

Temporal progression of AD was quantified by analyzing longitudinal changes in 

spatiotemporal gait features across multiple sessions per participant and by comparing patterns 

across cognitive stages. Key gait metrics such as gait speed, stride variability and step time 

asymmetry were used to track cognitive decline. In our LSTM framework, this information is 

captured as subtle deviations accumulated across time steps. These findings suggest that gait 

pattern changes can reflect the temporal trajectory of Alzheimer’s, offering a non-invasive 

biomarker for early monitoring and disease staging. The effectiveness and performance of our 

proposed framework were evaluated using metrics such as accuracy, precision, recall F1-score 

and AUC-ROC (Table 7).  

Table 7. Performance Comparison 

Model Accuracy Precision Recall F1-

score 

AUC-

ROC 

Gait+LSTM based proposed 

model 

0.98 0.98 0.99 0.98 0.99 

CNN [Khan et al, 2021] 0.90 0.92 0.95 0.94 0.94 

CNN+LSTM [Singh et al, 2024] 0.95 0.95 0.96 0.95 0.96 

LR [Tolea et al, 2025] 0.92 0.94 0.96 0.93 0.94 

SVM 0.91 0.93 0.94 0.93 0.92 

RF 0.93 0.95 0.95 0.94 0.95 
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Figure 16. Performance Comparison Chart 

Based on the graphical illustration of performance metrics of our proposed model (Fig 

16), its performance was compared against both existing DL models from recent literature and 

widely used baseline classifiers. Specifically, the proposed model achieved superior results 

across all evaluation metrics, with an accuracy of 98%, precision of 98%, recall of 99% and an 

AUC-ROC of 0.99. The model’s accuracy improved from 0.95 to 0.98 after applying stepwise 

feature selection, and the AUC-ROC score increased from 0.93 to 0.99. These results highlight 

the robustness and predictive capability of the proposed Gait+LSTM architecture in accurately 

identifying and distinguishing between various cognitive conditions. 

5. Conclusion 

Our proposed model utilizes the GA and LSTM models for monitoring AD and has 

demonstrated high performance with an accuracy and precision of 98 %. By showcasing a 

remarkable ability in accurately classifying gait patterns associated with different stages of AD 

progression, our model can be effectively adopted in real time therapeutic applications. 

Through achieving recall score of 99 %, the model's effectiveness in capturing positive 

instances within the dataset has been demonstrated. Gait abnormalities have been detected 

effectively, as evidenced by an F1-score and AUC-ROC score of 99%. Discrimination between 

FPR and TPR instances, further validates its utility in actual clinical settings. These empirical 

validations suggest hopeful prospects for the model's application in early diagnosis and 

intervention strategies for AD. Future enhancement involves deploying our GA+LSTM model 

in tangible biomedical environments where multi-modal data is utilized to ensure its everyday 

usefulness.  
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