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Abstract 

Their excellent performance and compatibility with CMOS technology, while the 

OXRAM (Oxide-based CMOS Resistive Random Access Memory) technique used in CMOS 

transistors presents challenges in terms of device unpredictability and scalability, also offers 

potential advantages such as higher endurance, lower power consumption, and quicker reading 

and writing operation speeds when compared to traditional Flash memory. The inability of 

conventional SRAMs to store data after powering off limits their use in battery-operated mobile 

devices and other applications where non-volatility related to zero leakage currents is required. 

In the article, a new OXRAM-based Non-Volatile SRAM (NVSRAM) device is presented. It 

is suggested to compare the performance of SRAM with NVSRAM at the memory and cell 

levels. Learning is crucial for the brain's ability to adapt to changing conditions. A synaptic 

connection table in an external memory at a local routing node is used to learn a rule in the 

address domain for neuromorphic architecture. A number of parameters are compared, 

including design complexity, leakage current values (SRAM cells are 3.4µA, 7.4nA) and 

(NVSRAM-based OXRAM are 2.7 µA, 5.9nA) at 180nm and 90nm, and energy saving or 

power usage values (SRAM cells cell are 5.5 µA, 10.5nA) and (NVSRAM based OXRAM are 

4.9 µA, 9.8nA) at 180nm and 90nm. The circuits that are being described can be realized using 

far-above ground voltage CMOS Cadence tools at 180 nm and 90 nm. 

Keywords: Static Random CMOS Access Memories (SRAMs), Non-Volatile CMOS SRAM 

(NVCSRAM), OXRAM, Power Dissipation, Technology 

1. Introduction 

The construction of low-power devices, with an emphasis on integrated photonic 

components, is becoming more critical as lightweight computers become more popular and IoT 

systems more complex. These devices offer high-speed, power-efficient photonic acceleration 

solutions, thus providing a promising alternative to digital circuits [1, 2]. Multiple studies have 

aimed at enhancing optical structures, particularly the efficiency of photodiodes and 

information converters [3]. Yet, a compelling desire remains to create reliable, low-energy 

memories for such systems [4, 5]. 

A few neurological devices based on SNNs have been designed for AI purposes. Since 

SNNs utilize pulses as signals for neuromorphic computation, they are closer to actual 

biological neural networks compared to conventional ANN, or artificial neural networks, SNNs 
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significantly enhance parallel computing performance by representing information 

transmission in the form of temporal relationships between spikes. Low-power neural 

computing functions are expected to benefit significantly from brain-inspired SNNs [6-7]. 

The persistent "von Neumann bottleneck" has stimulated the search for novel 

approaches to computation that can address the increasing demands of data-intensive and low-

cost applications. Neuromorphic computing, which mimics the brain's highly efficient and low-

power consumption, has been a promising substitute. Original neuromorphic hardware 

demonstrated the potential of this method, but new breakthroughs in hardware, particularly in 

memory developments, have accelerated the maturity of the field. In particular, with the advent 

of technologies such as Resistive Random-Access Memory (RRAM), the groundwork for 

building more scalable and efficient neuromorphic hardware has been well established, leading 

to applications ranging from low-power edge computing to wearable AI. Though various works 

have provided an overview of neural computation and its basic principles, most focus either on 

cutting-edge architectural concepts or on explicit device-level physics. 

There exists an essential gap in the literature for a targeted work that correlates the 

development of new memory techniques, like combination non-volatile SRAM (NVSRAM) 

and RRAM, with the architectural considerations of Spiking Neural Networks (SNNs) for 

existing applications. For instance, a detailed investigation into how different memory-

processor integration schemes influence the power efficiency of SNNs for edge AI remains 

missing. This survey makes up for the gap by providing an extensive analysis of modern 

neuromorphic designs, emphasizing the role of novel Non-Volatile memory (NVM) devices. 

In order to evaluate architectural performance, we present an extensive analysis of interactions 

between memory technologies, SNN models, and the system-level architecture. 

Our primary contribution is to integrate existing findings to present a novel perspective 

on how developments in memory-device technology are impacting neuromorphic systems of 

the next generation that are being used in power-constrained applications like edge computing. 

This work proposes a groundbreaking OXRAM-based NVSRAM architecture that combines 

OXRAM and CMOS technologies to enhance reliability and performance. Through the 

application of SRAM constituents to compensate for OXRAM's natural fluctuations at real 

operational times, the design effectively addresses unpredictability without being volatile. The 

proposed architecture is more energy efficient compared to conventional SRAM at 180nm and 

90nm nodes. At the 180nm node, it has low leakage current (2.7 µA compared to 3.4 µA) and 

power.  

2. Analysis of the Proposed Cell Methodology 

2.1   9TSRAM Cell  

Figure 1 depicts the working concept of typical 6T SRAM cells with 180nm and 90nm 

CMOS semiconductor sizes. Figure 2 illustrates the usual architecture of a 6T SRAM cell. The 

word line (WL) controls the two accessible barriers (NM2 and NM3), which define where the 

cell needs to be linked through the bit lines (BL and BLB), making the cell available.  

Both the read and write procedures use them to convey data. Even if an additional pair 

of bits per line is not required, providing both the input signal and its inverse typically boosts 

noise margins. Using this architecture, data stability improves while leakage power decreases. 

During the reading process, the 9T SRAM cell completely isolates the data from the bit line. 
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Unlike ordinary 6T SRAM cells, idle 9T transistors are placed in a super cutoff stage of deep 

sleep, reducing leakage power consumption. Figure 3 depicts the schematic for 9T SRAM cells. 

The 9T SRAM cell experiences either static or dynamic power dissipation; however, the 

architecture is especially designed to lower both when compared to previous 6T cells. A notable 

benefit of the 9T architecture is the complete separation of nodes storing data during read 

operations, which considerably reduces dynamic power usage during reads. 

 

Figure 1. Operational Concept of SRAM Cell 

 

Figure 2. Standard Architecture of 6T SRAM Cell 

BITLINE 
BITLINE 

BAR 



                                                                                                                                                                                                               Joshika Sharma, Shyam Akashe 

Journal of Trends in Computer Science and Smart Technology, December 2025, Volume 7, Issue 4 625 

 

The inverters serve as storage elements, reinforcing each information bit throughout the 

cell as long as power is available (VDD). PM0 and PM1 are PMOS transistors; NM0, NM1, 

NM2, and NM3 are NMOS transistors. NM2 and NM3 are the access semiconductors (or pass 

transistors) that connect the cell to the Bit Lines (BL and BLB).  

The write signal (WL) controls the two accessible write transistors (NM2 and NM3). 

The data is stored in this top memory sub circuit. The lower sub circuit of the new cell is made 

up of data line accessibility semiconductors (NM4 and NM5) and an access for reading 

transistor (NM6). The data contained in the cell (Q and QBAR) controls the activities of NM4 

and NM5. NM6 is regulated by an additional read signal (RD). 

 

Figure 3. Diagram for a 9T SRAM Cell 

2.2   OXRAM Technology 

A physical model that predicts OXRAM variation during the Low Resistance Phase 

(LRP) and High Resistance Phase (HRP) is described. The purpose of this investigation is 

twofold. Variability is, in fact, one of the problems preventing OXRAM technology from being 

widely used in commercial products from the perspective of traditional memory applications. 

Therefore, advice to lessen this problem may be provided by studying the source of OXRAM 

resistance fluctuations. From the perspective of neuromorphic computing, OXRAM devices 

are a perfect fit for artificial synaptic implementation. Studying the effects of synaptic 

variability at the system level can be accomplished by creating a model that can replicate device 

variability under a variety of programming circumstances. 
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In addition to their typical physical structure, two basic switching states the OFF and 

ON states, associated with the conductive filaments (CF) of the RRAM devices are commonly 

characterized electrically. Low-resistance-state (LRS) and high-resistance-state (HRS) are 

other names for these states, respectively. By changing resistance states, RRAM devices may 

complete the data storage function based on "0" or "1". The device's LRS value shows a high 

conductance state, whereas its HRS value shows a low conductance condition. The ratio of 

HRS to LRS determines the ON/OFF ratio. 

The SET action is defined as the transition from HRS to LRS by means of the functional 

voltage bias, and the RESET function is the transfer from LRS to HRS. VSET and VRESET 

are the stop voltages for the SET and RESET processes, respectively. Unipolar and bipolar 

switching are often classified as two distinct kinds [8], as shown in Figure 4. The bipolar mode 

of switching is determined by the orientation of the voltage that is used for bias, whereas the 

unipolar switching mode is determined by the frequency range of the supplied voltage bias. 

 

Figure 4. (a) SET/RESET Unipolar RRAM Devices and (b) SET/RESET Bipolar 

RRAM Devices 

Modeling oxygen vacancies in an insulator layer depends on an induced electric field 

that creates and destroys them. Constantly monitored procedures to transition between high 

and low resistive states are handled by a unique equation that governs the resistance of each 

filament. The following solutions are given in equations (1) and (2): 

𝑑𝑟𝑐𝑓

𝑑𝑡
= (𝑟𝐶𝐹𝑚𝑎𝑥 − 𝑟𝐶𝐹) . 10𝛽𝑟𝑒𝑑𝑜𝑥  . 𝑒−

𝐸𝑜−𝑞𝑟𝑒𝑑−𝑣𝑐𝑒𝑙𝑙
𝑘𝑏−𝑡  

                                                                                                                                                 (1) 

−𝑟𝐶𝐹 . 10𝛽𝑟𝑒𝑑𝑜𝑥  . 𝑒−
𝐸𝑜−𝑞𝑟𝑒𝑑−𝑣𝑐𝑒𝑙𝑙

𝑘𝑏−𝑡  

Here, the red oxide reduction rate (RedOx), the activation energy (Ea), the transfer 

coefficients (ranging from zero to one) of red and orange, and the Boltzmann constant, rCFmax, 
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represent the maximum diameters of conductive filaments. Various assumptions, such as a 

homogeneous electric field and a finite filament radius, are included in the model. Several 

factors affect how quickly a response occurs, including temperature and time of day. To sum 

up, the OXRAM total current consists of a conductive current (ICF) and a conductivity-related 

current (OCR) (IOX). The following are the formulas for ICF and IOX: 

                                 𝐼𝐶𝐹 =  
𝑉𝑐𝑒𝑙𝑙

𝐿𝑥
 . (𝜋 . 𝑟𝐶𝐹

2  . (𝜎𝐶𝐹 −  𝜎𝑂𝑋) + 𝜋 . 𝑟𝐶𝐹
2 𝑚𝑎𝑥 . 𝜎𝑂𝑋)                        (2) 

Oxidation and reduction rates are represented by Ox and CF respectively. The oxide 

thickness, SCell, is determined by Lx. Therefore, IOCX catch enhanced contemporary 

capability by examining two constraints, ACHRS and HCRS associated with the power-law 

between the bias provided and group currents. To sum it up, the cell's total current flow is 

represented by the following equations (3) and (4): 

                                                      𝐼𝑂𝑋 =  𝐴𝐻𝑅𝑆 . 𝑆𝑐𝑒𝑙𝑙 (
𝑉𝑐𝑒𝑙𝑙

𝐿𝑋
)

𝛽𝐻𝑅𝑆

                                                (3) 

 

                                                          𝐼𝑐𝑒𝑙𝑙 = 𝐼𝐶𝐹 + 𝐼𝑂𝑋                                                                    (4) 

 

2.3   9T NVSRAM Storage Unit 

The suggested 9T configuration is shown in Figure 5. Compared to the most advanced 

NVSRAMs, this new cell contains fewer control signals. The typical access transistors NM2 

and NM3 are coupled to the OXRAM PX0 and PX1 devices. Other transistors called NM4 and 

NM5 are employed for the STORE and RESTORE non-volatile storage functions. The two 

operations that make up STORE are SET and RESET. In the OXRAM device, SET writes "1" 

and RESET stores "0." 

WL and BLB are placed near the ground during FORMING, whereas BL and WL are 

placed far above the ground. The OXRAM may be created in a single step at this point (NM4 

is ON: BL and the OXRAM are directly connected). BLB is grounded, BL is set to 0.7 V, and 

WL is pulsed to set in motion the access transistors (NM2 and NM3). A WRITE process comes 

before a STORE operation. WL and BLB are placed far above the ground and BL and WL are 

place near the ground during the WRITE "0" operation. Following WRITE "0," RESET is the 

step where WL and BL are placed near the ground. BLB and BL are pre-charged to VDD/2 

(0.7V) during the Precharge step. READ operations are often carried out via WL, which is 

placed far above the ground. Each of the indication, including VDD, is switched off following 

storing (SET and RESET) and READ operations. To keep the data when the power goes out, 

the RESTORE process is necessary. WL is placed far above the ground and Vdc is enabled in 

order to complete RESTORE. We keep all other signals low. After RESTORE, Precharge and 

READ proceed as usual, with WL set high and low at the same time.  

A schematic of the 9T NVSRAM is shown in Figure 6. The transistors NM4 and NM5 

are coupled to the OXRAM PX2 and PX3 devices. BL and BLB are precharged to Vdd/2 (0.7V) 

during the precharge step. Reading operations (RD) are often carried out via WL, which is 

placed far above the ground. Every single one of the indications, including Vdc, is switched 

off following the storing (SET & RESET) and reading functions. To keep data when the power 

goes out, the RESTORE process is necessary. WL is placed far above the ground, and Vdc is 

enabled in order to complete RESTORE. We keep all other signals low. After RESTORE, 

precharge and READ proceed as usual, with WL set high and low at the same time. 
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Figure 5. Schematic of 9T NVSRAM (PX0 and PX1OXRAM) 

 

Figure 6. Schematic of 9T NVSRAM 
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2.4   Synaptic Configuration and SDSP Training Model 

After presynaptic voltage signal pulses are converted by synaptic transmission, 

postsynaptic currents, which are controlled by synapse weight, are delivered into the membrane 

of the target neuron. Since synaptic weight theoretically transforms brief presynaptic pulses 

into persistent postsynaptic currents with intricate temporal dynamics, linear exponentially 

temporal features facilitate this process. In Very LargeScale Integration (VLSI) technology 

SNN (VLSI technology) SNNs designs, currents from several synapses are combined in a 

single postsynaptic neuron circuit. Postsynaptic potentials rise with higher excitatory activity 

in synapses and fall when there is greater inhibitory activity due to the weighted average of 

information from the inputs acquired by a postsynaptic neuron. 

Therefore, in order to minimize silicon surface area and ensure optimal synaptic 

absorption on the chip, synaptic circuits must be small. However, a large amount of silicon real 

estate may be needed to design synaptic integrator circuitry with straightforward response 

features and time constants comparable to the membrane time constant of the neuron. Thus, it 

is a challenging but ongoing task to design small linear synaptic structures that replicate the 

functional properties of actual synapses. Many designs for synaptic networks have been created 

that strike a compromise between circuit/layout dimensions, usefulness, and the intricacy of 

temporal dynamics. Many proposed circuits replicate the biophysical properties of synaptic 

channels by limiting the signal's dynamic range or including floating-gate devices. Here, we 

propose properties for synaptic circuits with a wide dynamic range that is linear and 

exponential. 

 A synaptic circuit diagram is shown in Figure 7. Excitatory and inhibitory synapses 

are combined to satisfy SNN criteria with a small design. As a new feature for synaptic circuits, 

this architecture offers attribute configuration. 

A postsynaptic pulse (Pre_spk) and weight (Vw) activate the voltage-controlled sources 

of current that power the excitatory (NM6–NM7) and inhibitory (NM9–N10) synapses. By 

using the digital output of Cont to control transistors NM5 and NM8, the synaptic 

characteristics may be set up to suit real-world requirements. While NM6 creates an excitatory 

power that is exponentially reliant on the Vsyn endpoints and NM7 modifies the excitatory 

current's amount via bias voltage Vexc, transistor NM1 serves as a constant current source to 

the vertically charged capacitor Csyn. To releasing the membrane potentials of neurons, 

Transistors NM9–NM10 produce an inhibitory synaptic exponential current. The excitatory 

synapse, for instance, complies with the following dynamics according to the linear 

transmission principle: 

                                                       
𝐶𝑠𝑦𝑛

𝐼𝜏

𝑑𝐼𝑠𝑦𝑛

𝑑𝑡
+ 𝐼𝑠𝑦𝑛 =

𝐼𝑤

𝐼𝜏
                                                     (5) 

Where𝐼𝜏 and Iw are currents set by Vt as well as Vw, respectively, and I_synis is the 

synaptic output current. Current 𝐼𝜏 and capacitor Csyn can be used to alter the synapse time 

constant. Capacitors must be larger or 𝐼𝜏current must be reduced in order to raise the circuit's 

time constant. We modify the aspect ratio of NM1 to provide an ideal exponential current time 

constant for LIF neurons, avoiding the high area requirements caused by growing capacitance 

sizes in the 90 nm technology. 
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Figure 7. Synapse SDSP (Excitatory and Inhibitory) Circuit Schematic 

Neuromorphic hardware design techniques have been compared by Frenkel et [9]. The 

term "bottom up" refers to neural and synaptic modeling that replicates the biological 

mechanism in silico. Examples of its applications include neuroscience research, brain reverse 

engineering, and hybrid setups between artificial and biological neurons; examples of this type 

of approach include ROLLS, DYNAPs, BrainScaleS, Neurogrid, SpiNNaker, True North, and 

Loihi. At the same time, a number of researchers have made improvements that enable the 

effective to use of SNN for particular tasks that were previously only possible with regular 

DNN (Liu and Yi [10]. In neuromorphic system design, OXRAM is employed as the synaptic 

connection table, providing an efficient means of storing and updating synaptic weights. Its use 

at routing nodes enables localized learning, where adaptation occurs within the address domain, 

reflecting the brain’s natural capability to respond to dynamic conditions. Owing to its fast 

read/write characteristics, high endurance, and low energy requirements, OXRAM is well-

suited to the parallel, low-power computational demands of neuromorphic architectures, 

making it a promising element for next-generation brain-inspired computing solutions. 

3. Results and Simulation 

A waveform is a graphical representation of the shape and magnitude of a signal over 

time. It typically depicts how the voltage of the signal changes over time, with time plotted 

along the horizontal axis and voltage plotted along the vertical axis. The 9T SRAM waveforms 

for outputs Q and Qbar are superior to those of others waveforms.  

The findings of SRAM and 9T NVSRAM simulations are presented   in this segment. 

In this cell, BL is high and data stored in Q is “0,” while and at the same time BLB is low, and 
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data stored in QBQR is “1” respectively. The transient analysis of 9T SRAM is illustrated in 

Figure 8, while the leakage current waveform of 9T SRAM units is illustrated in Figure 9. The 

levels of voltage pulses are adjusted to match the available voltage supply VDD (1.8 and 0.7V). 

 

Figure 8. Transient Analysis of 9T SRAM cell 

 

Figure 9. LC waveform of 9T SRAM cell 

Transient analysis of the 9T NVSRAM cell OXRAM (PX0 and PX1) is displayed in 

Figure 10, and the leakage current of the 9T NVSRAM cell OXRAM (PX0 and PX1) is shown 

in Figure 11, which were produced following the 9T NVSRAM cell OXRAM (PX0 and PX1) 

simulations. The pre-charge circuit is enabled while pre-charge (the pre-charge indication is 

"0") and the write drives (WE) and sensing amplifier (SE) are kept off since the selected 

semiconductor in the pre-charge circuitry is a PMOS. During WRITE, sensing amplifier 

circuits remain off (SE "0"), while pre-charge circuits are switched off (pre-charge SET high). 

To access the cells, the write driver is activated (WE "1") when the row's decoding is enabled 

(ENABLE "1"). To preserve the data inside the cross-coupled inverters, all signals—aside from 

VDD—are turned off during the HOLD state. When the same conditions of pre-charge from 

the previous WRITE are satisfied, the following stage is pre-charge before READ. The write 

drive circuit is disabled, and the pre-charge circuit is deactivated during READ. The BL and 

BLB sensing pathway may access the chosen sense amplifiers since the column decryption is 
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maintained ON (ENABLE2 "1"). In one SRAM cell, writing "0" (Q) operation yields the output 

"0," whereas writing "1" (QBAR) operation yields the output "1."  

 

Figure 10. Transient Analysis of 9T NVSRAM cell OXRAM (PX0 and PX1) 

 

Figure 11. LC waveform of 9T NVSRAMOXRAM (PX0 and PX1) 

Figure 12 shows the transient analysis of the 9T NVSRAM cell OXRAM (PX0, PX1, 

PX2, and PX3). BLB is grounded, and BL is set to 0.7 V. A WRITE process occurs before a 

STORE operation. BLB is placed far above the ground, and BL is placed near the ground during 

the WRITE "0" operation. Following WRITE "0," the (Q) RESET step is where BL is placed 

near the ground. BL and BLB are pre-charged to VDD/2 (0.7 V) during the precharge step, 

demonstrating low power consumption in the cell. In contrast, Figure 13 shows the leakage 

current of the same cell.  
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Figure 12. Transient Analysis of 9T NVSRAM OXRAM (PX0, PX1, PX2, and PX3) 

 

Figure 13. LC waveform of 9T NVSRAM OXRAM (PX0, PX1, PX2, and PX3) 

3.1   Performance Parameters of Proposed 9T NVSRAM 

This study analyzed a number of cell characteristics and presented a unique 9T 

NVSRAM cell that was created and simulated using the Cadence tool. The formation of a 

conducting oxygen film between two terminals determines the OXRAM HRS and LRS. 

Mobility µv, OXRAM HRS (ROFF), and LRS (RON) have been chosen. The semiconductor 

film's "D" length is assumed to be 100 nm. The following formula may be used to simulate the 

linear charge control NVSRAM using two resistors connected in series, as given in the 

following equations (6) and (7): 

   𝑅(𝑊) = 𝑅𝑂𝑁 ×
𝑤

𝑑
 + 𝑅𝑂𝐹𝐹 (1 −

𝑤

𝑑
)                                                 (6) 
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  𝑀(𝑄) =  𝑅𝑂𝐹𝐹 (1 −
𝜇𝑉𝑅𝑂𝑁 𝑄(𝑇)

𝑑2
)                                                    (7) 

Where d is the length of the device, µv is the range of motion of oxygen ions, M (Q) is 

the overall, and OXRAMRON & ROFF represent the OFF and ON state resistances. A 90 nm 

Prediction Technology Model scale-up of the technology is used for precise comparison. 

Various technical nodes' condition parameters for NVSRAM simulation are listed in Table 1. 

Table 1. Comparison of SRAM vs. OXRAM-based NVSRAM 

Parameter SRAM at 180 nm / 

90 nm 

OXRAM-based 

NVSRAM at 180 nm 

/ 90 nm 

Advantage of 

NVSRAM 

Volatile vs. 

Non-Volatile 

Volatile; data is lost 

when power is off. 

Non-volatile; retains 

data without power. 

Enables zero-leakage 

standby mode and is 

suitable for battery-

powered devices. 

Leakage Current 3.4 µA (180 nm) / 

7.4 nA (90 nm). 

2.7 µA (180 nm) / 5.9 

nA (90 nm). 

Lower leakage current, 

especially at the more 

advanced 90 nm node, 

leading to significant 

power savings. 

Power 

Consumption 

5.5 µA (180 nm) / 

10.5 nA (90 nm). 

4.9 µA (180 nm) / 9.8 

nA (90 nm). 

Lower overall power 

usage. NVSRAM's zero-

leakage standby mode is 

ideal for low-power 

applications. 

Reading/Writing 

Speed 

High. Potentially higher for 

read/write operations 

compared to 

traditional Flash 

memory. 

Faster operations 

contribute to improved 

system performance. 

Endurance High, but not non-

volatile. 

Higher than traditional 

Flash memory. 

Longer lifespan and 

reliability for write-

intensive applications 

compared to Flash 

memory. 

Design 

Complexity 

Conventional 

SRAM design is a 

mature technology. 

More complex due to 

the integration of 

OxRAM components 

with CMOS. 

Higher complexity is a 

trade-off for non-

volatility and lower 

power consumption. 

Scalability Subject to 

limitations in 

CMOS scaling. 

Faces challenges with 

device unpredictability 

and variability at 

advanced nodes. 

Offers potential 

advantages at scaled 

nodes but requires 

overcoming 

manufacturing hurdles. 
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Neuromorphic 

Application 

Requires external 

memory for 

synaptic connection 

tables, leading to 

increased latency 

and power. 

Can store synaptic 

connection tables 

locally, enabling 

efficient, brain-

inspired, low-power 

processing. 

Better suited for 

neuromorphic 

computing, allowing for 

high parallelism and low 

power dissipation. 

 

3.2   Experimental Result and Discussion 

A comparison of SRAM and NVSRAM's power consumption and leakage current is 

shown in Tables 1 and 2. In normal mode operations, NVSRAM uses a little less power than 

SRAM, suggesting that both architectures have comparable power consumption when utilized 

like traditional SRAMs. The OXRAM stores the NVSRAM's data prior to power-off. Definite 

encoding actions (storing and restoring) must be performed in order to complete this procedure. 

The NVSRAM cell uses 4.9 µW and 9.8 nW of electricity in this particular instance. Keep in 

mind that when the power is turned off, the data cannot be saved since the traditional SRAM 

cell is volatile. VDD is maintained high during the SRAM HOLD state to guarantee data 

retention. In this state, the SRAM uses between 5.5 µW and 10.5 nW of energy. Table 3 shows 

the comparison of previous work with 9T NVSRAM-based OXRAM performances, achieving 

better outcomes. Introducing a new OXRAM-based NVSRAM design. Mitigating 

unpredictability: By integrating OXRAM with CMOS, the aim is to leverage the best of both 

technologies, likely using the SRAM component to handle the unpredictability of the OXRAM 

during active operation. Improving energy efficiency: Comparing the new design against 

conventional SRAM at 180 nm and 90 nm nodes, with explicit data showing reduced leakage 

and power usage (2.7 µA vs. 3.4 µA (leakage) and 4.9 µA vs. 5.5 µA (power) at 180 nm). 

Applying the technology: Demonstrating the relevance of the new NVSRAM for neuromorphic 

applications by implementing the synaptic connection table learning function in a memory cell. 

The characteristics of our proposed circuit are contrasted in Table 4 with those of previous 

programmable circuits used in neuromorphic prosthetic systems [13, 14] and circuitry that 

follows the same procedure [13]. In contrast to a 180 nm circuit concept [14], our design uses 

less circuit space and has a higher energy efficiency of 2.52 nJ@50 Hz (Figure 5) than the 

reference design, which uses 883 pJ@30 Hz. Furthermore, the circuits utilized in [14] & our 

research follow the same procedure, and it is evident that our design provides notable benefits 

in terms of both area and power usage. 

Table 2. Comparison of 9T SRAM and 9T NVSRAM based OXRAM Performances 

Performance Parameter 9T SRAM cell NVSRAM based OXRAM 

Technology 180nm 180nm 

Transistor size W=200nm, L=180nm W=200nm, L=180nm 

Voltage 1.8V 1.8 V 

 Power consumption 5.5µW 4.9 µW 

 Leakage current 3.4µA 2.7µA 

Delay 24.5µs 23µs 
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Table 2 results are shown in Figure 14. The graph points out that at 1.8 supply voltage, 

the values of power consumption, leakage current, and delay decrease with the NVSRAM-

based OXRAM technique in comparison to 9TSRAM. 

 

Figure 14. Graph Shows Comparison of 9TSRAM and NVSRAM based OXRAM at 

180nm 

Table 3. Comparison of 9T SRAM and 9T NVSRAM based OXRAM Performances 

 

Performance Parameter 9T SRAM cell NVSRAM based OXRAM 

Technology 90nm 90nm 

Transistor size W=120nm, L=100nm W=120nm, L=100nm 

Voltage 0.7V 0.7V 

 Power consumption 10.5nW 9.8 nW 

 Leakage current 7.4nA 5.9nA 

Delay 34.5ns 29ns 

 

Table 3 results are shown in Figure 15. The graph indicates that at a supply voltage of 

0.7, the values of power consumption, leakage current, and delay decrease with the NVSRAM-

based OXRAM technique in comparison to 9TSRAM. 
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Figure 15. Graph Shows Comparison of 9TSRAM and NVSRAM based OXRAM at 

90nm 

Table 4. Comparison of Previous work with 9T NVSRAM based OXRAM 

Performances 

References Memory 

structure 

Technology Power 

supply 

Power (When 

storing Data) 

Current (When 

storing Data) 

11 6T2R 130 1.8V 8.58mW 0-50µA 

12 8T2R 280nm 0.9V 3.7nW 0-200µA 

Proposed 

work 

9TNVRAM 90nm 0.7V 3.5nW 0-40µA 

 

Table 5. Comparison of Previous Work with Synapse SDSP 

Performance Parameter [13] [14] Synapse SDSP 

Technology 55nm 180nm 90nm 

Supply voltage 1V 1.8V 0.7V 

Frequency 10Hz-350Hz 30Hz-1KHz 50Hz-1KHz 

Energy per spike 1.099 nJ@10 Hz 883 pJ@30 Hz 2.52 nJ@50 Hz 

 

Table 6. Comparison of Previous Work with 9T NVSRAM Cell 

Performance 

Parameter 

[15] NVSRAM based 

OXRAM (180nm) 

NVSRAM based 

OXRAM (90nm) 

Voltage 0.6 V 1.8 V 0.7V 

 Power consumption 4.69µW 4.9 µW 0.098µW 

 Leakage current 9.32 µA 2.7µA 0.05µA 
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The graph indicates that at a supply voltage of 0.7, the values of power consumption 

and leakage current decrease with the NVSRAM-based OXRAM technique in comparison to 

9TSRAM, as shown in Figure 16. 

 
Figure 16. Graph Shows Comparison of NVSRAM based OXRAM at 90nm and 

NVSRAM based OXRAM at 180nm 

4. Conclusion 

In order to apply new memory, this article proposes an enhanced 9T NVSRCAM 

memory arrangement supported by the OXRAM technique. CMOS technology may be used 

with OXRAM to create non-volatile SRAM (NVSRAM) and other integrated circuits. The 

OXRAM technique is incorporated into the SRCAM to address the issue of information loss 

during a power outage. Prior to a power outage, the SRAM's data is saved in OXRAM. The 

issue of SRAM volatility is resolved while the power supply is restored   since the data is 

moved back to SRAM. According to simulation results, the memory cell was created using 

180nm and 90nm CMOS processes at 1.8 V and 0.7 V power supply voltages. It’s reduced 

power dissipation and quicker information storage and reinstallation times, compared to earlier 

study findings, increase information storage stability. This study only confirmed the storage 

unit and tangential track designs from a functional standpoint, which had certain drawbacks. 

They emulated the NVSRAM. In order to make the design more favorable to the SRAM's read 

speed, we also need to take into account the influence of the forming process, as a degree of 

difference in arrangement necessitates an outline procedure prior to reading and writing, and 

the voltage required for this process is high. The majority of NVSRAM systems that utilize 

OXRAM technology store data in the far above-ground and near-to-ground resistance states of 

the memory. The SRAM and NVSRAM combination operate in a one-to-many mode because 

of this single mode. Nevertheless, studies have shown that OXRAM has the ability to store 

multiple values, meaning that a single OXRAM can hold several bits of data. 
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