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Abstract 

The real-time data is growing extensively due to the immense use of numerous web 

applications, IoT devices, social media, and network-based applications. This online streaming 

data, characterized by its volume and velocity, is expressed as big data. While it is accessible 

for business analytics and research purposes, it can often sacrifice individual privacy. There 

are different traditional approaches, such as k-anonymity, l-diversity, and t-closeness, that exist 

to safeguard individual privacy by making each data record indistinguishable from at least k 

other records. The dynamic nature of real-time stream data makes these methods difficult to 

apply. However, various research shows that modifications to these methods can effectively 

protect individual privacy in streaming data. This paper presents a comprehensive review of k-

anonymity-based techniques that adapt sliding window models, clustering approaches, and 

other variations to efficiently protect data privacy while maintaining k-anonymity without 

compromising data utility. The review discusses the challenges faced in protecting stream data 

privacy and concludes with research directions to enhance these methods for adaptive and 

scalable privacy-preserving mechanisms for streaming data.  

Keywords: k-Anonymity, Streaming Data Privacy, Real-Time Data Anonymization, Cluster-

based Anonymization, Data Utility. 

1. Introduction 

The real-time data volume is increasing day by day with the extensive use of web 

applications, Internet of Things (IoT) devices, social media platforms, and networked systems. 

This surge in continuously produced data, often known as streaming data, possesses the 

fundamental properties of big data, such as volume, velocity, and variety. The availability of 

vast amounts of streaming data presents numerous opportunities in research and analytics for 

gaining insights and making informed decisions with the help of artificial intelligence, machine 

learning, and deep learning tools. However, it also poses major concerns about individual 

privacy, as sensitive information may be vulnerable due to improper handling and inadequate 

privacy mechanisms. To address privacy concerns, the differential privacy framework [1], 

alone or with perturbation methods [3], condensation techniques [2], randomization 

techniques, and anonymization-based privacy have been explored in the literature. Differential 

privacy can be achieved by adding noise or by modifying the original data values with 

transformed values before processing. This simple and fast method masks sensitive data by 
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adding mathematically calibrated noise to query results and preserves data distribution for 

mining. However, it sacrifices accuracy if the noise level is high. It suffers from the challenge 

of parameter tuning, affecting privacy and accuracy [8]. Non-perturbation-based techniques 

such as k-anonymity do not distort the actual data but focus on anonymizing it to prevent 

identity disclosure. This approach applies suppression or generalization to quasi-identifiers to 

preserve privacy, with high overhead for real-time data streams. Differential privacy has 

proven better in terms of privacy protection against background knowledge and homogeneity 

attacks, but k-anonymity provides better data utility and accuracy. k-anonymity [4][5][6][7] 

can be strengthened against background knowledge and homogeneity attacks by l-diversity [9] 

and t-closeness [10], respectively. k-anonymity was proven stronger than Datafly [37] by 

providing less distorted data and μ-argus [38] by better protection. k-anonymity-based methods 

have been effective for static datasets, but implementing these methods for streaming data is 

challenging because of its constantly changing and dynamic nature. Traditional anonymization 

techniques are designed for static datasets and operate offline. However, data streams are 

dynamic datasets for which anonymization algorithms need to operate online [11]. IoT 

applications have expanded in various domains such as smart homes and office systems, 

working with devices like smart cars, fire alarms, and security cameras; wearable devices for 

health monitoring; and smart city applications. Consider an IoT-based patient monitoring 

healthcare system that uses IoT devices, such as smartwatches, ECG implants, or home blood 

pressure machines, to read health-related records to the cloud system frequently and share them 

with doctors. These records from the cloud are anonymized and shared for analytics to enhance 

the prediction model and take necessary action to reduce health-related risk. It may be possible 

that the same patient’s record is repeated many times in a day, or the number of incoming 

patient records varies in frequency, as the number of incoming records is higher during the day 

than at night. If the k-anonymity algorithm uses a fixed and lower value of k, then incoming 

records in the morning, which are more frequent, may be processed in less time, potentially 

compromising privacy. If the k value is set too high, it allows enough time to anonymize the 

records but delays their release. If a lower value of k is considered at night, it is sufficient to 

anonymize the records because fewer records are generated. In this situation, a larger value of 

k leads to more delay. In this context, the value of k should be adjustable to make k-anonymity 

adaptive so that patient information can be protected and real-time information is also available 

to doctors. To effectively handle and protect streaming data, it is necessary to use k-anonymity 

techniques that can manage continuous data streams while providing privacy, maintaining 

utility and handling the data with proper delay. Recent research has explored modifications and 

extensions of traditional k-anonymity techniques to address the challenges of streaming data. 

Some approaches include clustering-based techniques [12] to create equivalence classes of size 

k from records by considering numeric attributes [20][28] and categorical attributes. Sliding 

window based models try to handle and process the incoming stream data before its expiration 

[30]. Approaches such FADS [21], FAST [22], K-VARP [24] and UBDSA [29] are using time 

based sliding window, while FAANST [20], IDEA [23], CUDSA [31] uses count based sliding 

window models. Recent research on adaptive k-anonymity such as UBDSA [29], X-BAND 

[30], CUDSA [31], SUHDSA [32], and EPPAA [33] reduces information loss and average 

delay by using dynamic clustering and partition reuse. However, Most of the methods rely on 

generalization, while the importance of suppression is widely ignored. When a record cannot 

be grouped to ensure k-anonymity, it is suppressed which directly increases information loss 

and reduces data utility. It also lowers average delay and run time due to the removal of 

unmatched records from memory and affects the analytical results. There is a need to balance 

suppression and generalization or to adapt suppression thresholds. Some methods only partially 

adapt the anonymity parameter k and often ignore concept drift, leading to over generalization. 
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Also the use of static Generalization hierarchies prevents context-aware generalization that 

could minimize utility loss. The purpose of this review is to identify the gap by studying, 

analyzing, and comparing existing privacy protection techniques for stream data and to address 

the challenges of privacy protection of data in real-time environments by examining the relation 

between privacy and utility and exploring future directions for delay-aware, scalable, and 

adaptive k-anonymization. 

2. Objective and Review Structure  

The objective of this review paper is to provide a detailed study of existing k-

anonymity-based privacy-preserving techniques for real-time streaming data. It focuses on and 

covers streaming data privacy preserving techniques using clustering approaches, sliding 

window models, and delay-aware k-anonymity frameworks. The aim is to evaluate these 

methods based on privacy parameters such as privacy protection, Information loss, data utility, 

scalability, delay and runtime including limitations. This review employs a structured narrative 

methodology to investigate the progression of k-anonymity-based privacy techniques for 

streaming data. The research was identified by searching the keywords “k-anoymity”, Stream 

data anonymization” “cluster based k-anonymity” in Google scholar, IEEE Explorer, Science 

Direct and SpringerLink. The review covers earlier models such as CASTLE [18] and FAST 

[22], as well as   recent approaches such as SUHDSA [32], K-VARP [24], and EAPPA [33]. 

These models are categorized based on anonymization methods, clustering method used to 

create groups of size k for anonymization, evaluation metrics including information loss and 

delay, and application domains such as IoT and big data. The focus of the review is on 

techniques that enhance real-time privacy through adaptive or clustering-based k-anonymity 

models. 

Section 3 presents the key requirements for achieving k-anonymity, focusing on the 

important roles of generalization and suppression in protecting data privacy. Section 4 presents 

an in-depth literature review, comparing and discussing various algorithms and techniques 

developed for stream data anonymization. This includes a comparative analysis of the methods 

in terms of their performance, effectiveness, and limitations, followed by a discussion of 

potential future research directions. Finally, Section 5 concludes the paper by summarizing the 

key findings of the review and outlining future prospects and research opportunities aimed at 

enhancing privacy preservation in streaming data environments. 

3. Foundations of k-Anonymity and Clustering Algorithm for Data Privacy 

Protecting individual privacy in shared datasets begins with removing explicit 

identifiers; however, this alone is insufficient. k-Anonymity addresses the risk of record-

linkage attacks by ensuring that each record is indistinguishable from at least k–1 others based 

on quasi-identifiers, using techniques like generalization and suppression to form equivalence 

classes and reduce re-identification risk. 

3.1   k-Anonymity for Stream Data Privacy Protection 

The first step in protecting individuals' identities involves de-identifying datasets by 

removing directly identifying attributes, such as social security numbers. However, this 

measure alone is insufficient to ensure privacy. A record-linkage attack can re-identify 
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individuals by combining quasi-identifiers with publicly available data. k-Anonymity 

[4][5][6][7], is a well-established method to counteract record-linkage attacks, ensuring that 

each record in a published dataset shares the same quasi-identifiers with at least k−1 other 

records, thereby reducing the risk of re-identification. Some key terms helpful to understand 

the k-anonymity model are: 

3.1.1   Explicit Identifiers  

In publicly available dataset, Some attributes can directly reveal the identity of an 

individual. These types of attributes such as Full name, phone number, or social security 

number are considered as explicit identifiers. They are required to be removed before 

publishing data [4][5][6][7]. 

3.1.2   Quasi-Identifier  

In a dataset, there are certain attributes that, individually, do not disclose a person's 

identity, but when combined with other attributes, can reveal it. For dataset D, Quasi-identifier 

set Q is subset of D Representing Q ={q1,q2,…,qn} collection of n attributes that need to be 

anonymized before being shared; this collection is known as the set of quasi-identifiers (QIDs). 

Examples of such attributes include age, gender, or ZIP code [4][5][6][7]. 

3.1.3   Sensitive Attributes 

In publically available dataset, Some attribute(s) contain private or confidential 

information, such as income, health status, or political views, considered sensitive attributes.   

Revealing of attributes of a specific person could cause harm or violate their privacy 

[4][5][6][7]. 

3.1.4   Equivalence Class 

It represents a group of records from dataset D, having identical values for all quasi-

identifiers within that group. This makes it challenging to distinguish between them, thereby 

safeguarding individual identities. 

Latanya Sweeney's work on k-anonymity [4] introduced a privacy-preserving model, 

focusing on reducing the individual re-identification risk from publicly shared datasets. The 

fundamental principle of k-anonymity is to ensure that each record in a dataset is 

indistinguishable from at least k−1 other records with respect to specific identifying attributes, 

referred to as Quasi-identifiers [4]. This model protects against linkage attacks by ensuring that 

individuals cannot be uniquely identified by linking attacks if an adversary attempts to re-

identify individuals by correlating data with publicly available information [9]. Authors [4] 

demonstrated that anonymized datasets, such as medical records, remain vulnerable to re-

identification through such linkages. The k-anonymity [4][5][6][7] framework addresses this 

weakness and applies generalization and suppression techniques to records within equivalence 

classes of at least k individuals to reduce the likelihood of re-identification while preserving 

data utility for analysis. 
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3.2   Role of Generalization and Suppression in Achieving k-Anonymity 

Generalization is a data transformation technique used in the k-anonymity framework 

for privacy-preserving data publishing. It reduces the granularity of data by replacing attribute 

values with more abstract values so that individual records cannot be easily re-identified. 

3.2.1   Generalization 

It transforms specific attribute values into more general values. It Makes records 

indistinguishable by reducing precision while maintaining utility.  

 
 

Figure 1. Generalization Hierarchy (a) Race (b) Gender and (c) Marital Status 

Attribute 

Generalization hierarchies (GHs), sometimes referred to as Domain Generalization 

Hierarchies (DGH) [4], are fundamental elements in privacy-preserving data publishing 

methodologies, including k-anonymity [4][5][6][7], l-diversity [9], and t-closeness [10]. They 

offer a structured method for converting specific values of quasi-identifier (QI) attributes into 

more abstract categories. This abstraction reduces data granularity to safeguard individuals' 

privacy while maintaining the dataset's overall analytical utility. A generalization hierarchy 

describes multiple abstraction levels for categorical attributes. Consider Figure 1, which 

represents the hierarchy for three attributes: Race, Gender, and Marital Status. In Figure 1(a), 

the Race values Asian, Black, and White can be generalized to the more abstract value Any. 

Similarly, the Gender values Male and Female are generalized to Person in Figure 1(b). The 

Marital Status attribute has a two-level Generalization Hierarchy in which the values Single, 

Widow, and Divorced can be grouped under Unmarried at level 1 and further generalized to 

Any at level 2, as per Figure 1(c). These transformations reduce the risk of re-identifying 

sensitive data. A generalization hierarchy helps simplify the generalization process and also 

plays an essential role in distance calculation during the generation of equivalence classes for 

clustering-based anonymization [13]. Clustering algorithms supporting mixed-type attributes 

use generalization hierarchies to create clusters of similar-type values and utilize these 

hierarchies to measure the semantic similarity between categorical values. In generalization, 

values having a common ancestor in the GH are considered more similar than those diverging 

earlier, allowing for clustering with minimal information loss. For streaming data privacy 

preservation, to meet privacy constraints, GHs provide the opportunity for dynamic 
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generalization by identifying the lowest common ancestor across attribute values within a 

cluster. The generalization approach of transforming concrete values to abstract values allows 

anonymization techniques to maintain a balance between data utility and individual privacy. It 

permits attributes to be generalized incrementally to minimize information loss while ensuring 

that individual records cannot be uniquely identified within the dataset. 

3.2.2   Suppression 

Suppression removes or hides data values entirely, either partially or fully. When 

generalization alone isn't enough to create an anonymous group by generalizing attribute 

values, suppression is used to eliminate outliers or unique values. Suppression can be applied 

at the record level by removing the whole record or at the cell level by removing a particular 

value or replacing it with ‘*’. It is particularly useful for high-risk records that could lead to 

identification. Suppression can apply to individual cells or entire records. It eliminates uniquely 

identifying values or removes data to enforce anonymity [4][5][6][7]. 

3.3   Stream Data and Obstacles Encountered in Safeguarding its Privacy 

A data stream is a continuous and ordered sequence of data elements that are received 

over time and are typically required to be processed in real-time or near real-time, under 

constraints such as limited memory, computational resources, and latency [22]. For stream data 

k-anonymization, latency can be measured as the delay, the time duration between the arrivals 

of records in a stream and the publication of the stream after anonymization. Latency can be 

referred to as average delay [22][24][29] or data aging [21]. For privacy preservation, a data 

stream refers to a continuous flow of structured or semi-structured records that may contain 

sensitive information. The dynamic and evolving nature of data such as velocity and volume 

makes traditional batch-oriented privacy preservation mechanisms difficult to apply. This real 

time data must be dynamically anonymize prior to its publication or analysis to ensure privacy. 

Stream data privacy preservation techniques face several challenges [14]: 

• Data must be processed in real time, often in a single pass or within a predefined 

time limit or delay, because they are continuous and have infinite data size. 

• There is limited memory and processing time, requiring efficient anonymization 

techniques. 

• Handling concept drift as the patterns or behaviors of data keep changing over time. 

To address these challenges, several privacy-preserving data stream mining (PPDSM) 

techniques used for static datasets, such as Perturbation Techniques [2][3], Differential Privacy 

[1], and k-anonymity [4][5][6][7]-based techniques, can be used with real-time adaptation for 

streaming data through approaches such as sliding windows, cluster-based anonymization, 

micro-aggregation, and online generalization. To imitate real-world continuous input 

conditions, the simulation of streaming datasets plays a crucial role in the evaluation of the 

performance of data stream processing algorithms. Real streaming data are continuous and 

asynchronous, as they arrive from live sources such as network sockets, APIs, IoT devices, or 

transaction systems. Sometimes researchers need to rely on synthetic or practically simulated 

streams to represent the statistical properties, dynamic nature, and variability of actual data 

sources, as real-time data from working environments is not easily available due to domain-

specific restrictions, privacy constraints, and resource availability. This type of simulation 

generates incremental data for unpredictable real-world scenarios with time bounds, concept 
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drift, and noise patterns from batch datasets. For privacy protection algorithms, this simulation 

involves reading a domain-specific dataset record by record and feeding it sequentially through 

count-based sliding windows or time-based sliding windows to retain data for a fixed duration. 

A time constraint is applied to ensure timely publication after anonymization. SWAF [15] and 

SKY [27] generate synthetic streams from static dataset records at controlled arrival rates. 

CUDSA [31], UBDSA [29], K-VARP [24], FADS [21], and FAST [22] simulate the streaming 

data by feeding the records through the sliding window to keep recent records and limit 

memory usage. FAANST [20], CASTLE [18], and B-CASTLE [19] generate domain-specific 

streams by simulating realistically distributed records while including delay constraints to 

reflect real-time publishing requirements. For stream data k-anonymity, concept drift refers to 

the gradual or sudden change in the statistical distribution of quasi-identifiers within the 

incoming stream. Such changes in distribution can degrade the performance of anonymization, 

leading to over-generalization or delayed data release. UBDSA [29] and K-VARP [24] identify 

concept drift when newly arrived records in a sliding window are significantly different from 

earlier records, requiring dynamic adaptation of k-anonymization parameters, cluster 

formation, and generalization hierarchies to maintain both privacy guarantees and data utility 

in evolving streams. CASTLE [18] merges and splits the clusters, KIDS [16] uses density-

aware clustering, UBDSA [29] re-clusters by refreshing the cluster within the sliding window 

when the incoming records do not match with previously formed clusters, and SUHDSA [32] 

updates clusters continuously to adapt to concept drift. K-VARP [24] adapts to changes in 

stream data by splitting and merging clusters based on changes in the frequency of QI values 

to minimize information loss. Sudden changes in stream data can also be adapted by changing 

the value of k; for infrequent arrival of records, a lower value of k generates smaller groups to 

decrease the value of delay, while a higher value of k helps to form larger groups to provide 

strong privacy when records arrive frequently. k-anonymity can adapt to changes in stream 

data by modifying the generalization hierarchies or by using different levels of generalization. 

CASTLE [18] applies incremental re-generalization, K-VARP [24] applies selective 

generalization on attributes, and UBDSA [29] generalizes the QI attributes level-wise 

depending on the current distribution of QI values within the active window, while SUHDSA 

[32] performs secure and low-loss real-time adjustments. 

3.4   Role of Clustering Algorithm in Privacy Protection 

The fundamental concept of k-anonymity [4][5][6][7] is to ensure that each entry in a 

dataset cannot be distinguished from at least k−1 other entries based on certain identifying 

attributes, resulting in the creation of groups based on the similarity of quasi-identifiers. 

Clustering algorithms play a vital role in achieving this goal. These algorithms organize similar 

data points into clusters, with each cluster needing to contain at least k entries to make any 

single entry indistinguishable from at least k-1 others. This approach prevents re-identification 

by anonymizing the data within each cluster. To attain k-anonymity [4][5][6][7], it may 

required to apply generalization [4][5][6][7] or direct suppression [4][5][6][7], resulting in 

considerable information loss (IL). Clustering group’s similar entries, allowing for more 

precise data representation within clusters and reducing information loss [13]. Some clustering 

algorithms can dynamically adjust the level of generalization based on cluster characteristics, 

balancing privacy and data utility. Byun et al. introduced the application of clustering 

techniques, specifically a greedy clustering heuristic, to achieve k-anonymity via k-means 

clustering [13]. Let us illustrate how clustering can facilitate k-anonymity through a simplified 

example. 
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Table 1. Personal Health Information of Individuals 

ID Race Birth Date Gender Zip Marital Status Disease 

 Asian 64/04/11 F 94142 Divorced Hypertension 

 Asian 64/09/23 F 94141 Divorced Obesity 

 Asian 63/03/13 M 94139 Married Obesity 

 Asian 63/03/18 M 94139 Married Short breath 

 Black 64/09/27 F 94138 Single Short breath 

 White 64/09/27 F 94139 Single Chest pain 

 Black 64/09/27 F 94141 Widow Short breath 

 

Consider a Table 1 that contains personal health information of individuals. To protect 

this information from direct identification attributes like Personal Identification number or 

Person name are removed while other information such as Birth date, Gender, Zip, Marital 

Status and Disease are kept as it is. To protect sensitive information initially, k-means 

clustering with number of clusters=3 is applied to create a group of records with size =2 to 

achieve 2-anonymity. Based on the similarity of Quasi-identifier attributes such as Race, birth 

date, Gender, zip code, and Marital Status, records were initially grouped into three clusters 

using k-means clustering as shown in Table 2. Cluster 0 groups’ male individuals, born in the 

same year, sharing a common zip value “94139" and marital status. Cluster 1 contains records 

of females with identical birthdates, located in regions with zip codes starting with “941”, and 

shows some variation in marital status. Cluster 2 consists of females born in 1964, residing in 

regions with similar zip codes, and mostly having similar marital statuses.  

Table 2. Record Assigned to Clusters Using k-Means Clustering (no. of Clutters=3) 

Race Birth Date Sex Zip Marital Status Disease Cluster 

Asian 63/03/13 M 94139 Married Obesity 0 

Asian 63/03/18 M 94139 Married Short breath 0 

White 64/09/27 F 94139 Single Chest pain 1 

Black 64/09/27 F 94141 Widow Short breath 1 

Asian 64/04/12 F 94142 Divorced Hypertension 2 

Asian 64/09/13 F 94141 Divorced Obesity 2 

Black 64/09/27 F 94138 Single Short breath 2 
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Table 3. Personal Health Information of Individuals Satisfying 2-Anonymity 

Race Birth Date Sex Zip Marital Status Disease Cluster 

Asian 1963 M 94139 Married Obesity 0 

Asian 1963 M 94139 Married Short Breath 0 

Non-Asian 64/09/27 F 941** Un-married Chest Pain 1 

Non-Asian 64/09/27 F 941** Un-married Short Breath 1 

Any 1964 F 941** Un-married Hyper-Tension 2 

Any 1964 F 941** Un-married Obesity 2 

Any 1964 F 941** Un-married Short Breath 2 

 

Once the records are clustered, the data can be generalized to make individuals within 

each cluster indistinguishable from others, as shown in Table 3, according to the generalization 

hierarchy of the respective QI attribute by replacing the original value with a more abstract 

value. Here, for the Race attribute, the values "White" and "Black" are generalized to “Non-

Asian” in cluster 1; birth dates were reduced to the birth year "1963” in cluster 0 and “1964” 

in cluster 3. Values of the Zip attribute were masked by replacing the last digit with a wildcard 

"9414*". Sensitive attribute values, such as disease, are left unchanged to preserve medical 

relevance; others were generalized to protect privacy. This process ensures 2-anonymity, 

meaning that each person's information is shared by at least two others, making re-

identification difficult while still allowing useful analysis of the data. Figure 2 represents the 

basic stream data k-anonymity framework to protect the privacy of stream data. It works in 

four phases: preprocessing, clustering, k-anonymization, and publishing. The preprocessing 

phase initializes streaming parameters such as sliding window size, delay, cluster size, quasi-

identifiers, sensitive attributes, and other input measures. The clustering phase groups records 

or creates partitions of size k. The anonymization phase anonymizes the records by 

generalizing quasi-attributes using the generalization hierarchy and applies suppression if 

required, as per the developed approach. k-anonymized stream data are publicly published to 

applications for analytics. Different research enhances it according to the objective of the 

research. In past research, several studies have been conducted to protect individual privacy 

using the k-anonymity approach and its variations. To achieve this, different clustering 

algorithms have been used to create equivalence classes of size k.  

 

 

 

 

 

 

 

 

Figure 2. Basic Framework for Stream Data k-Anonymization 

Pre-processing Phase 
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The next section presents a detailed literature review of different privacy-preservation 

frameworks/approaches for streaming data using clustering algorithms. 

4. Literature Review 

This section contributes a comprehensive study of existing privacy-preserving 

techniques for streaming data. It includes various approaches and their operational 

characteristics by highlighting their strengths, limitations, and contributions to streaming data 

privacy preservation. It includes Clustering-Based Models used for similarity-based grouping 

to achieve k-anonymity while minimizing information loss; Sliding Window-Based 

Approaches to anonymize data within bounded time or count windows to support real-time 

constraints. and Delay-Aware and Utility-Driven Techniques that incorporate latency 

constraints and utility metrics to balance privacy with data usability. These approaches cannot 

be specifically categoried, as they can employ combinations of clustering algorithms, sliding 

window models, and concepts of delay awareness and utility to ensure the privacy of streaming 

data. 

Author Byun, et.al.,in[11] addressed the limitations of traditional k-anonymity and ℓ-

diversity methods and proposed an efficient methodology to anonymize continuously 

expanding datasets while simultaneously preventing inference attacks. This methodology aims 

to reduce the risk of vulnerabilities that emerge due to the release of multiple anonymized 

versions of a dataset over time, enabling adversaries to deduce sensitive information by 

comparing changes across these releases. Author proposed a framework that can securely 

integrate newly added records with previously anonymized data reducing computational 

overhead and maintaining consistent equivalence classes to prevent pattern recognition. This 

approach enhances privacy protection along with a balance of data utility and efficiency by 

avoiding the unnecessary re-anonymization of the entire dataset. It can be considered a 

foundational strategy for privacy-preserving incremental data publishing [11], significantly 

enhancing both security and usability in dynamic database environments. 

Wang et al. to propose the Sliding Window Anonymization Framework (SWAF) [15]to 

overcome the limitations of traditional k-anonymity. It combines Specialized K-anonymization 

(SK) for initial processing with Incremental K-anonymization (IK) for continuous updates and 

supports both count-based and time-based sliding windows. Experimental results on the Adult 

and Jeff Corporation Sales Transactions datasets show low information loss and fast processing 

and scalability. However, for higher values of k and larger window sizes it increases 

computational cost. Fung et al. addressed privacy risks that arise from linking multiple 

anonymized data releases [2][7] and Their method in [17] maintained k-anonymity across 

sequential publications by reducing information loss compared to traditional approaches while 

protecting against correspondence attacks. However, it does not address the risks of attribute 

disclosure that may emerge over time. Li et al. introduced Stream k-anonymity (SKY) [27], 

designed for high-speed streams with strict delay constraints and immediate processing of 

incoming records. SKY employs a specialization tree to dynamically generalize quasi-

identifiers and introduces the Information loss metric LM to measure the trade-off between 

privacy and utility. It achieved efficient anonymization with reduced information loss proving 

its applicability to domains such as market transactions and telecommunications. 

The CASTLE: Continuously Anonymizing Data Streams [18] by Cao et al. introduces 

an innovative framework focusing the challenge of real-time anonymization of streaming data. 

It operates within a dynamic environment, performing continuous k-anonymization over 
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sliding windows by applying tuple-level generalization to support both time-based and count-

based windows. It optimizes generalization strategies to minimize IL and performs utility 

driven anoymization. Performance of CASTLE was measured on the UCI Adult dataset to 

evaluate parameters such as information loss, processing time, and tuple delay. Results proved 

CASTLE's scalability and efficiency in minimizing IL across various workload and privacy 

settings. B-CASTLE [19], was advancement of CASTLE [18] by Wang, Lu, et al., overcomes 

limitations such as significant information loss and inefficiencies of simultaneous re-clustering 

of all tuples. It optimizes CASTLE [18] by dynamically reallocating tuples into clusters based 

on their distribution, ensuring balanced cluster formation by selectively merging only the most 

pertinent clusters during publication, It improves data utility and handles necessary delay 

constraints while maintaining k-anonymity. Experimental results shows that B-CASTLE is 

scalable for high-speed streaming applications and outperforms CASTLE [18] in terms of 

achieving superior cluster distribution, reducing information loss, and enhancing efficiency. 

Zakerzadeh et al. also addressed the limitations of CASTLE [18] and developed a cluster based 

Fast Anonymizing Algorithm for Numerical Streaming Data (FAANST) [20] to anonymizes 

numerical streaming data. It was executed on both synthetic and real-world numerical datasets 

and results confirms improvement over CASTLE [18] by reducing data loss, improving 

efficiency, and limiting tuple suppression. It suffers from reduced data utility at the cost of 

higher runtime and more suppressed tuples. Its application is restricted by not supporting 

categorical attributes and by allowing some tuples to remain in the system longer than desired. 

Zhang, J. et. al., proposed KIDS [16], a dynamic sliding windowbased anonymization 

framework that clusters incoming numerical data and ensures compliance with k-anonymity 

by utilizing a Top-Down Specialization (TDS) Tree to process streaming data dynamically. 

Results are compared with CASTLE [18] and FAANST [20] for performance metrics   such as 

data loss, execution time and cluster quality and it shows lower data loss, faster execution time 

and More balanced cluster formation, improving anonymization without unnecessary 

suppression. However, Computational complexity increases with larger window sizes and it 

does not support more advanced privacy models like ℓ-diversity. Guo and Zhang proposed 

FADS, a fast clustering-based anonymization [21] for data stream to efficiently process and 

anonymize tuples while ensuring low IL and reduced running time compared to CASTLE [18] 

and FAANST [20]. It reads incoming tuples, adds them to the clusters, and publishes them 

when no more tuples arrive. It reuses previously anonymized tuples to meet the constraints if 

k-1 tuples are unavailable forpublication. Although FADS improves efficiency and data utility, 

it suffers from early tuple publication for newly arrived tuple is published prematurely because 

it serves as one of the k–1 nearest neighbours of a waiting tuple, potentially increasing 

information loss. Mohammadian et al. introduced FAST [22], a parallel anonymization 

algorithm designed for big data streams. To address the early tuple publication issue in FADS 

[21], It incorporates a proactive heuristic that estimates round time, ensuring that data are 

published before reaching a predefined expiration time. Experimental comparisons with FADS 

[21] demonstrate that FAST is both efficient and effective in anonymizing big data streams, 

achieving lower information loss and reduced cost metrics across various parameters. 

Authors Yang et al., present a novel approach, the Incomplete Data Stream 

Enhancement Algorithm (IDEA) [23] for handling missing or incomplete data in streaming 

environments. It integrates advanced data imputation techniques with a utility-aware 

mechanism, ensuring that the imputed values are both statistically accurate and practically 

useful for downstream decision-making tasks. It incorporates a utility function that optimizes 

the selection of imputed values, thereby enhancing the overall effectiveness of real-time 

analytics. It is evaluated against benchmarked traditional imputation methods, including mean 
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imputation, KNN-based imputation, and regression-based approaches demonstrating its 

superior adaptability in dynamic streaming environments. Experimental results indicate that it 

outperforms others in maintaining data accuracy while preserving analytical utility. However, 

the computational complexity of an effective utility function presents challenges in resource-

constrained environments. Future research can focus on enhancing computational efficiency 

and designing automated utility functions to improve scalability and applicability across 

diverse domains. 

Otgonbayar et al. introduce a Framework K-VARP [24] to ensure k-anonymity in 

varied and dynamic data streams generated by Internet of Things (IoT) devices. It addresses 

the challenges of highly dynamic data streams with diverse and evolving structures. It 

identified and grouped incoming data streams based on their schema and performed k-

anonymization on each group using generalization and suppression techniques, via suitable 

buffering. It maintains data utility by adjusting the level of generalization dynamically. The 

study utilized a combination of synthetic and real-world IoT datasets and evaluated for privacy 

preservation, information loss, latency/throughput, and data utility. The K-VARP algorithm 

exhibited less information loss compared to FADS [21] and maintained high data utility due to 

intelligent partitioning and generalization. It is scalable for high-speed data and adapts well to 

real-time stream changes. Authors Zhou, B., et.al. Proposed a novel privacy-preserving data 

publishing method for continuous data stream [26] that considers both the distribution of data 

entries and the statistical distribution of data streams by integrating anonymization techniques 

with real-time data publishing. It balances privacy and data utility by adapting data stream 

distribution and prevents re-identification attacks. Experiments on real and synthetic datasets 

validate the effectiveness and efficiency of the proposed method. 

Zakerzadeh, H., and Osborn, S. L. proposed a Delay-sensitive approaches for 

anonymizing numerical streaming data [28]. It performs dynamic clustering of incoming 

numerical data and satisfies anonymity constraints within a strict time frame. Experiments were 

performed on datasets from the UCI Machine Learning Repository to evaluate performance 

metrics such as data loss, execution time, and cluster quality under varying conditions. It 

demonstrates superior performance over CASTLE [18] and FAANST [20] by achieving lower 

processing delays and improved data retention. However, strict privacy requirements may 

result in a reduction of data utility. 

The X-BAND [30] is designed by Otgonbayar et al., introducing a new mechanism 

called the expiration-band for stream data anonymization by allowing multiple scans of expired 

data tuples to find the best cluster with the least information loss. It works based on a weighted 

distance function using K-Nearest Neighbor (KNN) to minimize missing data by considering 

the similarity of quasi-identifiers (QIDs) and attribute distances. It also stores un-anonymized 

and expired data tuples temporarily and provides another chance for inclusion without 

disrupting the data stream’s order. Performance of X-BAND was compared with FADS [21], 

achieving lower information loss by 5–11% for Adult data and 1–3% for PM2.5. X-BAND 

proves its effectiveness and efficiency by anonymizing varied data streams with better data 

utility and by handling the challenge of missingness prediction and adaptive distance metrics. 

Sopaoglu and Abul introduce the Utility-Based Data Stream Anonymization (UBDSA) 

algorithm [29] to enhance overall data utility by balancing data quality and data aging in data 

stream anonymization and to minimize both average delay and information loss (IL). They 

introduce a novel cluster assignment distance metric, Cardinality Aware Information Loss 

(CAIL), to evaluate clusters based on data similarity to ensure sufficient record similarity to 

preserve utility after anonymization. It also measures cluster size by accounting for the number 
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of records in a cluster, as larger clusters may lead to increased IL due to the need for more 

generalization, while smaller clusters might reduce processing delay by compromising privacy 

requirements. By integrating these factors, it effectively balances IL and processing delay. 

Experimental results show UBDSA has better balanced performance for average delay and 

information loss compared to CASTLE [18] and FADS [21]. Authors Sopaoglu and Abul 

developed Classification Utility Aware Data Stream Anonymization (CUDSA) [31] to protect 

sensitive attributes by reducing the risk of attribute-linkage attacks, aiming to maximize 

downstream classification accuracy of the anonymized data while satisfying k-anonymity. 

They created an optimization method to minimize information loss, maximize classification 

accuracy, and enhance diversity in sensitive attributes by providing a facility for users to adjust 

various parameters for IL, accuracy, and window size. It processes a data stream with a 

predefined delay limit, forming clusters with at least k records by storing incoming tuples. 

Experimental results evaluate CASTLE [18], FADS [21], and CUDSA for k-anonymity, 

accuracy, and information loss. All achieve k-anonymity; however, only CASTLE [18] with 

ℓ-diversity formally protects against attribute-linkage, CUDSA encourages diversity of 

sensitive attributes through entropy, and FADS [21] does not specifically address it. FADS 

[21] yields the lowest information loss, CASTLE [18] the highest with lower accuracy, and 

CUDSA strikes a balance by accepting moderate information loss to achieve higher 

classification accuracy. 

The authors Joo, Y. & Kim, S. implemented SUHDSA [32] as an improvement of 

UBDSA [29], which anonymizes real-time data streams by enforcing k-anonymity within a 

delay-bound window to cluster incoming records based on quasi-identifiers (QI) to minimize 

IL using pre-computed generalization trees and the CAIL metric. It dynamically adjusts the 

delay threshold to balance data utility and latency, publishing clusters once the oldest buffered 

record reaches the delay limit. It improves performance by separating QI and non-QI attributes 

to reduce computation, pre-computing generalization hierarchies for faster IL calculations, 

clustering records based on shared ancestors to lower IL, and skipping unnecessary cluster 

splits to enhance performance without compromising privacy. Experimental results show that 

SUHDSA outperforms UBDSA [29], achieving faster runtimes of 24–30 seconds and lower 

information loss of 14%–77% under identical conditions. A. Sadeghi-Nasab et.al., proposed 

framework integrating a novel clustering approach with Apache Flink for real-time stream data 

anonymization [25], Data is clustered with size k within time windows, window size, and 

expiration limit. Categorical data is grouped via Domain Generalization Hierarchy and 

numerical data is binned using a frequency-based method to reduce overhead and improve 

performance. Clusters that meet the K-threshold are anonymized and published; others are 

suppressed or merged at the end to minimize IL. It is evaluated against CASTLE [18], FADS 

[21] and UBDSA [29] and outperforms by achieving 5.68–18.26% IL and 12.33–66.62% less 

data delay. 

Rahul.A.P and Pramod.D.P have proposed a comprehensive framework EAPPA- 

Efficient Approximation and Privacy Preservation Algorithms [33] for real-time data stream 

privacy preservation, addressing key challenges such as redundant data and timely 

anonymization. It integrates two core phases: the Data Approximation and Preprocessing 

phase, which employs the Flajolet-Martin (FM) algorithm for efficient duplicate elimination 

and Natural Language Processing techniques for data cleaning; and the Adaptive Clustering 

and Privacy Preservation phase, which applies k-means clustering followed by adaptive 

refinement to ensure k-anonymity and l-diversity using entropy-based evaluation. It evaluated 

using the UCI Adult dataset and compared FADS [21], DAnonyIR[34], and IDEA [23]. It gives 

significant improvements in reducing IL, enhancing Degree of Anonymization, lowering 
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Execution Time and memory usage. It offers strong performance and adaptability to real-world 

dynamic data, its effectiveness depends on the quality of NLP preprocessing and parameter 

tuning for clustering, making it a notable contribution with some operational dependencies. 

The paper [39] proposes an improved k-anonymity algorithm by considering the trade-off 

between privacy protection and data usability for large-scale datasets. Author of paper 

measured the IL as a weighted IL function which assigns different weights to QIs depending 

on their influence on sensitive attributes. To enhance cluster stability and reduce variance, they 

designed a hybrid approach by combining a greedy algorithm with improved 2-means 

clustering to initialize cluster centers using mean-center selection. Experimental evaluations 

show that, it achieves stronger privacy with lower information loss and better data availability 

compared to conventional clustering-based anonymization techniques, balancing utility for big 

data applications such as IoT and healthcare analytics domains. The paper [40] presents a novel 

framework for privacy-preserving anonymization of continuous big data streams by using in-

memory computing on Apache Spark. It uses a one-time clustering strategy to create optimal 

clusters in single pass and reuse them for incoming stream data to reduce high computational 

cost of repeated clustering while still ensuring k-anonymity. It parallelizes the anonymization 

through Spark so it became suitable for large-scale and real-time applications by achieving 

high throughput and efficiency. Experimental results are compared with CRUE, Mean-Shift 

[41], and DBSCAN [42] showing that it is consistently outperforms them by providing lower 

IL, better data quality, and scalability for different data sizes and value of k. Detailed 

comparative table summarizing the key aspects of each paper is in Table 4 and Performance 

comparison of Different approaches are described based on approximate results in Figure 3.  

4.1   Discussion and Summary 

 

 

Figure 3. Comparison Chart of Value of k Parameter Against (a) Information Loss (b) 

Average Delay (c) Approximate Utility (d) Execution Time for Different Approaches 
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For stream data privacy preservation through k-anonymity and making them available 

to real time application such as healthcare monitoring or IoT systems for crucial analysis  

Table 4. Comparative Analysis of Research Referred from Literature 

Approach Method Performance 

Measure 

Strength Limitation 

SWAF [15] Frequent pattern 

clusters 

 Heavy runtime. 

balances 

privacy/utility 

Preserves 

important 

patterns,  

Complexity 

increases with 

pattern space,  

SKY [27] Specialization 

Tree with δ-

constraint k-

anonymity 

Higher IL and weak 

Utility than KIDS. 

Delay and Run time 

similar to SWAF 

Reduces 

unnecessary 

generalizations 

May not scale well 

to very high-

dimension or ultra-

fast streams 

ACDP [17]  Top-down 

specialization 

 Higher IL & Larger 

Execution Time 

Handles 

incremental, 

continuous data 

Needs static 

hierarchy 

B-CASTLE 

[19] 

Dynamic cluster 

adjustment and 

merging 

Higher IL & Delay 

than CASTLE. Low 

Utility and High 

Runtime 

Dynamic 

adjustment, 

lower info loss, 

better efficiency 

experimental 

results influenced 

by data randomness 

KIDS [16] Sliding window + 

Top-Down 

Specialization  

 Lower IL & Delay. 

Utility Preserved 

Moderated Runtime 

Effective 

accuracy with 

density handling 

Initial delay, high 

early information 

loss 

CASTLE 

[18] 

Delay-constrained 

clustering 

 IL moderated & 

Maintains Utility, 

High Runtime 

Strong baseline, 

reusable clusters  

slower under large 

data streams 

FAANST 

[20] 

k-means 

 (numeric only) 

IL increases with 

Delay. High value of k 

Decreases Utility& 

High Run time 

good efficiency, 

low data loss 

Doesn’t handle 

categorical; k-

means centroid 

limits  

FADS [21] Nearest 

neighbour-based 

Cluster   

Moderated Delay 

High Execution time 

Low 

complexity, 

strong reuse 

cluster strategy 

reduces loss 

focusing on 

numeric attributes, 

Slower due to 

diversity 

constraints;  

FAST [22] Multithreaded 

cluster processing 

(Proactive cluster 

+ parallel threads) 

High value of k 

increases IL and high 

utility loss. 

High Computation 

time 

Parallelism 

reduces delay, 

efficient 

Cost metric unclear 

uneven tuple 

suppression, thread 

balancing  

K-VARP 

[24] 

Partition based 

clustering with 

KNN 

good utility  Imputation free, 

flexible reuse 

Complex logic 
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UBDSA 

[29] 

CAIL metric 

clustering 

IL rises moderately, 

delay increases, 

Utility Decrease and 

linear growth in 

runtime with k 

Tuneable delay-

quality trade-off 

Limited scalability 

insights 

X-BAND 

[30] 

KNN + Expiration 

Band 

Similar to CUDSA. Better reuse, 

less missingness 

High runtime at 

large Γ 

CUDSA 

[31] 

Clustering-based 

on weighted 

multi-objective 

optimization 

Slightly better IL, 

average delay, better 

utility &faster Run 

time than UBDSA. 

Fast and 

scalable 

Handles mixed-

type attributes 

Requires 

taxonomy/ domain 

hierarchy 

IDEA [23] Cross-Partition + 

Reuse 

Keeps IL low, 

improves utility and 

higher Run time for 

incomplete streams. 

Handles missing 

data, compact 

clusters 

High memory 

usage 

APACHE 

FLINK [25] 

Custom 

Similarity-based 

clustering + DGH 

trees 

Excellent balance of 

IL, runtime and 

Utility. 

Linear Runtime 

Outstanding 

delay 

performance, 

scalable 

Parameter tuning 

using similarity 

thresholds 

SUHDSA 

[32] 

Heuristic utility-

aware clustering  

low IL, best Utility 

and Low runtime 

adaptive delay 

control 

Static 

generalization tree 

& heuristic 

suppression 

EPPAA 

[33] 

 Generalization 

driven Partition 

based grouping 

 Lowest IL, High 

Utility and less 

runtime due to 

Partition Reuse. 

Partition Reuse, 

Adaptive 

clustering and 

Scalable 

Not adaptable to 

concept drift 

 

While preserving data continuity requires records within the clusters to be generalized 

to make them indistinguishable from one another and reduce the use of data suppression, in k-

anonymity, the value of k plays a crucial role, as it directly affects the balance between privacy 

protection and data utility. As per Figure 4(a), a higher value of k includes more records in the 

equivalence class, strengthens privacy, but results in higher information loss due to more 

generalization, thereby reducing utility, as shown in Figure 4(c). Execution time for different 

values of k is shown in Figure 4(d). For stream data, a higher value of k increases the number 

of records within the equivalence class, increasing the wait time of records to match the other 

records, which leads to an increase in delay, as shown in Figure 4(b). The value of k also affects 

information loss, delay, and utility for various distribution scenarios in stream data, such as 

imbalanced data, which leads to higher information loss, lower utility, and higher delay for 

higher values of k [24][29]. In contrast, uniformly distributed streams yield a steady increase 

in information loss and moderated delay with an increase in k [21]. A rapid bursty stream with 

a proper value of k results in low information loss and delay, whereas a slow rate results in 

higher information loss and delay [29]. In clustering, a scenario sometimes occurs when records 

do not naturally align with any existing cluster, raising the necessity for further generalization 
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without compromising data utility to match the cluster. To facilitate this, utility-aware 

clustering techniques can identify the cluster that incurs minimum information loss. 

Frameworks such as CASTLE [18] and SUHDSA [32] work on this principle to identify 

appropriate clusters based on information loss metrics and hierarchical generalization to 

balance data privacy and utility for analysis. Suppression is applied to the record when it 

requires extreme generalization to anonymize it, resulting in increased information loss. 

Suppression provides robust privacy by ensuring that no inadequately anonymized records are 

released, at the cost of data loss. Suppression is advantageous when a record is an outlier and 

distorts the cluster by needing more generalization or having a higher privacy risk. Frequent 

use of suppression makes the dataset biased, and sometimes rare and smaller groups are 

affected. In a streaming data environment, suppression should be the last choice for utility-

driven generalization due to the need for real-time and complete data required to comprise a 

valid cluster. Numerous k-anonymity-based techniques have been adapted for streaming 

environments, but challenges such as handling mixed-type attributes, minimizing delay, 

handling concept drift, and maximizing data utility always need more attention. The literature 

review and comparative analysis show that modern frameworks such as K-VARP [24] and 

SUHDSA [32] improve efficiency and scalability.  K-VARP needs more advancement to 

remove limitation such as handling concept drift for varied streams, high suppression of smaller 

or dissimilar clusters to achieve anonymization and computation overhead to calculate Jaccard 

similarity and R-likeness for merging merge the clusters. Also, it does not assure Minimum 

information loss, as it does not explore all possibilities to merge groups by heuristic-based 

merging. Although The SUHDSA [32] is effective, it has limitations in generalization, 

suppression, and clustering. It depends on fixed generalization hierarchy, which is not 

adaptable to evolving data and may cause high information loss with diverse or high-cardinality 

attributes. In terms of suppression, SUHDSA [32] also discards records by suppressing them 

when cluster reaches its threshold or to achieve k-anonymity, without investigating alternatives 

to preserve data utility. SUHDSA [32] uses a static CAIL metric to cluster the records, making 

it inadaptable to heterogeneous or changing data Streams. 

4.2   Research Opportunities and Future Directions 

Based on the literature review, numerous studies have been conducted to protect 

privacy via k-anonymity-based anonymization for streaming data. However, several research 

challenges remain unaddressed and they need further research and exploration. 

Current methods primarily use fixed generalization hierarchies, which are inadequate 

for dynamic streaming data. Future research should explore context-aware or learning-based 

generalization, where hierarchies evolve with the data to preserve utility and minimize 

unnecessary information loss. Suppression supports robust privacy mechanisms at cost of data 

utility. Future research should focus on to develop k-anonymity strategies that minimize 

suppression or utilize it as a last resort when all utility-preserving options are not available. 

Streaming data often encounter changes in distribution over time and algorithms such as K-

VARP encounter difficulties with these variations. Future approaches should include adaptive 

window, threshold tuning, and drift detection mechanisms to dynamically adjust cluster to 

satisfy k-anonymity in real time. 

The research review identifies that some clustering techniques are limited to numerical 

attributes. Efficient handling of both numerical and categorical attributes remains a challenge. 

Future research should focus on developing time-efficient and scalable clustering algorithms 

that support mixed data types without compromising real-time performance. While 
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safeguarding privacy, there is a need for frameworks that evaluate the trade-offs between 

privacy and utility before applying generalization or suppression. This includes integrating 

multi-objective optimization or utility score thresholds into clustering and anonymization, 

ensuring that privacy protection does not result in analytical discrimination.  Many techniques 

are not optimized for low-delay streaming environments. Future approaches should focus to 

handle low-delay data stream providing guarantee to protect privacy without sacrificing 

throughput or delay constraints, for real time data applications. 

5. Conclusion 

In the evolving environment of real-time data analytics, maintaining individuals' 

privacy at the expense of data utility is still one of the fundamental necessities. Traditional 

anonymization techniques such as k-anonymity, L-diversity, and T-closeness were originally 

designed to be applied to static data and are not particularly suitable for the dynamic and high-

speed environment of streaming data. This systematic review investigates the application of k-

anonymity in stream data settings based on the acceptance of clustering algorithms, sliding 

window models, and delay-sensitive models. This study was conducted through a review of 

underlying models for stream data privacy like CASTLE and FAST, as well as recent work 

like SUHDSA, K-VARP, and EAPPA. The study discusses trade-offs and improvements in 

preserving privacy in real-time data streams. Clustering-based techniques have great potential 

to find a balance between utility and privacy if applied with adaptive techniques and semantic-

aware generalization. Integration of sliding window models with k-anonymity provides delay-

aware anonymization for streaming data, resulting in delay-sensitive techniques such as SKY 

and SUHDSA, which balance latency and data quality. There are some limitations involved 

with these developments, such as K-VARP accommodating high suppression rates. SUHDSA 

relies on fixed generalization models and heuristic clustering, which limits its applicability in 

rapidly evolving or heterogeneous data settings. Suppression has been utilized to be beneficial 

in some cases to offer strong privacy while leading to data loss and potential bias. It should be 

used only when buffering or generalization methods are not sufficient to ensure k-anonymity. 

In the future, there is scope for research directions in developing a framework for maintaining 

privacy from streaming data that offers flexible and scalable generalization and suppression 

treatment and enhances responsive clustering methods that work well with mixed-type 

streaming data under delay. The system should also balance utility and privacy without 

depending on strict rules or structures and needs to be examined with benchmark datasets for 

privacy metrics such as information loss, data utility, scalability, suppression rate, and 

execution time. Generally, positive progress has been made and continues to be made in stream 

data privacy-preserving anonymization for streaming environments. However, by solving 

current problems and refining existing models, future plans will be more efficient and 

beneficial in protecting individual privacy while accommodating growing demands for real-

time data analysis.  
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