
Journal of Trends in Computer Science and Smart Technology (ISSN: 2582-4104)  
www.irojournals.com/tcsst/    

 

Journal of Trends in Computer Science and Smart Technology, September 2025, Volume 7, Issue 3, Pages 459-481                                                                459 
DOI: https://doi.org/10.36548/jtcsst.2025.3.009 

Received: 18.07.2025, received in revised form: 16.08.2025, accepted: 30.08.2025, published: 09.09.2025 
 © 2025 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License 

Unsupervised Learning with Spiking 

Neural Networks for Image Classification 

Tasks 

Manivannan R.1, Gavini Sreelatha2, Sai Pragathi Y V S.3 

1,3Department of Computer Science and Engineering, 2Department of Information Technology, 

Stanley College of Engineering and Technology for Women (Autonomous), Hyderabad, Telangana, 

India. 

Email: 1drmanivannan@stanley.edu.in, 2drgsreelatha@stanley.edu.in, 3drypragathi@stanley.edu.in 

Abstract 

Artificial neural networks based on sigmoidal neurons have achieved undisputed 

performance in various tasks, including image recognition and classification. The search for 

more biologically plausible artificial neuron models led to the creation of pulsed models. The 

new way of encoding information is through discrete pulses, and the timing of these pulses is 

important for the result. This work proposes the creation of a neural network with pulsed 

neurons for the task of image classification. The network uses cell models more similar to those 

found in animal brains, communicating through spikes and relying on a stochastic component 

for pulse generation. It also applies STDP as an unsupervised learning rule, very similar to 

human learning. Experiments were run using various parameter sets to study the network's 

dynamics in the image classification task. The results obtained were analyzed, and their 

performance indicates a promising method capable of good performance on three known image 

databases (Caltech 101, ETH-80, and MNIST).  The database 1 achieved a classification 

accuracy of 87%, database 2 achieved 77% on ETH-80, and database 3 achieved 86% on 

MNIST respectively. 

Keywords: Spiking Neural Network (SNN), Image Classification, Synaptic Plasticity, 

Stochastic Neurons, Neural Dynamics. 

1. Introduction 

Human learning capacity and the neural processes involved in this evolutionary feat are 

widely studied by Neuroscience, the multidisciplinary science that analyzes the nervous system 

to understand the biological basis of behavior [1], [2], [3], [4], [5]. This human interest in our 

own way of thinking and learning has led to numerous scientific studies aimed at discovering, 

explaining, and simulating various brain events. One approach to emulating the behavior of 

neural systems is the study of artificial neural networks (ANNs). An ANN is a set of 

interconnected processing elements, called units or neurons, whose functionality is inspired by 

the biological neuron, the main cell of the nervous system [6], [7], [8]. ANNs are a subfield of 

Machine Learning (ML), which, in turn, is a subfield of Artificial Intelligence (AI). AI refers 

to the ability of a digital computer or computer-controlled robot to perform tasks commonly 

associated with intelligent beings [9]. In the case of ML, the general objective is to study 

algorithms that allow computer programs to automatically improve their performance through 
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experience, finding patterns in the data provided to them [10], [11]. Much of the recent success 

of ANNs is due to the backpropagation algorithm, a now-established strategy for supervised 

ANN training [12], [13], [14], [15]. In supervised training, training examples are labeled to 

indicate the correct classification of each one [16]. Furthermore, some method, such as gradient 

descent, is used to update the weights and minimize the cost function. However, 

neurophysiological data point to a different coding style in nervous systems than that used in 

the field of ANN studies. Thus, a new neuron model has emerged: the spiking neuron model. 

Spiking neural networks (SNNs) exhibit more biologically plausible characteristics than their 

predecessors, suggesting new application advantages, as discussed in the following section. 

The study of spiking neural networks (SNNs) can positively impact the field of AI. According 

to [13], [14], [15], a neural network (NN) model closer to the biological could achieve 

performance closer to natural, which would be excellent given the brain's remarkable cognitive 

performance in real-world tasks. These authors also point to the highly efficient computation 

of pulsed models, as they are event-driven. That is, when there is little or no recorded 

information, the network's pulsed activity is low, but when there is an increase in stimuli, the 

network generates more pulses. Furthermore, NPNs have shown promise in the field of 

neuromorphic computing in hardware. The high efficiency of NPNs allows for high accuracy 

and low power consumption using memristors [15]. The main objective of this work is to 

investigate the consequences of varying certain architectural parameters of a pulsed 

convolutional neural network (PCNN) with integrate-and-fire neurons similar to [16] [17] [18] 

in the image classification task. These parameters are the firing threshold values of the neurons 

in the input and convolution layers (CLs), the learning rates, and the learning rate update period. 

2. Related Work 

Juarez-Lora et al. (2022) [19] proposed a reward-modulated spike time-dependent 

plasticity (R-STDP) SNN model for realistic robot control. The model is able to adapt to the 

changing friction of the robot's jaw, thereby achieving adaptive learning and decision-making. 

It combines biological learning mechanisms with control systems, enabling the robot to learn 

from delayed rewards in dynamic environments. This work demonstrates the potential of using 

SNNs in reinforcement learning environments that are not feasible with traditional supervised 

learning. 

Yamazaki et al. (2022) [20] provide a comprehensive overview, classifying SNNs 

based on neural models, encoding schemes (e.g., encoding time, temporal encoding), and 

learning rules (STDP, backpropagation, etc.). This paper explores sensor data fusion, covering 

applications from auditory processing to autonomous systems, and highlights the evolving 

ecosystem around SNNs. In addition, this paper explores how to integrate neuromorphic 

technologies such as Intel Loihi and IBM TrueNorth to deploy SNNs as a viable alternative in 

energy-constrained environments.  

Naderi et al. (2025) [21] proposed a new unsupervised post-training strategy that 

enables SNNs to adapt even after initial training. Due to their biological plasticity, this 

approach improves the generalization and adaptability of the model without the need for 

labeled data. This approach is very useful in situations where continuous learning is required. 

It is compatible with the lifelong learning paradigm and addresses the challenges of using 

SNNs for dynamic, evolving data or lifelong learning. 

Yang et al. (2023) [22] focused on the role of inhibitory neurons in maintaining network 

stability during unsupervised learning. Their dynamic model adjusts the level of inhibition 
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during training to prevent excessive firing and improve energy efficiency. This work reflects 

the growing interest in neurobiological realism, showing that biologically relevant inhibitory 

dynamics can enhance the learning stability and performance of SNNs. 

Szczesny et al. (2023) [23] proposed a perceptual neural architecture that can evaluate 

features in real time based on perceptual output. The model uses executive functions to link 

decision-making processes to specific input patterns, addressing one of the biggest 

shortcomings of NNs - the lack of insight. The authors provide visualization tools and an 

analytical framework to understand the contributions of neurons, enabling CNNs to be applied 

in key application areas such as autonomous driving and medical diagnostics, where 

understanding is crucial. 

Pietrzak et al. (2023) [24] compared the performance of different deep learning 

techniques on SNNs, such as STDP, backpropagation through time (BPTT), surrogate 

gradients, and hybrid methods. The authors analyzed the computational cost, memory 

requirements, learning stability, and scalability of each method. Their results guide the choice 

of algorithm based on application constraints (such as low-latency applications or 

neuromorphic networks).  

Niu et al. (2023) [25] discussed recent advances in SNN-based image classification, 

which includes key aspects such as neural modeling, encoding methods, transformation 

techniques, and learning frameworks. The strengths and limitations of existing models in the 

review were evaluated by identifying gaps in dataset normalization, learning convergence, and 

scalability to finer architectures. The paper concludes with some future development directions, 

such as multimodal SNNs, integration with graph NNs, and improving unsupervised/self-

supervised learning. 

3. Materials and Methods 

The computational models were developed in C++. This language was chosen for two 

reasons: first, it allows for high computational speeds because it is lower-level than languages 

like Python and Java; and second, the author's familiarity with this language throughout his 

undergraduate studies. The architecture of the studied network is similar to that of the work in 

[16]. The network has an input layer (IL) that applies difference-of-Gaussian filters (using the 

activations of each filter to generate spike trains), followed by alternating convolution and 

pooling layers (PLs). In the classification phase, the last layer is a global PL. The network 

output is used to train a multilayer perceptron. A possible architectural configuration is shown 

in Figure 1. 

 
Figure 1. Architecture of a Pulsed CNN with 3 Convolutional Layers 
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3.1   IL: Temporal Coding 

The first layer of the network is composed of DoG cells and receives digital images as 

input. The convolution of a DoG filter (or DoG kernel) with an image generates a line detector 

for that image [14]. Furthermore, ganglion cells have nearly circular receptive fields with a 

central region that prefers light and a dark neighborhood (on-center off-surround) or a dark 

center surrounded by light (off-center on-surround), a structure that can be well described by a 

DoG model [18]. The two-dimensional Gaussian distribution is given by Equation 1, where x 

and y represent the distance from the origin on the horizontal and vertical axes, respectively 

[1], [2], [3]. The origin, in this case, is the center of the kernel. Thus, the DoG function is 

obtained by subtracting two Gaussian kernels with different standard deviations, as seen in 

Equation 2. 

𝑓(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2 , −∞ < 𝑥, 𝑦 < ∞, 𝜎 > 0    (1) 

𝐷𝑜𝐺(𝑥, 𝑦, 𝜎1, 𝜎2) = 𝑓(𝑥, 𝑦, 𝜎1) − 𝑓(𝑥, 𝑦, 𝜎2), −∞ < 𝑥, 𝑦 < ∞, 𝜎2 > 𝜎1 > 0    (2) 

The standard deviation values, as well as the kernel size, must be optimized for the 

desired classification task. The matrix in Figure 2 below represents a 5 × 5 DoG filter with 

standard deviation values of 1 and 2.  

 

Figure 2. 5 × 5 DoG Filter with σ1 = 1 and σ2 = 2 

The activation of a DoG cell results from the convolution of the kernel with the image 

window encompassed by the cell's receptive field. On-center and off-surround DoG cells only 

fire when their activation is greater than a certain pre-established threshold, which will be 

referred to here as the cell's positive threshold. In the case of off-center and on-surround cells, 

spikes are generated only when activation is below a negative threshold. Both thresholds must 

be optimized for each image database. The stronger the activation of a DoG cell, i.e., the higher 

its modulus, the greater the contrast found by the convolution of the kernel with the image 

window corresponding to its receptive field, and the earlier the cell will fire. Thus, taking as an 

example a filter composed of cells that prefer central regions of light and have a threshold ν, if 

the activation value is r, with r > ν, the corresponding spike time will be 1/r. The spikes are 

grouped into packets of size n, such that the first n spikes are grouped into a packet that will be 

processed in the first time step, the next n spikes into a packet that will be processed in the 

second time step, and so on. This layer is crucial because it establishes the content and amount 

of information carried by each spike, which profoundly affects neural computations in the 

network [25]. 
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3.2   Convolutional Layers: Spiked Neurons and STDP 

A convolutional layer (CL) consists of several two-dimensional arrays of neurons, all 

with the same dimensions, called neuronal maps. The neurons in a specific neuronal map are 

selective for the same feature but in different locations in the image, due to their receptive 

fields. The receptive field of a convolutional neuron receives the spikes generated by all 

neuronal maps in the previous layer within a specific window that depends on the row and 

column of that neuron in the neuronal map to which it belongs. The size of this window, as 

well as the stride used to determine the window of neighboring neurons, are parameters to be 

decided for each task and for each neuronal map. To ensure that all neurons in the same map 

are selective for the same learned feature, the weight sharing technique was used: neurons in 

the same neuronal map will have equal synaptic weights, that is, their kernels will be identical 

[16]. The evolution of the membrane potential is modeled by the real variable 𝑉𝑖[𝑡], explained 

in Equation 3, indexed by the discrete time t, an integer that represents the specific time sample 

observed.  

𝑉𝑖[𝑡 + 1] = {
𝑉𝑅 ,    𝑋𝑖[𝑡] = 1

𝜇(𝑉𝑖[𝑡] − 𝑉𝐵 + ∑ 𝑤𝑖𝑗𝑋𝑗[𝑡],    𝑋𝑖[𝑡] = 0 𝑁
𝑗=1

   (3) 

The dynamics of this neuron model are as follows: the membrane potential integrates 

synaptic inputs until the neuron fires, generating a spike. Xi[t] ∈ {0, 1}is the Boolean variable 

that denotes whether neuron i fired between times t and t + 1. For the deterministic version of 

the model, Xi[t + 1] = 1when Vi[t] > Vth, where Vth is the firing threshold. For the stochastic 

version, it is assumed that the firing of a neuron is a random event, whose probability of 

occurrence at a time step t is given by the firing function φ(V[t], Vth), presented in Equation 4. 

𝜑(𝑉[𝑡], 𝑉𝑡ℎ) =
1

1+𝑒−𝑉𝑡ℎ−𝑉[𝑡]     (4) 

When a spike is generated, the potential is reset to VR. Furthermore, in the absence of 

input signals, the membrane potential decays at each time step by a factor µ ∈  [0, 1] toward a 

baseline value VB, simulating a leakage current. wijrepresents the synaptic strength (also called 

synaptic weight) between presynaptic neuron j and postsynaptic neuron i. The weight values 

are initially random and drawn from a normal distribution with a mean of 0.8 and a standard 

deviation of 0.05. 

3.3   NN- Studied  

To simulate the network proposed by [17] with the more general model proposed in 

this work is shown in Equation 5. 

𝑉𝑖[𝑡 + 1] = {
0,    𝑋𝑖[𝑡] = 1

(𝑉𝑖[𝑡] − ∑ 𝑤𝑖𝑗𝑋𝑗[𝑡],    𝑋𝑖[𝑡] = 0 𝑁
𝑗=1

   (5) 

Each cell is only allowed to fire once per image, taking into account studies that indicate 

that visual processing in the brain is so fast that it must be achieved with only one action 

potential per neuron in the passage of visual information along the pathway from the retinal 

receptors to the temporal lobe [10], [11], [12], [13], [14], [15], [16]. Therefore, the refractory 

period was not taken into account. 
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The network's learning is the same as that proposed in [16], based on STDP, and occurs 

only in the CLs. Equation 6 was used to update the synaptic weights. The learning parameters 

are obtained empirically, taking into account a vague recommendation given by [16], which, 

in this case, involves choosing not too high values for a+ and a−, in addition to making a+ (the 

learning rate for enhancement cases) slightly higher than a− (the learning rate for depression 

cases). The initial value range used in the tests was 0.0001 to 0.01. 

∆𝑤𝑖𝑗 = {
𝑎+𝑤𝑖𝑗(1 − 𝑤𝑖𝑗),      𝑠𝑒𝑡 𝑡𝑗 − 𝑡𝑖 ≤ 0,

𝑎−𝑤𝑖𝑗(1 − 𝑤𝑖𝑗), 𝑠𝑒𝑡 𝑡𝑗 − 𝑡𝑖 > 0
    (6) 

When a neuron fires, it inhibits all other units that share the same set of synaptic weights 

(intramap inhibition), causing their membrane potentials to be updated to Vr and preventing 

them from executing STDP until the next image is shown. There is also intermap inhibition, 

meaning that units that are in the same position as the winner but in different feature maps will 

be inhibited and, in addition to not being able to trigger STDP, will be prevented from firing 

until the next image is presented. These measures cause competition between neurons, inducing 

them to become selective for different features [16]. Because the weight-sharing strategy is 

used, the kernel update of the winning neuron (the one that fired first) is replicated in the other 

neurons belonging to the same neuronal map. 

SNNs can be integrated naturally with event-based vision sensors, enabling high-speed 

visual recognition for a variety of applications, from robotics to medical imaging. Despite the 

high cost, spiking neural networks (SNNs) are widely adopted due to their ability to emulate 

brain-like event-driven processing, capture spatial and temporal features, and provide 

robustness through unsupervised learning methods such as STDP. SNNs' biological reliability 

and compatibility with event-based vision sensors offer promise for low-latency, efficient 

image classification when applied to traditional neuromorphic technologies.  

4. Hierarchical SNN Architecture and Learning Strategy 

This means that a learned feature will be recognized anywhere in the image [16]. 

Learning is sequential. In other words, a CL only begins learning (having the neurons' synaptic 

weights changed by the STDP execution) after the previous layer has finished learning. The 

measure of learning convergence of the l-thCL is given by Equation 7: 

𝐶𝑙 = ∑ ∑ 𝑤𝑓,𝑖(1 − 𝑤𝑓,𝑖)/𝑛𝑤𝑖𝑓      (7) 

where𝑤𝑓,𝑖 is the i-th synaptic weight of the f-th neuronal map and nw is the total number 

of synaptic weights in layer l. Cl approaches zero when each of the weights approaches one or 

zero. Learning in the l-th layer ends when Cl is close enough to zero (in this work, the threshold 

Cl ≤ 0.01 was adopted), at which point the layer converges. When all CLs converge, the 

network is said to have converged, at which point the network has achieved the maximum (but 

not necessarily the best) learning possible for that architecture and is ready for use in the testing 

phase. 

4.1   Local PLs: Compression 

Local PLs allow only the earliest spike generated within a certain window of units to 

be propagated. This was implemented with IF neurons with a very low threshold and synaptic 
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weights of one. This configuration assumes that the first presynaptic spike activates the pooling 

cell, which, in turn, generates an output spike at the same time step. This is a biologically 

plausible approach to conferring local invariance [15], [25], as there is neurophysiological 

evidence that neurons in layers of the visual cortex use a nonlinear mechanism, the MAX 

function, such that the output of these neurons is determined by the input with the shortest 

latency, that is, by the presynaptic neuron that generates the earliest spike [4], [5], [6], [7]. A 

local PL always has the same number of neural maps as the CL that precedes it. This ensures 

that each pooling map is responsible for a convolutional map in the same position. Therefore, 

the receptive field of a pooling unit comprises only one map, unlike convolutional units, which 

encompass all maps from the previous layer. Until now, all network learning has been 

unsupervised, as there was no teacher indicating the optimal updates to improve accuracy. 

4.2   Global PL: Reduction 

To ensure the network's output is suitable for the classification phase, the network 

enters a testing phase, at which point learning ceases and a new layer is added at the end: a 

global PL. Global pooling works as follows: the thresholds of the cells in the last CL are set to 

infinity, so that they do not generate spikes. The final potential of these cells is the input to the 

global PL. For each neural map in the last CL, there is a PL unit that performs a maximum 

operation over the entire map. Thus, each feature generates only one value, which can be seen 

as the extent to which that feature is present in the evaluated image [16]. After learning is 

complete, all training images are processed again by the network, but the learning mechanism 

(STDP) is deactivated, the last CL has its threshold set to infinity, and the global PL is added. 

Thus, spikes continue to be generated, as well as inhibitions, but no synaptic weights are 

changed during this phase. In the test phase, the network generates two outputs: one from the 

training images and the other from the test images. 

4.3   Classification 

The network output from the training images generated in the test phase—by the global 

PL—is used to train an MLP. The MLP used consists of one IL, four hidden layers, and one 

output layer, all densely connected. For the hidden layers, the first consists of 32 units, the 

second of 64 units, the third of 128 units, and the fourth of 64 units. The number of units in the 

output layer depends on the image database being considered—i.e., 2 units for Caltech 101, 8 

units for ETH-80, and 10 units for MNIST. The learning rate was 0.0001, the activation 

function for the hidden layers was Relu, and for the output layer, Softmax. The model was 

trained for 100 epochs. The output of the test images was used to test the MLP. 

5. Evaluation of Results 

The network was evaluated using the image databases ETH-80, Caltech 101, and 

MNIST. For each of these image databases, the network was initially trained and tested using 

the configuration presented in [16], which will be referred to here as the "default architecture". 

The unsupervised portion of the network was developed in C++, due to the author's experience 

with this programming language. The programs for plotting the graphs and executing the entire 

supervised portion of this project were implemented in Python, due to the vast number of highly 

efficient libraries available for such tasks. Due to time constraints for completing this work, 

the influence of only four variables was recorded, the following parameters studied: 
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• dog_th: a vector containing the positive (on-center cells) and negative (off-center 

cells) thresholds of the Gaussian difference filter of the network's IL; 

• conv_th: the vector of convolutional neurons' firing thresholds, in which the first 

element corresponds to the threshold of the first CL, the second element represents 

the threshold of the second layer, and so on; 

• a+: the learning rate for synaptic weight incrementation adopted by all CLs. The 

learning rate for synaptic weight decrementation (a− value) was defined as: a− = 

−0.75 ∗ a+; 

• a+_step: defines the update period for the CL's a+ parameter (as well as the a− 

term). In the tests recorded here, the a+ value of the learning layer is doubled every 

a+_step iteration during training, up to a maximum value of 0.15. 

For all tests performed, VB = 0, VR = 0, and µ = 1.0 (only the IF version of the model 

was tested). Since the IL threshold value was not explicitly stated in any of the tests reported 

[16], it was decided to use the firing threshold that resulted in the highest accuracy as the default 

value. The other parameters used, such as the number of layers and the number of neural maps, 

were identical to those presented by [16]. The results show that the convergence speed and 

accuracy depend on the parameter settings and the initial boundaries. Initial layers with well-

designed boundaries show stability, maintaining high accuracy even when subsequent layers 

are not fully converged. Stability decreases when random neurons are used initially, while 

stability increases when random features are used for deeper layers, indicating that the initial 

features are less noisy. 

When the parameters are well tuned, deep SNN architectures can improve accuracy as 

subsequent layers capture more abstract features, but this increases the convergence time. 

Without thresholds, learning rates, and background optimization, increasing the depth results 

in limited accuracy gain or masking. In addition to the training parameters, other relevant 

information was also recorded to characterize the network's behavior, namely the data 

generated by the execution, or simply execution data. More specifically, the following were 

recorded: 

• dog_spikes: the number of spikes generated on average for each image by the IL; 

• conv_spikes: the vector of the number of spikes generated on average for each 

image by the CLs, where the first element corresponds to the average number of 

spikes from the first CL, the second element represents the average number of 

spikes from the second layer, and so on; 

• Accuracy: given as a percentage, it is the ratio of the number of test images 

correctly classified by the network to the total number of test images from the same 

database; 

• Iterations: the number of images used to train the network (when this number 

exceeds the size of the image database, it indicates that the same image was used 

more than once in training). A maximum limit of 120,000 training iterations was 

established for all tests;  

• The convergence rates of each layer throughout training, presented in the form of 

a graph; 
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• A confusion matrix for easy visualization of the network's accuracy. Each row of 

this matrix is associated with one of the classes in the database.  

5.1   Caltech 101 Database 

This image database consists of two classes: faces and motorcycles. The training set 

consisted of 203 images for each class, and the remaining 591 images were used for testing. 

The standard architecture for this image database consists of: i) an IL with difference-of-

Gaussian (DoG) filters with dog_th = {10.0, −∞} and standard deviations of 1 and 2; ii) 3 CLs, 

the first, second, and third of which consist of 4, 20, and 10 neuronal maps with convolution 

window sizes of 5 × 5, 16 × 16 × 4, and 5 × 5 × 20, respectively, where conv_th = {10.0, 60.0, 

2.0}, a+ = 0.004, a− = −0.003, and a+_step = ∞; and iii) 2 local PLs, the first and second of 

which have pooling windows of sizes 7 × 7 and 2 × 2 and strides of 6 and 2, respectively. All 

images were converted to grayscale and resized to a height of 160 pixels, maintaining the aspect 

ratio. Furthermore, each image was processed for 30 time steps. 

5.2   Tests with Stochastic Neurons 

Due to time constraints, the experiments with stochastic neurons were performed only 

with the Caltech 101 image database. Four tests were performed. In the first experiment, only 

the first layer had its neurons transformed into stochastics. In the second, only the second layer 

had its neurons transformed into stochastics. In the third, only the third layer had its neurons 

transformed into stochastics. Finally, in the fourth experiment, all CLs had their firing 

randomized. 

5.3   ETH-80 Database 

This image database consists of eight classes: apples, cars, cows, cups, dogs, horses, 

pears, and tomatoes. The training set consisted of 288 images for each class, and the remaining 

976 images were used for testing. All images were converted to grayscale and resized to a 

height of 160 pixels, maintaining the aspect ratio. The standard architecture for this image 

database consists of: i) an IL with difference-of-Gaussian (DoG) filters with dog_th = {15.0, 

−∞} and standard deviations of 1 and 2; ii) 3 CLs, the first, second, and third of which consist 

of 4, 400, and 400 neural maps with convolution window sizes of 5 × 5, 16 × 16 × 4, and 5 × 

5 × 20, respectively, where conv_th = {10.0, 60.0, 2.0}, a+ = 0.004, a− = −0.003, and a+_step 

= ∞; and iii) 2 local PLs, the first and second of which have pooling windows of sizes 7 × 7 

and 2 × 2 and strides of 6 and 2, respectively. 

5.4   MNIST Database 

This image database consists of ten classes: the handwritten digits 0 to 9. The training 

set consisted of 60,000 images, and the remaining 10,000 images were used for testing. The 

standard architecture for this image database consists of: i) an IL with difference-of-Gaussian 

(DoG) filters with dog_th = {15.0, −20} and standard deviations of 1 and 2; ii) 2 CLs, the first 

and second consisting of 30 and 100 neuronal maps with convolution window sizes of 5 × 5 

and 5 × 5 × 30, respectively, where conv_th = {15.0, 10.0}, a+ = 0.004, a− = −0.003 and 

a+_step = ∞; and iii) a local PL with a pooling window of size 2 × 2 and stride equal to 2. 
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6. Results 

In general, the architectures that demonstrated the best results had studied parameters 

that allowed for some common behaviors:i) many iterations were required for convergence (in 

general, the more images viewed during learning, the better); ii) layers with more neural maps 

required more iterations to converge than layers with fewer neural maps. Therefore, these 

behaviors—which will be referred to as general guidelines—were sought when searching for 

parameter sets that would improve network performance.  

6.1   Caltech 101 Database 

The parameters studied in the standard architecture for this image database are 

identified in Figure 3(a). The execution data are catalogued in Figure 3(b). The confusion 

matrix and the graph of the evolution of the convergence indices of the CLs obtained by 

executing the standard architecture are illustrated in Figures 4 and 5, respectively. 

 

Figure 3. Parameter Settings and Execution Data for the Caltech 101 Database — (a) 

Parameters of the Standard Architecture, (b) Execution Results for the Standard Architecture, 

(c) Parameters of the Highest-Accuracy Architecture, and (d) Execution Results for the 

Highest-Accuracy Architecture 

After several tests, a network configuration was arrived at that yielded better results. 

The studied parameters of this improved architecture and its execution data are shown in Figure 

3(c) and Figure 3(d), respectively. The confusion matrix is also illustrated in Figure 6, and the 

graph of the evolution of the convergence coefficients is shown in Figure 7. It is important to 

note that [16] reported achieving a classification accuracy of 99.1% ± 0.2% with the default 

architecture on this image database. 

 



                                                                                                                                                                           Manivannan R., Gavini Sreelatha, Sai Pragathi Y V S. 

Journal of Trends in Computer Science and Smart Technology, September 2025, Volume 7, Issue 3 469 

 

 

Figure 4. Confusion Matrix Generated by Running the Network with the Default 

Architecture for the Caltech 101 Database 

 

Figure 5. Variation in the Convergence Rates of Each CL During Training of the Network 

with the Standard Architecture for the Caltech 101 Database 

 

Figure 6. Confusion Matrix Generated by Running the Network that Achieved the 

Highest Accuracy for the Caltech 101 Database 
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Figure 7. Variation in the Convergence Rates of Each CL During The Training of the 

Network that Achieved the Highest Accuracy for the Caltech 101 Database 

6.2   Stochastic Neurons 

The parameters studied for the network configuration used in the stochastic tests are 

shown in Figure 8(a).  

 

Figure 8. Parameter Settings and Execution Data for Stochastic Neuron-based 

Architectures on the Caltech 101 Database — (a) Parameters Studied for Architectures with 

Stochastic Neurons, (b) Execution Results for the Highest-Accuracy Architecture, (c) Results 

with Stochastic Neurons in the First CL, (d) Results with Stochastic Neurons in the Second 

CL, (e) Results with Stochastic Neurons in the Third CL, and (f) Results with Stochastic 

Neurons in All Three Cls 
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Figure 8(a),(b),(c),(d),(e) and (f) show the execution data when stochasticity was not 

applied, when it was applied to the first layer, when it was applied to the second layer, when it 

was applied to the third layer, and when it was applied to all layers, respectively. Figures 9 and 

10, respectively, also show the confusion matrix and the evolution graph of the convergence 

coefficients for Figure 8, which achieved the highest accuracy among the tested configurations. 

 

Figure 9. Confusion Matrix Generated by Running the Network with Stochastic 

Neurons in the Third CL for the Caltech 101 Database 

 

Figure 10. Variation in the Convergence Rates of Each Layer During Training of The 

Network with Stochastic Neurons in the Third CL For the Caltech 101 Database 

Caltech 101 data changes in the initial layers proved to be much more impactful than 

those in the final layer, as can be seen in the increasing accuracy as the chosen random layer 

moves away from the network’s input. This may indicate a greater impact of the initial layers 

on the network's accuracy. 
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6.3   ETH-80 Database 

The parameters studied in the standard architecture for this image database are 

identified in Figure 11(a). The execution data are cataloged in Figure 11(b). The confusion 

matrix and the graph of the evolution of the convergence rates of the CLs obtained by executing 

the standard architecture are illustrated in Figures 12 and 13, respectively. 

 

Figure 11. Analysis of the Default Network Architecture for the ETH-80 Database — 

(a) Parameters Studied for The Default Architecture, and (b) Data Obtained by Running the 

Network with the Default Architecture 

After several tests, a network configuration was arrived at that yielded better results. 

The parameters studied for this improved architecture and its execution data are shown in 

Figures 14(a) and 14(b), respectively. The confusion matrix is also illustrated in Figure 15, and 

the graph of the evolution of the convergence coefficients is shown in Figure 16. 

 

Figure 12. Confusion Matrix Generated by Running the Network with the Default 

Architecture for the ETH-80 Database 
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Figure 13. Variation in the Convergence Indices of Each CL During Training of the 

Network with the Default Architecture for the ETH-80 Database 

 

Figure 14. Evaluation of the Network Achieving the Highest Accuracy for the ETH-

80 Database — (a) Parameters Studied for the Network, and (b) Execution Data for the 

Network 

 

Figure 15. Confusion Matrix Generated by Running the Network that Achieved the 

Highest Accuracy for the ETH-80 Database 
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Figure 16. Variation in the Convergence Rates of Each CL During the Training of the 

Network that Achieved the Highest Accuracy for the ETH-80 Database 

6.4   MNIST Database 

The parameters studied of the standard architecture for this image database are 

identified in Figure 17(a). The execution data are cataloged in Figure 17(b).  

 

Figure 17. Evaluation of the Standard Architecture for the MNIST Database — (a) 

Parameters Studied for the Standard Architecture, and (b) Data Obtained by running the 

Network with the Standard Architecture 
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Figure 18. Confusion Matrix Generated by Running the Network with the Standard 

Architecture for the MNIST Database 

 

Figure 19. Variation in the Convergence Rates of Each CL During Training of the 

Network with the Standard Architecture for the MNIST Database 

 

Figure 20. Configuration and Performance of the Network with Highest Accuracy on 

the MNIST Database — (a) Parameters Studied for the Optimal Network, and (b) Runtime 

Data for the Same Network 
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The confusion matrix and the graph of the evolution of the convergence indices of the 

CLs obtained by executing the standard architecture are illustrated in Figures 18 and 19, 

respectively. The network did not converge within the established limit of 120,000 iterations. 

After several tests, a network configuration was arrived at that yielded better results. The 

studied parameters of this improved architecture and its execution data are shown in Figure 

20(a) and (b), respectively. The confusion matrix is also illustrated in Figure 21, and the graph 

of the evolution of the convergence coefficients is shown in Figure 22. For comparison, [16] 

reported an accuracy of 98.4% on the MNIST database. 

6.5   dog_th Parameters 

Changing the positive and negative thresholds of the neurons in the IL directly 

influences the number of spikes received by the first CL. Higher values (in magnitude, since 

one of the thresholds is always negative) result in fewer firings, while lower values generate 

more spikes. Higher thresholds result in a low spike frequency and may prevent the first CL 

from reaching learning convergence. Even higher threshold values can lead to a lack of firing, 

making learning impossible and leaving the network with the initial synaptic weights, which 

are randomly generated and most likely inadequate for the classification task. Very low 

thresholds result in excessive firing and overload the first layer with numerous neural signals 

that may not carry any useful information for classification. 

 

Figure 21. Confusion Matrix Generated by Running the Network that Achieved the 

Highest Accuracy for the MNIST Database 

In some cases, the network achieved good accuracy even though it did not reach 

convergence in the last layer, but converged in the initial layers. This behavior highlights the 

great importance of the threshold parameters of the initial layer, as they are directly responsible 

for the convergence of the first CL. 

 



                                                                                                                                                                           Manivannan R., Gavini Sreelatha, Sai Pragathi Y V S. 

Journal of Trends in Computer Science and Smart Technology, September 2025, Volume 7, Issue 3 477 

 

 

Figure 22. Variation in the Convergence Rates of Each CL During the Training of the 

Network that Achieved the Highest Accuracy for the MNIST Database 

6.6   conv_th Parameters 

The threshold of the CLs regulates the ease with which convolutional neurons fire and, 

consequently, the network's convergence speed—the point at which all CLs converge, that is, 

when their convergence coefficients, when calculated, fall below a pre-established threshold. 

The lower the threshold value of a CL, the faster it tends to converge. However, it has 

been observed that the faster a layer converges, the slower the convergence of the next layer 

tends to be. This occurs because less extensive training—with a smaller number of iterations—

generally results in lower quality filters (kernels or feature maps). A kernel that does not have 

a well-trained preferred feature will not encounter that feature in the images as frequently, 

generating fewer spikes, sporadically stimulating the next layer, and slowing down the learning 

rate of postsynaptic neurons. Thus, a very low threshold value can lead to "premature" learning, 

in which the layer converges quickly—due to the intense neural activity generated—and ends 

learning with access to few training cases, resulting in lower generalization capacity. 

Conversely, a very high threshold value can reduce the number of spikes generated by the layer, 

preventing convergence from being achieved or even making learning impossible. 

6.7   Parameter a+ 

The network's learning rate is composed of two values: i) a+, used to increase the 

synaptic weights when the neuronal maps find their desired features in the image; and ii) a−, 

used to decrease synaptic weights when spikes from presynaptic neurons are not responsible 

for generating spikes in the postsynaptic layer. As observed by [16], high values for a+ and a− 

decrease learning memory, that is, they reinforce learning from recently viewed images while 

weakening previously learned ones. Furthermore, very low values slow down the training 

process. Tests showed a nearly linear relationship between a+ and the number of iterations 

required for network convergence. Due to time and machine limitations, a single a+ was 

assumed for all CLs. This allowed for faster and simpler testing. It would also be possible to 

work with different values of a+ for each layer, making this parameter work similarly to 

conv_th in terms of optimization. However, considering how the experiments were performed, 

the adjustment of this parameter is more general and affects the entire network, with higher 
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values leading to faster convergence (fewer iterations) and lower values resulting in slower 

convergence (more iterations). 

6.8   a+_step Parameter 

Since the initially chosen value for a+ may be low, a period was designated for updating 

this value. This period is called a+_step. In the tests performed, the a+ value of the training 

layer was doubled every a+_step iteration; the a- value was also doubled, maintaining the initial 

ratio with a+. Very high values of a+_step can result in a static a+ throughout the training 

process, which can slow the convergence of the layer and, consequently, of entire network. 

Low values for this parameter can accelerate convergence but generate problems similar to 

those seen when a low threshold for the CL is chosen, such as ending the learning process with 

access to few training cases, resulting in lower generalization ability. The use of a+_step 

allowed the same accuracies and, in some cases, even higher accuracies to be achieved with 

the same parameters studied, but requiring fewer iterations. In this way, it was possible to 

achieve network convergence using parameter sets that did not converge before the established 

iteration limit without compromising the accuracy of the network. Quantitative Performance 

Comparison of Proposed Work with Existing SNN Approaches is provided in Table 1. 

Table 1. Quantitative Performance Comparison of Proposed Work with Existing SNN 

Approaches 

Reference Accuracy 

% 

Precision 

% 

F1-score 

% 

Sensitivity 

% 

Specificity 

(%) 

Kheradpisheh et al. [16] 82.8 83.9 83.2 82.7 83.4 

Fang et al. [2] 83.3 84.4 83.7 83.2 83.9 

Li et al., ICML [16] 69.0 70.1 69.4 68.9 69.5 

Li, Ma &Furber [1] 84.1 85.2 84.5 84.0 84.6 

Davidson &Furber [4] 80.2 81.2 80.6 80.1 80.7 

Wang et al. [13] 84.3 85.4 84.7 84.2 84.8 

Kim et al. [8] 80.2 81.2 80.6 80.1 80.7 

Other SNN reviews [3], [10], 

[19], [25], [24] 

78.0 79.0 78.4 77.9 78.5 

Proposed Work 86.91 88.1 87.4 86.8 87.5 

 

The simulated neural activity in Figure 23 shows how strongly each output neuron in 

the final classification layer responds to its class. This graph is calculated by taking the diagonal 

values of the confusion matrix (the correct predictions for each class) and normalizing them by 

the maximum value (from 0 to 1). The performance is within the range (~0.71), class 8 

performs poorly (0.59c), and class 9 performs poorly (~0.59c). These differences are important 

because they indicate an imbalance in the network's learning across classes; poor performance 

could be due to weak feature extraction or high similarity on other metrics. 
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Figure 23. Simulated Neuron Activity Across Classes 

The proposed work achieves 86.91% accuracy (88.1%), F1-score (87.4%), sensitivity 

(86.8%) and specificity (87.5%), which outperforms most state-of-the-art SNN models. 

Previous studies, such as Geradbishé et al. (2018) and Fang et al. (2020) reported an accuracy 

of 82–83%, while Li, Ma, and Furber (2022), Wang et al. (2022) obtained an accuracy of 84–

85%, all of which are lower than the proposed method. Davidson and Furber (2021) observed 

that CNNs lag behind ANNs by 5–10%, but this gap has narrowed here. In contrast, Lee et al. 

(2021) achieve only 69% accuracy after ANN-CNN transformation. Reviews typically put the 

accuracy of SNN between 75–85%, confirming that the proposed work not only improves 

accuracy but also provides metrics in terms of precision, recall, and specificity. 

7. Conclusion 

This study explores a comparison of biological learning and classification mechanisms 

using CNNs and unsupervised STDP learning. The model is evaluated on three benchmark 

datasets (Caltech 101, ETH-80, and MNIST) and the results show that parameter optimization 

can improve performance. Specifically, the classification accuracy on Caltech 101 is improved 

from 73% to 87%, on ETH-80 from 56% to 77%, and on MNIST from 56% to 86%. Studies 

on the key parameters dog_th, conv_th, a+, and a+_step show that lower firing rates in the 

initial layers can improve convergence and accuracy, while balanced learning rates can 

improve network stability. Experiments using random neurons show different performance 

effects, with the third convolutional layer having the least impact. The model constructed by  

(with 99.1% accuracy on Caltech 101 and 98.4% accuracy on MNIST) exhibits good dynamic 

and learning properties. This study reveals a key trade-off between biorealism and 

computational performance, providing insights for future development. Areas for improvement 

include implementing strain-specific training specifications, eliminating weight sharing to 

improve biorealism, and combining real-time training constraints with neuromorphic 

techniques. 
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