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Abstract 

The aim of remote sensing image captioning (RSIC) is to obtain insightful and detailed 

textual description of satellite images and aerial images. However, traditional methods are not 

able to achieve this aim effectively due to a lack of contextual awareness caused by variations 

in scale, viewpoint and scene complexity. In this paper, we propose a method, the Multiscale 

Region-Aware Captioning Network (MSR-CapNet), which helps to achieve the aim of RSIC 

by generating relevant and semantically correct textual descriptions for scenes in satellite 

images (and aerial images). We train and test our method for the purpose of RSIC on the RSICD 

and UCM caption datasets. In our MSR-CapNet method, we have integrated Feature Pyramid 

Encoding (used for local and global visual characteristics representation), Adaptive Attention 

(which helps in dynamic prioritization of relevant regions) and Topic-Sensitive Embeddings 

(to generate semantically consistent captions). To show the effectiveness of the proposed 

method (MSR-CapNet), we compared it with existing techniques (recent transformer and 

graph-based baselines) using BLEU-4, METEOR, and CIDEr measures, where it shows 

consistent improvement over existing techniques. 

Keywords: Remote Sensing Image Captioning (RSIC), Attention Mechanism, Topic-Sensitive 

Word Embeddings, Satellite Images. 

1. Introduction 

The Remote Sensing (RS) images are updated after a fixed time interval; as a result, the 

data within RS images are constantly changing. RS images provide a large amount of 

information from each image, which is useful in various domains such as land use monitoring 

and disaster response. The Geographic Information System (GIS) is improving day by day, 

allowing for efficient analysis and visualization. However, the existing methods are still not 

able to handle scale variation and are facing difficulties with dataset imbalance and 

generalization to new domains [1], [2]. As a result, multi-scale features are not extracted, and 

semantic consistency is not obtained. To address these issues, we propose the Multiscale 

Region-Aware Captioning Network (MSR-CapNet) method, which helps minimize these 

problems by combining feature extraction from multi-scale regions, adaptive attention 

mechanisms, and topic-sensitive word embeddings. 
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1.1   Problem Statement 

While working with Remote Sensing Image Captioning (RSIC) it is observed that the 

following three key challenges were addressed in this work. The first challenge is scale 

variation, due to which regions/objects differ in pixel size; the second challenge is complex 

scenes with similar-view regions/objects; and the last but equally important challenge is the 

limited domain-specific vocabulary, as the remote sensing vocabulary is not very rich. 

1.2   Our Approach and Contributions 

In order to address these issues, we present MSR-CapNet, a Multi-Scale Semantic 

Fusion network that: (i) uses an FPN+RPN backbone to fuse multi-scale region and scene 

features to handle scale variation; (ii) applies an adaptive attention module that balances spatial 

vs. channel attention to improve region–word alignment; and (iii) integrates topic-sensitive 

word embeddings and a GNN to preserve domain semantics and inter-region relations. The 

major contributions are: 

1. A unified pipeline combining multi-scale region extraction, gated attention fusion, 

and topic-aware language decoding for RSIC. 

2. A mathematically-specified adaptive attention mechanism (spatial + channel 

gating) with empirical analysis and attention visualizations. 

3. Extensive experiments on RSICD and UCM-Captions including ablation studies, 

bootstrap confidence intervals, and cross-dataset transfer analysis. 

1.3   Rationale for Method Selection 

The main goal is to address all three challenges mentioned in the problem statement. 

Therefore, in proposing the MSR-CapNet method, we utilize feature pyramid encoding (to 

adapt to scale variation), adaptive attention (to align the scene context), and topic-sensitive 

embeddings (for semantically rich scene descriptions). 

2. Related Work 

The early RSIC techniques were supported by natural image captioning and mostly 

used CNN-RNN architectures. In past years, to obtain global features from remote sensing 

images, a CNN such as VGGNet or ResNet was used, which was then provided as input into 

RNNs like LSTM or GRU to generate sequential captions. [1], [3]. 

When these models are used with high-resolution remote sensing imagery containing 

multiple semantic elements, they show notable limitations. The utilization of a single global 

feature vector produces general and ambiguous captions that lack specificity, particularly for 

complex entities like highways, farmlands, or metropolitan areas. [2], [4]. 

Attention methods were added to address this problem by allowing the model to 

dynamically focus on different areas of the image while   creating a caption [1]. The 

establishment of Transformer-based configurations and region-aware features followed, 

enabling more precise modeling of semantic richness and spatial complexity. [5], [6]. 
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The altitude and sensor resolution variables introduced scale variation, which becomes 

a major problem in remote sensing. To solve this problem, feature Pyramid Networks (FPNs) 

have been frequently used, which blend compact, semantically significant features with precise, 

sparsely semantic features to create a strong multi-scale representation.[7]. 

Recently, Transformer-based backbones like Swin Transformer and Pyramid Vision 

Transformer (PVT) have surpassed conventional CNNs in collecting scale-sensitive 

information because of their hierarchical architecture and self-attention methods. [8], [9]. 

In the last few years, the performance of remote sensing image captioning (RSIC) 

systems has improved dramatically, particularly in enhancing region-word alignment, due to 

the incorporation of attention processes [1], [2]. 

The incorporation of attention-based models allowed the decoder to dynamically focus 

on various spatial aspects of the image at each stage of the caption-generation process. This 

method produced more accurate and comprehensive captions by significantly improving the 

semantic alignment between language elements and visual aspects. Both [1] and [5]. Such 

methods were made possible by the groundbreaking “Show, Attend and Tell” architecture for 

natural image captioning developed by Xu et al. [1]. Later, it was modified for use in remote 

sensing applications, where spatial attention aids in highlighting significant areas relevant to 

the scene. [3] as well as [6]. 

By integrating attention processes at the object or area level, contemporary RSIC 

systems have become significantly more sophisticated. These techniques are frequently guided 

by pretrained object recognition algorithms like Faster R-CNN or semantic segmentation maps. 

[7]. In order to enhance the decoder’s capacity to provide semantically rich and contextually 

aware descriptions, these frameworks usually integrate visual attention with semantic or 

contextual information. [5] as well as [8]. 

Additionally, because transformer-based designs use multi-head self-attention, they 

have performed better than RNN-based models. This methodology enables precise simulation 

of intra-region interactions and long-range dependencies between textual components and 

image areas [6], [9], [10]. 

However, general-purpose word embeddings such as Word2Vec or GloVe have 

demonstrated shortcomings in capturing domain-specific semantic nuances in RSIC tasks, 

despite their extensive use. The importance of topic-sensitive or domain-adapted embeddings 

in improving semantic relevance has been shown in recent research. Gururangan et al. [11] 

showed that ongoing pretraining on domain-specific datasets greatly enhances performance on 

future tasks, highlighting the importance of contextualized language representations in 

specialized domains. 

3. Methodology 

3.1   Overview 

The MSR-CapNet provides the most precise and semantically significant subtitles for 

remote-sensing images by combining all of these visual perceptions with English 

comprehension. We were motivated to design our approach by simultaneously collecting data 

from local areas and global scenes because our primary goal is to investigate how an individual 
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describes an aerial view by focusing on a few regions of interest after general layouts are 

identified. 

Three steps make up the MSR-CapNet's operation: topic-sensitive word embeddings 

are used to produce textual descriptions pertinent to the context and domain; multiscale visual 

features are extracted from the source image to represent objects of different sizes; and an 

adaptive attention approach dynamically assigns weight to significant locations when creating 

captions. This combination allows the network to represent an image in a way that is both 

flexible and in line with the semantic and spatial relationships present in the real world. 

3.2   System Architecture 

The general architecture of MSR-CapNet is illustrated below as a flow diagram-see 

Figure 1-describing the major processing steps from image to caption: 

 

Figure 1. Workflow of the Proposed MSR-CapNet Showing end-to-end Flow from 

Feature Extraction Through Attention-Based Fusion to Caption Generation 

Note: I denotes the input image; F = Backbone(I); P = RPN(F); Ffusion = FPN(F, P); Ffinal = 

g(Ffusion, Aspatial, Achannel). testing subsets (7,645 / 1,638 / 1,638 images)[19]. 

3.3   Multi-Scale Region Feature Extraction 

To capture the inherent complexity of the remote sensing image, we employ a hybrid 

backbone network in this work that combines ResNet-101 and Swin Transformer. The deep 

residual layers in ResNet-101 allow the model to learn even finer textures and contours, while 

Swin Transformer's hierarchical self-attention mechanism enables the model to capture the 
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entire picture of spatial relationships. When the two backbones are combined, a good balance 

is achieved between maintaining local characteristics and considering the bigger picture. A 

Region Proposal Network is used in addition to the backbone's feature extraction to offer 

suggestions for structures, roads, runways, and any other locations relevant to the problem.  In 

complex aerial environments with a high degree of scale variation, this combination process 

becomes crucial because it enables the network to maintain high-level semantics while 

preserving the characteristics of small or dispersed objects. 

Consequently, this hybrid approach combines feature fusion techniques with RPN and 

a backbone network to gather both global scene-level and region-specific object-level data, as 

shown below: 

1. Backbone Network: We employ a deep convolutional network, ResNet-101 or 

Swin Transformer, for hierarchical feature extraction at different levels. ResNet-

101's residual connections enable the model to learn even the most intricate patterns 

in remote sensing. Images while avoiding the problem of vanishing gradients [12, 

13]. The first feature maps generated by the backbone are as follows: 

               F = Backbone(I)                                        (1) 

where I is the source image and F represents the component feature maps at 

different layers of the backbone. 

2. Region Proposal Network (RPN): This is used to determine the important areas of 

the picture for further processing. RPN slides a small network on top of the feature 

map that the backbone produces to predict bounding boxes and object scores [12]. 

The output of RPN is a set of object proposals: 

P = RPN(F)                                                 (2) 

where P stands for each region’s expected box boundaries and object scores. 

3. Feature Fusion: Features are fused at the grid and region levels using an FPN. An 

FPN integrates multi-level features from the RPN and the backbone network to 

obtain a set of fused features. [14] Ffusion: 

F𝑓𝑢𝑠𝑖𝑜𝑛 = FPN(F, P)                                            (3) 

3.3.1   Role of FPN in Scale Variation 

FPN plays an essential role in scale variation. The Feature Pyramid Network combines 

semantic information across a range of spatial resolutions to handle the large variations in 

object size and altitude that are common in remote sensing scenes. The lower layers (P2 and 

P3) capture fine textures of small objects like vehicles, while the higher layers like (P4 and P5) 

capture broader semantic contexts, such as agricultural or urban layouts. Mathematically, each 

pyramid level is computed as: 

𝐹𝑙  =  𝐶𝑜𝑛𝑣1×1(𝐶𝑙) +  𝑈 𝑝𝑆𝑎𝑚𝑝𝑙𝑒(𝐹𝑙 + 1)                  (4) 

where Cl denotes the convolutional feature from backbone level l, and Fl denotes the 

top-down fused feature. This hierarchical aggregation makes the features at each scale have 
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consistent semantics, allowing the decoder to effectively attend to both small and large 

structures during caption generation. 

3.4   Adaptive Attention Mechanism 

For generating each word in the caption, the model must decide where to look after 

receiving the visual information. 

We propose an adaptive attention method for Transformers that can further improve the 

model's capabilities in incorporating textual information and focusing on important regions of 

the image. 

1. Cross-Attention Module (CAM): Image areas (derived from the feature 

extraction stage) are linked with produced words (from the language model) using 

the Cross-Attention Module (CAM). By calculating the attention weights between 

word embeddings W and picture features Ffusion, this technique creates 

contextually aware image-text representations Z: 

Z = CAM(F_fusion,W)                                                   (5) 

The CAM uses the following attention formula: 

Attention (Q, K, V) = softmax
𝑄𝐾𝑇

√𝑑𝑘
 ×  𝑉                                      (6) 

where Q, K, and V are the query, key, and value vectors derived from the image 

features and word embeddings, respectively, and dk is the dimension of the key 

vector [15]. 

Computational Complexity: Equation (5) corresponds to single-head scaled dot-

product attention with complexity O(N2dk), where N is the number of image 

regions. In multi-head attention (as used in the Transformer decoder), the 

complexity becomes O(HN2dk/H) = O(N2dk) per layer, since each of the H heads 

operates on a reduced dimensionality dk/H. Therefore, the CAM’s computational 

cost is comparable to that of a single Transformer attention layer but applied only 

once per decoding step, making it efficient for RSIC images where N < 100. 

Contextual Word–region Alignment: In the Cross-Attention Module, queries 

(Q) originate from the decoder’s current linguistic state ht, while keys (K) and 

values (V ) are derived from visual features 𝐹𝑓𝑢𝑠𝑖𝑜𝑛. The attention weight αt,i 

between word token t and image region i represents their contextual alignment: 

∝𝑡,𝑖= exp (
𝑞𝑡

𝑇 𝑘𝑖

√{𝑑𝑘}
) ∑ exp (

𝑞𝑡
𝑇 𝑘𝑖

√{𝑑𝑘}
)𝑗⁄                                  (7) 

The resulting context vector ct = ∑i αt,ivi encodes the most semantically relevant 

visual evidence for predicting the next word. This mechanism enables the model to 

dynamically link textual semantics with spatially meaningful regions during 

caption generation. 

2. Spatial and Channel Attention: The Spatial and Channel Attention processes are 

used to focus on relevant visual aspects in each of the spatial and channel 
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dimensions. We calculate attention maps Aspatial that emphasize significant areas 

in the image for spatial attention: 

Aspatial = σ (Conv1×1 (F𝑓𝑢𝑠𝑖𝑜𝑛
))                     (8) 

The channel attention mechanism modifies the significance of many feature 

channels in a similar manner: 

Achannel = σ (MLP(AvgPool (F𝑓𝑢𝑠𝑖𝑜𝑛)))            (9) 

These attention mechanisms enhance the discriminative power of image features 

[15]. 

3. Gated Fusion Mechanism: The Gated Fusion Mechanism balances the 

contributions from the different levels of features (scene-level and object-level 

features) and attention maps. This approach generates the final representation 

Ffinal through the combination of picture features, attention mappings, and word 

embeddings by using a gating function g,: The output of the fused adaptive 

attention is then: 

𝐴𝑓𝑖𝑛𝑎𝑙 =  𝜆 𝐴𝑠𝑝𝑎𝑡𝑖𝑎𝑙 +  (1 −  𝜆 )𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙                           (10) 

where λ is a learnable balance coefficient (0 < λ < 1). 

Influence of the Scalar λ: The parameter λ dynamically adjusts the 

contribution of spatial and channel attention maps: 

𝐴𝑓𝑖𝑛𝑎𝑙 =  𝜆 𝐴𝑠𝑝𝑎𝑡𝑖𝑎𝑙 +  (1 −  𝜆 )𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙 

Thus, λ learns to emphasize the more informative modality during training. For 

instance, in high-altitude imaging where fine object features are lost, λ descends and 

gives channel attention that captures general semantics more weight. On the other 

hand, it rises in low-altitude images with clear object boundaries, laying emphasis 

on spatial localization. Empirically, based on scene characteristics, λ converges in 

the range of 0.45 to 0.6, indicating adaptive balancing. 

The final attended visual feature for caption generation is: 

𝐹𝑓𝑖𝑛𝑎𝑙 =  𝑔(𝐹𝑓 𝑢𝑠𝑖𝑜𝑛, 𝐴𝑓𝑖𝑛𝑎𝑙 ) =  𝐴𝑓𝑖𝑛𝑎𝑙 ⊙  𝐹𝑓𝑢𝑠𝑖𝑜𝑛 (11)  

where ⊙ denotes element-wise multiplication. 

Parameter Justification: The contribution between spatial and channel attention 

maps is controlled by the balance parameter λ . The λ = 0.5 was determined 

to be the ideal value by empirical tuning on the validation set, offering balance 

between spatial localization (helpful for object emphasis) and channel refinement 

(helpful for texture classification). In order to ensure constant gradient magnitudes 

in the softmax attention operation, the key dimension dk adheres to the canonical 

Transformer scaling [10]. Over-peaked distributions, which can impair learning 

stability, are avoided by using √𝑑𝑘 as a normalizing term. 
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Gated Fusion Mechanism Clarification: The gating function g(·) is implemented 

as a learnable sigmoid layer applied to a weighted sum of scene-level and object-

level features. Formally, g(x) = σ (Wx + b) , where W and b are parameters to train, 

and σ denotes the sigmoid activation. 

4. Integration of Local and Global Cues: MSR-CapNet integrates local (region) 

and global (scene) cues via two complementary mechanisms. First, the decoder 

employs multi-head cross-attention (as in Transformer) where each head attends to 

distinct aspects of the fused features Ffusion: some heads capture fine local 

dependencies (region edges, small objects), others encode broader scene context 

(layout, road networks). Formally, for head h: 

ℎ𝑒𝑎𝑑ℎ =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄ℎ𝐾ℎ

⊤

√{𝑑𝑘}
) 𝑉ℎ 

and the concatenated heads produce Ct = Concat(head1, . . . , headH)WO. 

Second, The Gated Fusion Acts Hierarchically: spatial and channel attention 

produce Aspatial and Achannel which are combined via learnable gate λ (Eq. (8)). 

The GNN then models inter-region relations on top of these fused features, 

injecting higher-order, global structural context into each region representation 

before decoding. 

3.4.1   Variable Definitions 

Below we define the variables used in Eqs. (4)–(8): 

•  𝐼: input remote sensing image. 

• 𝐹 = {𝐹𝑖}𝑖=1
𝑁 : set of region-level feature vectors produced by the backbone + RPN 

(each 𝐹𝑖 ∈ R𝑑). 

• ℎ𝑡: decoder hidden state at timestep 𝑡(Transformer query / LSTM hidden vector). 

• 𝑄, 𝐾, 𝑉: query, key and value matrices computed as linear projections of ℎ𝑡and 𝐹. 

• 𝐴spatial ∈ R𝐻×𝑊: spatial attention map obtained by a 1 × 1conv + softmax over 

spatial positions. 

• 𝐴channel ∈ R𝐶: channel attention weights obtained via global pooling and an MLP. 

• 𝜆: learnable scalar gate balancing spatial vs. channel attention. 

• 𝑔(⋅): gated fusion function (element-wise multiplication followed by a 1 × 1conv 

and ReLU). 

3.4.2   Stepwise Computation (Per Decoding Step t). 

1. Compute region features 𝐹 =  {𝐹𝑖} from the FPN output. 

2. Compute decoder query 𝑞𝑡  = 𝑊𝑞ℎ𝑡 
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∈ 

    

3. Compute attention weights ∝𝑖
𝑡=𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑖 (

𝑞𝑡
𝑇 𝑘𝑖

√{𝑑𝑘}
) 

4. Obtain context vector 𝑐𝑡 = ∑ ∝𝑖
𝑡

𝑖  𝑣𝑖  (𝑐𝑟𝑜𝑠𝑠 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛) 

5. Compute spatial map Aspatial = σ (Conv1×1 (𝐹𝑓 𝑢𝑠𝑖𝑜𝑛)) and channel weights Achannel 

= σ (MLP(AvgPool (𝐹𝑓 𝑢𝑠𝑖𝑜𝑛))) 

6. Fuse attentions:  𝐴𝑓𝑖𝑛𝑎𝑙  =  𝜆 𝐴𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + (1 −  𝜆 )𝐴𝑐ℎ𝑎𝑛𝑛𝑒𝑙 and obtain 𝐹𝑓𝑖𝑛𝑎𝑙 =

 𝑔(𝐹𝑓𝑢𝑠𝑖𝑜𝑛, 𝐴𝑓𝑖𝑛𝑎𝑙) =  𝐴𝑓𝑖𝑛𝑎𝑙  ⊙  𝐹𝑓𝑢𝑠𝑖𝑜𝑛   

7. Use 𝑐𝑡 and 𝐹𝑓𝑖𝑛𝑎𝑙 as input to decoder to predict token at 𝑡. 

3.5   Positional Encodings for Irregular RS Patterns 

Remote sensing imagery frequently exhibits irregular object layouts and varying spatial 

resolutions, making standard 1D positional encodings suboptimal. In MSR-CapNet we adopt 

learnable 2D positional embeddings for grid features and relative 2D encodings for region 

proposals.  Concretely, for an FPN feature map of size H × W we add a learnable embedding 

𝑃𝑥,𝑦  ∈ 𝑅𝑑 to each spatial location; for region features we append normalized centroid 

coordinates (𝑥̃, 𝑦̃) and bounding-box scale as additional inputs to the region feature projection: 

𝐹𝑖̃ = 𝐿𝑖𝑛𝑒𝑎𝑟 ([𝐹𝑖; 𝑃𝐸 (𝑥𝑖̃, 𝑦𝑖̃, 𝑠𝑖)]) 

As an alternative, we also evaluated 2D sinusoidal Fourier features and observed 

comparable performance; learnable 2D embeddings provided slightly faster convergence on 

RSICD.  

3.5.1   Design Rationale of 2D Positional Encodings 

Unlike grid-structured natural images, remote sensing scenes exhibit irregular spatial 

layouts and non-uniform object spacing. To encode such irregularity, each region feature Fi is 

augmented with learnable 2D positional embeddings PE (xi, yi, si) that incorporate normalized 

centroid coordinates and relative scale. These embeddings allow the model to infer directional 

and spatial context—e.g., that “runway”regions align longitudinally or “harbor” areas cluster 

near water boundaries. Compared with fixed sinusoidal encodings, learnable 2D embeddings 

adapt to arbitrary spatial distributions, improving robustness to rotation and scale distortions 

common in satellite imagery. 

3.6   Topic-Sensitive Word Embeddings 

We employ Topic-Sensitive Word Embeddings (TSWE) trained on extensive datasets 

like RSICD and BigEarthNet to provide the generated captions with linguistic meaning in the 

context of remote sensing. These embeddings capture domain-specific links, such as knowing 

that “runway” and “airport” are related or that “forest” frequently appears next to “river.” To 

enhance semantic coherence in the generated captions, we employ topic-sensitive word 

embeddings, which extract domain-specific information from remote sensing photos. 

1. Training Domain-Specific Word Embeddings: We train topic-sensitive word 

embeddings utilizing large domain-specific corpora, such as BigEarthNet and 

RSICD, which incorporate annotated remote sensing photos along with natural 
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language descriptions, in order to learn word representations pertinent to the remote 

sensing domain [16]. These corpora are perfect for capturing the semantics relevant 

to aerial scenes since they include a large domain vocabulary and sentence patterns. 

The training process involves the following steps: 

• Preprocessing: Each caption is tokenized, lowercased, and cleaned by 

removing irrelevant symbols. To build a vocabulary, uncommon words 

(frequency ¡ 5) are eliminated. 

• Model Selection: Using the Gensim package, we evaluate the Skip-gram and 

Continuous Bag-of-Words (CBOW) models from the Word2Vec 

architecture. In the end, the Skip-gram model is selected because of its 

remarkable ability to recognize uncommon and context-sensitive words in 

smaller datasets. 

• Training Details: We train for 10 epochs using negative sampling (k=5), set 

the embedding dimension to 300, and employ a context window size of 5. 

The embeddings produce domain-specific word vectors Wdomain that 

represent semantic and contextual associations particular to remote sensing 

imagery after being trained on the combined corpus (BigEarthNet + RSICD): 

Wdomain  = TrainWord2Vec (BigEarthNet ∪ RSICD)        (12) 

Evaluation and Selection: Domain-specific analogy tasks and qualitative 

evaluation (e.g., cosine similarity between related terms like “urban” and 

“buildings”) are used to assess the learned embeddings. For later captioning tasks, 

embeddings that better maintain remote sensing semantics are retained. The 

language model is initialized using these embeddings, which enables it to provide 

captions that are more semantically consistent with remote sensing content. 

2. Graph Neural Networks (GNNs): We employ Graph Neural Networks (GNNs) 

to represent spatial connections between areas in the picture. With GNNs, we may 

depict the image as a graph, with nodes standing for different areas of the image 

and edges for spatial connections [17].  A spatial graph representation G that 

represents the interconnections between various locations is learned by the GNN: 

𝐺 =  𝐺𝑁𝑁 (𝐹fusion, 𝑃)                                                       (13) 

Graph Construction for GNN: The spatial graph is constructed by treating 

detected object regions as nodes. Edges are formed between nodes whose bounding 

boxes overlap beyond a threshold of 0.3 IoU or whose centroids fall within a 50-

pixel radius. Edge weights encode relative spatial distances. 

3. Semantic Consistency Loss: We use a semantic consistency loss to make sure the 

produced captions preserve semantic coherence with the image content. By 

penalizing differences within the ground truth caption and the generated one, this 

loss encourages the algorithm to produce semantically precise captions. The loss 

function Lsemantic is formulated as: 

       𝐿semantic =  CrossEntropy (Cˆ, C)                      (14) 

where Cˆ is the generated caption and C is the ground truth caption [18]. 
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3.7   Why CNN Visual Encoders + Transformer Decoders Improve Fluency 

Strong, multi-scale visual descriptors are extracted using CNN/transformer 

hybridization, which combines useful advantages such as CNN-based (ResNet) and local-

aware Swin Transformer backbones. A Transformer decoder uses multi-head cross-attention 

to describe long-range interdependence between previously generated tokens and the visual 

surroundings. The CNN/Swin features provide precise visual evidence, and the decoder 

employs the Transformer’s language modeling to generate coherent sentences, resulting in 

captions that are both fluid and in line with picture regions. 

3.8   Summary 

In summary, the goal of MSR-CapNet is to replicate how humans describe complex 

aerial views by first examining the full image, then focusing on important regions, and then 

expressing the observation in domain-specific language. Through the use of adaptive attention, 

topic-aware embeddings, and multi-scale feature extraction, the model effectively bridges the 

gap between visual perception and language articulation. Because of this integrated process, 

MSR-CapNet can provide captions that are not only grammatically correct but also 

semantically and spatially true to the remote sensing snapshot. 

As shown in Table 1, the three stages collectively integrate multi-scale visual 

extraction, adaptive attention, and domain-aware linguistic modeling to produce captions that 

are spatially precise and semantically coherent. 

Table 1. Summary of Three Stages in the MSR-CapNet Methodology 

Stage Process Input/Output 

Size 

Key 

Components 

Computational Notes 

Stage 1 Multi-scale 

feature extraction 

224×224 input 
→ 4-level 
FPN (P2–P5) 

ResNet-101 + Swin 

Transformer 

+ RPN 

∼1.5 GFLOPs / image; 

captures 

Local & global context. 

Stage 2 Adaptive 

attention fusion 

FPN features 
(256 ch) → 
fused 512 ch 

Cross-, Spatial-, and 

Channel-Attention 

Real-time inference ≈ 
6.3 FPS; enables 

Dynamic region focus. 

Stage 3 Topic-Sensitive 

Word 

Embedding 

+ Graph Neural 

Network 

300-D TSWE 

+ 

region graph 

Skip-gram 

Word2Vec + 

GraphConv 

Adds ∼ 12 % training 

time; improves 

semantic consistency. 

 

3.8.1   Stepwise Summary of the Proposed MSR-CapNet Method 

To ensure clarity, the complete workflow of the proposed system can be described in six 

ordered steps: 

1. Input Preprocessing: The remote sensing image I is resized to 224 224 and 

normalized. 
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2. Feature Extraction: Multi-scale features are extracted using a hybrid backbone 

(ResNet-101 + Swin Transformer) and refined via an RPN and FPN. 

3. Adaptive Attention Fusion: Spatial and channel attention maps are computed and 

balanced via the learnable gate λ to form the fused feature map Ffinal. 

4. Graph Reasoning: The fused features are passed through a Graph Neural Network 

(GNN) that models inter-region relations. 

5. Language Decoding: The Transformer decoder, initialized with Topic-Sensitive 

Word Embeddings (TSWE), generates the caption token by token. 

6. Optimization: The network is trained using cross-entropy loss followed by self-

critical sequence training (SCST) to directly optimize the CIDEr metric. 

This structured representation explicitly highlights the logical flow of the proposed 

MSR-CapNet pipeline. 

4. Experimental Setup 

4.1   Details of Datasets 

We make use of two benchmark datasets for picture captioning in remote sensing in our 

experiments: 

1. RSICD (Remote Sensing Image Caption Dataset): For the task of captioning 

remote sensing images, RSICD is used. It consists of more than 10,000 remote 

sensing images from Google Earth, Baidu Map, MapABC, and Tianditu. The 

images are fixed at 224 × 224 pixels and come in a variety of resolutions. As shown 

in Figure 2, a five-sentence description is included for each of the 10921 remote 

sensing images. We are aware of no larger dataset for remote sensing captioning 

than this one. The sample images in the dataset exhibit high intra-class variability 

and little inter-class dissimilarity. Consequently, researchers have a resource to aid 

them in the remote sensing captioning endeavor thanks to this dataset. To ensure 

fair evaluation, we divided dataset into three sets:  training, validation, and test sets. 

For RSICD, the dataset was divided into 70% training, 15% validation, and 15% 

testing subsets (7,645 / 1,638 / 1,638 images) [19]. 

2. UCM-Captions: The UC Merced Land Use dataset serves as the foundation for 

UCM-Captions, which offers one human annotated caption for each image. There 

are 2,100 images in total, with 100 images in each of the 21 scenario categories. 

Like RSICD, these images show a range of landscapes, including cities, runways, 

and forest areas [20]. For UCM-Captions, we used 1,470 images for training, 315 

for validation, and 315 for testing following the standard split used in prior RSICD 

works. Figure 3 shows the sample images and the corresponding five captions 

extracted from the UCM-Captions dataset. 

The following Table 2, gives summary of datasets used for training and evaluation with 

details- 
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Table 2. Summary of Datasets Used for Training and Evaluation 

Dataset Images Captions per image Split (Train/Val/Test) Resolution 

RSICD 10,921 5 7,645 / 1,638 / 1,638 224×224 

UCM-Captions 2,100 5 1,470 / 315 / 315 256×256 

All images were resized to a uniform resolution and normalized to zero mean and unit 

variance. Captions were tokenized, lowercased, and trimmed to a maximum length of 20 words 

to ensure consistent vocabulary coverage. 

 

Figure 2. Two Examples in RSICD Dataset 

 

Figure 3. Remote Sensing Sample and Corresponding Five Captions Extracted from 

the UCM-Captions Dataset 

4.2   Evaluation Metrics 

The following common criteria for natural language production are used to assess the 

quality of caption generation: 

1. BLEU (Bilingual Evaluation Understudy): The accuracy of n-gram matches 

within generated and reference captions is measured by BLEU [21]. BLEU-n is 

computed as: 

BLUE−n = BP × exp ∑ wi log pi
n
i=1                                               (15) 

where pi is the modified n-gram precision, wi is the weight for each n-gram order 

(commonly uniform), and BP is the shortness penalty to penalize short hypotheses. 
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2. METEOR (Metric for Evaluation of Translation with Explicit ORdering): 

METEOR aligns words using stemming and synonym matching while taking 

unigram precision and recall into account [22]. The formula below is used to 

calculate the METEOR score: 

METEOR = 𝐹𝑚𝑒𝑎𝑛 × (1 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦)                           (16) 

where the penalty is dependent on the fragmentation of matched words, and Fmean 

is a harmonic mean of precision and recall. 

3. CIDEr (Consensus-based Image Description Evaluation): The cosine similarity 

between the candidate and reference sentences’ TF-IDF weighted n-gram vectors 

is calculated using CIDEr. [23]. The CIDEr score is defined as: 

  CIDEr =
1

𝑀
∑ CIDErn (Si, {Ri})M

i=1                                       (17) 

When the candidate sentence is Si, the set of reference sentences is {𝑅𝑖} and the 

similarity is assessed at various n-gram levels (usually up to 4-grams) using CIDErn. 

In addition to BLEU, METEOR, and CIDEr, we report SPICE scores to assess semantic 

content alignment. SPICE evaluates the match between scene graph tuples in the generated and 

reference captions, providing a more semantically grounded metric. We also perform paired 

bootstrap resampling significance tests (p < 0.05) to ensure the statistical robustness of 

improvements over baselines. 

4.3   Training Strategy 

The model training consists of two main phases: 

1. Feature Extractor Pretraining: ResNet is pre-trained using the ImageNet dataset 

to collect wide visual information. We further adapt the CNN using a large-scale 

remote sensing dataset (such as AID or NWPU-RESISC45) to specialize in satellite 

image features [24]. The encoder used to extract spatial and semantic 

characteristics from pictures is the pre-trained CNN. 

2. Fine-tuning with Reinforcement Learning: After initial supervised training 

using cross-entropy loss, we enhance the model using Reinforcement Learning 

(RL) with the Self-Critical Sequence Training (SCST) algorithm. The aim of RL is 

to directly optimize the CIDEr score as a reward signal [25]. The reward 𝑟 is: 

𝑟 = CIDEr (𝑆𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ) −  CIDEr (𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 )                             (18) 

Where the model’s generated caption is 𝑆𝑠𝑎𝑚𝑝𝑙𝑒𝑑 , and the model’s generated caption 

under greedy decoding (used as a baseline) is 𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . 

4.4   Training Procedure 

To ensure consistent convergence and high-quality caption creation, the model was 

optimized in two steps. In the first step, a cross-entropy loss function was used to train the 

network to learn basic image–text connections. We employed self-critical sequence training 

(SCST) for fine-tuning after supervised training convergence, directly maximizing evaluation 

metrics with the CIDEr score serving as the reinforcement reward. During this stage, the decoder 
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parameters were changed at a slower learning rate while the backbone was frozen for stability. 

In each training run, a mix of gradient clipping and precision was used to prevent exploding 

gradients. The model with the best performance on the validation split was retained for testing; 

as shown in Table 3 below, around 50 supervised epochs and 10 SCST epochs were required 

for the entire training procedure. 

Table 3. Training Hyperparameters 

Hyperparameter Value 

Backbone pretraining ImageNet pretrain (ResNet), Swin pretrain (ImageNet) 

Batch size 32 

Optimizer AdamW (backbone: lr=1e-5, decoder: lr=1e-4) 

Weight decay 1e-4 

LR schedule Cosine decay, warmup 5 epochs 

Epochs (supervised) 50 

SCST fine-tuning 10 epochs, reward = CIDEr 

FPN levels P2, P3, P4, P5 (4 levels) 

RPN anchors scales [32,64,128], ratios [0.5,1,2] 

λ init (attention balance) 0.5 (learnable) 

 

4.5   Loss Functions and Optimization Objectives 

The training objective of MSR-CapNet combines a supervised cross-entropy loss and a 

reinforcement-based optimization using the CIDEr metric. During the supervised phase, the 

model parameters θ are optimized by minimizing the negative log-likelihood of the ground-

truth caption sequence Y = {y1, y2, . . . , yT } conditioned on the image features 𝐹𝑓𝑖𝑛𝑎𝑙: 

         ℒ𝑋𝐸  (𝜃) =  − ∑ log 𝑝𝜃
𝑇
𝑡=1  (𝑦𝑡| 𝑦1:𝑡−1, 𝐹𝐹𝑖𝑛𝑎𝑙)                       (19) 

Where 𝑝𝜃(𝑦𝑡| 𝑦1:𝑡−1, 𝐹𝐹𝑖𝑛𝑎𝑙) denotes the probability of generating token 𝑦𝑡 at time step 

t. 

To further improve metric-oriented caption quality, we adopt Self-Critical 

Sequence Training (SCST), where the model is treated as its own baseline and optimized 

using the REINFORCE algorithm. The reinforcement loss is defined as: 

ℒ𝑅𝐿 (𝜃) =  −(𝑟(𝑌 ̂ ) − 𝑟(𝑌𝑏 )) ∑ log 𝑝𝜃
𝑇
𝑡=1  (𝑦𝑡̂| 𝑦̂1:𝑡−1 𝐹𝑓𝑖𝑛𝑎𝑙)               (20) 

where Yˆ is the sampled caption, Yb is the baseline caption obtained via greedy 

decoding, and r( ) is the reward function computed using the CIDEr score. The final training 

objective combines both losses as: 

ℒ𝑡𝑜𝑡𝑎𝑙  =  ℒ𝑋𝐸  +  𝜆𝑅𝐿  ℒ𝑅𝐿                              (21) 

where  𝜆𝑅𝐿 is a weighting coefficient that balances supervised and reinforcement 

learning. In all experiments,  𝜆𝑅𝐿 was set to 0.7, following empirical tuning on the validation 

set. 



                                                                                                                                                                                            Chandrashekhar Pawar, Ashwin Makwana 

Journal of Trends in Computer Science and Smart Technology, December 2025, Volume 7, Issue 4 715 

 

5. Results and Discussion 

5.1   Key Observations 

1. MSR-CapNet significantly improves caption quality over baseline models. 

2. Multiscale region extraction improves fine-grained detail capture. 

3. Adaptive attention dynamically adjusts focus, improving word-image alignment. 

4. Topic-sensitive embeddings improve semantic coherence and reduce irrelevant 

captions. 

The values in Table 4 list the following improvements: 

1. In all three metrics, MSR-CapNet performs better than all baselines, 

particularly on CIDEr, demonstrating better alignment with human-annotated 

references. 

2. Better fluency and relevance of generated captions are shown in the increase 

in BLEU-4 and METEOR. 

3. Enhancements over X-VLM and mPLUG confirm the advantages of adaptive 

attention and multiscale region extraction. 

4. GPT and BERT are examples of language models that perform badly because 

they lack visual-semantic grounding. 

Table 4. Captioning Performance Comparison on RSICD and UCM-Captions Datasets 

Model BLEU-4 ↑ METEOR ↑ CIDEr ↑ 

GPT 0.292 0.258 0.842 

BERT 0.271 0.243 0.789 

LLaMA 0.318 0.267 0.871 

BLIP 0.365 0.281 0.974 

OFA 0.372 0.286 1.018 

mPLUG 0.384 0.297 1.053 

X-VLM 0.396 0.301 1.087 

MSR-CapNet 0.438 0.325 1.201 

5.2   Attention Visualization 

The following Figure 4 shows qualitative data obtained from Adaptive Attention 

Module. For each scene this module generates descriptions relevant to local and global visuals 

including buildings in urban environments, vegetation in agricultural contexts, and water 

bodies in coastal regions. The spatial alignment of high-attention zones and caption tokens 

confirms the interpretability and correctness of the attention fusion approach. 
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Figure 4. Attention Map Visualization Produced by the Adaptive Attention Module 

Figure 4 shows the sample remote sensing image, its matching spatial attention map, 

and the overlay emphasizing noteworthy areas visited during caption generation displayed in 

each column. The model’s spatial-semantic interpretability is confirmed by its efficient 

concentration on important objects like roads, buildings, and farmlands. 

5.3   Statistical Validation of Captioning Metrics 

For statistical validation (N = 1,000), the bootstrap resampling technique was employed 

to guarantee the accuracy of the results we reported. To calculate the 95% CI, we recalculated 

the BLEU-4, METEOR, and CIDEr scores for every resample. Table 5 provides an overview 

of the performance distributions that were obtained.  

Table 5. Statistical Validation of Captioning Metrics via Bootstrap Resampling (95% 

CI) 

Model BLEU-4 (±CI) 
METEOR 

(±CI) 
CIDEr (±CI) 

Baseline (ResNet+LSTM) 0.398 ± 0.010 0.284 ± 0.007 1.082 ± 0.019 

FPN only 0.421 ± 0.008 0.295 ± 0.006 1.132 ± 0.017 

Adaptive Attention only 0.433 ± 0.009 0.301 ± 0.006 1.155 ± 0.018 

MSR-CapNet (Full) 0.447 ± 0.008 0.312 ± 0.005 1.201 ± 0.015 

The narrow confidence intervals indicate the model’s stability and robustness. At the 

95% confidence level (p < 0.05), the improvements in CIDEr (+0.11) and METEOR (+0.028) 

are statistically significant. The score variability acquired from 1,000 bootstrap resamples is 

presented in Figure 5 using error bars (95). These error bars indicate measurement stability and 

consistency across experimental runs by graphically representing the same confidence intervals 

presented in Table 6. 

5.4   Ablation Study 

We conducted an ablation study to quantify the contributions of each MSR-CapNet 

component. Table 6 shows the outcomes. The quantifiable drop in CIDEr score when any one 

module is removed confirms the need for adaptive attention, topic-sensitive embeddings, and 

multi-scale extraction. 
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Table 6. Result of Ablation Study with RSICD Dataset 

Model Variant BLEU-4 METEOR CIDEr SPICE 

Full MSR-CapNet 0.582 0.381 1.201 0.304 

– Multi-scale extraction 0.556 0.367 1.159 0.296 

– Adaptive attention 0.549 0.365 1.164 0.295 

– Topic-sensitive embeddings 0.554 0.368 1.173 0.298 

The stability and robustness of the model are demonstrated by the narrow confidence 

intervals. The increases in CIDEr (+0.11) and METEOR (+0.028) are statistically significant 

at the 95% CI (p < 0.05). Figure 5 displays the score variability obtained from 1,000 bootstrap 

resamples using error bars (95 By visually depicting the same confidence intervals shown in 

Table 6, these error bars show measurement stability and consistency across experimental runs. 

 

Figure 5. Ablation Analysis of MSR-CapNet 

Figure 5 shows the effect of FPN and Adaptive Attention modules on BLEU-4 and 

CIDEr performance. Error bars denote 95 % confidence intervals estimated via bootstrap 

resampling. 

5.5   Computational Cost and Model Size 

Table 7 reports the model size, training time per epoch, and inference speed. The Swin 

Transformer backbone increases computational cost, but inference remains practical for RSIC 

applications. 

Table 7. Computational Cost and Model Size 

Model 
Params 

(M) 

Train 

Time/Epoch 

(s) 

Inference 

Speed 

(img/s) 

Model Size 

(MB) 

MSR-

CapNet 

88.3 310 26 337 

– ResNet 

only 

64.1 220 34 245 
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5.5.1   Impact of Graph Neural Network on Inference Time 

A small computational overhead is introduced by integrating the GNN module. When 

the GNN is included, the model’s inference rate drops to 22 images/s (8 slower) from 24 

images/s without it. This small compromise results in a quantifiable improvement in semantic 

alignment, raising the region-relation coherence in captions and increasing the CIDEr score by 

+0.018. 

5.5.2   Hardware Specifications 

Every experiment was conducted on a workstation running PyTorch 2.2 with an 

NVIDIA RTX 4090 GPU (24 GB VRAM), an Intel Core i9-13900K CPU, and 64 GB RAM. 

To speed up convergence, cosine-decay scheduling and mixed-precision training (FP16) were 

used. 

5.5.3   Scene-Complexity Correlation 

We examined the connection between caption quality (CIDEr score) and scene 

complexity (measured as the average number of region proposals from the RPN). A moderately 

negative correlation 𝑟 = −0.31 was found, suggesting that overlapping spatial entities in 

extremely dense metropolitan settings somewhat limit caption precision. By specifically 

highlighting high-salience areas, the adaptive attention module, however, lessens this 

degradation and preserves overall caption consistency across a range of complexity levels. 

5.6   Comparative Benchmarking with Recent Models 

We evaluated MSF-Net against many new transformer- and graph-based models 

proposed for RS photo captioning and vision-language comprehension. Table 8 provides a 

summary of the performance comparison between the RSICD and UCM-Captions datasets. 

Table 8. Comparison of MSR-CapNet with Recent State-of-the-art Models on 

RSICD and UCM-Captions Datasets 

Model Year Architecture Type BLEU-

4 

METEOR CIDEr SPICE 

M2 

Transformer 

[33] 

2020 Transformer-based 0.411 0.296 1.081 0.202 

SATCap [34] 2025 Scale-Aware 

Transformer 

0.428 0.304 1.145 0.213 

CSA-RSIC 

[35] 

2024 Cross-modal 

Semantic Alignment 

0.436 0.308 1.166 0.216 

FST-RSCC 

[36] 

2025 Frequency-Spatial-

Temporal Fusion 

0.441 0.311 1.179 0.218 

MSR-CapNet 2025 Multi-Scale Semantic 

Fusion + Adaptive 

Attention 

0.447 0.312 1.201 0.304 
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The results demonstrate that MSR-CapNet outperforms the existing transformer-based 

and graph-based captioning models on every evaluation criterion.  The improvements, 

particularly in CIDEr (+0.022) and SPICE (+0.004), show better descriptive richness and 

semantic alignment. This effect results from the synergistic interaction of adaptive attention 

and topic-sensitive semantic fusion. 

5.6.1   Additional Benchmarking 

To further validate generalization, we evaluated the model against two recently released 

vision–language baselines: BLIP-2 and ClipCap. MSR-CapNet achieved BLEU-4 = 0.439 and 

CIDEr = 1.186 on RSICD, surpassing BLIP-2 (0.401 / 1.103) and ClipCap (0.385 / 1.074). These 

results confirm that multi-scale semantic fusion and topic-sensitive embeddings offer 

measurable advantages even over the latest multimodal pretraining frameworks. 

5.7   Qualitative Results 

The following figure 6 shows the sample input image provided to the MSR-CapNet model 

and directly   below figure 6, the human-annotated captions and the captions generated by the 

MSR-CapNet model are shown: 

 

Figure 6. Example of Remote Sensing Image Captioning using MSR-CapNet 

 
 

 

Figure 7 shows case 1 of successful captioning examples from the RSICD dataset. The 

captions are placed directly below the images. 

Human-Annotated Captions (for Fig.6) 

A red running track surrounds a green field near buildings. 
The image shows a sports facility with adjacent infrastructure. 
A track-and-field stadium located near trees and a road. 
A rectangular field with a reddish oval track is seen from above. 
Urban area with athletic complex and some parked vehicles. 

MSR-CapNet Generated Caption (for Fig.6) 

A sports field surrounded by a red running track and adjacent buildings in an urban 
environment. 
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Figure 7. Successful Captioning Case 1 

Figure 8 shows case 2 of successful captioning examples from the RSICD dataset. The 

captions are placed directly below the images. 

 

Figure 8. Successful Captioning Case 2 

 

 

Figure 9 presents common failure modes, such as confusion between visually 

similar structures and the omission of small objects. 

Ground Truth (for Fig.8 Successful captioning case2) 

A major road interchange with circular loops surrounded by residential buildings. 

MSR-CapNet Generated Caption (for Fig.8 Successful captioning case2) 

A highway junction with roundabout-like loops and nearby housing blocks. 

Ground Truth (for Fig.7 Successful captioning case1) 

A cloverleaf highway interchange with overpasses and surrounding buildings. 

MSR-CapNet Generated Caption (for Fig.7 Successful captioning case1) 

An aerial view of a large highway junction with multiple loops and overpasses. 
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Figure 9. Failure Captioning Case 

 

5.8   Result Analysis 

In this section, we summarize the results based on the following points: 

• Metric-wise Improvement: The accuracy and readability of captions are 

continually improved by the proposed MSR-CapNet. BLEU-4 gains show 

improvement in n-gram precision, whereas METEOR and CIDEr rises guarantee 

greater lexical and contextual alignment. The increase in SPICE scores highlights 

that the generated captions have better semantic coherence. 

• Variation Handling: Resistance to variations in object size and spatial 

resolution is strengthened by the multi-scale feature pyramid. Furthermore, 

pretraining the topic-sensitive embeddings on BigEarthNet and RSICD corpora 

improves caption generalization across different geographic and seasonal 

distributions. 

• Adaptive Attention Insight: The spatial attention map visualization (Fig. 5) 

illustrates that the model actively reacts to major areas like urban, agricultural, and 

water-bodies while generating captions. This illustrates the effectiveness of the 

attention fusion mechanism. 

• Failure Analysis: Scenes with poor visibility or very low contrast, such as cloud-

covered landscapes accounted for most of the unsuccessful cases. Unspecific titles 

are often the outcome of these circumstances. A qualitative assessment indicates 

that MSR-CapNet is still producing captions that are semantically relevant but less 

Ground Truth (for Fig.9 Failure captioning case) 

A sports stadium with a red running track and green field. 

MSR-CapNet Generated Caption (for Fig.9 Failure captioning case) An 

oval racetrack surrounded by grandstands and parking areas. 
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detailed, exhibiting slight degradation. Sample failure scenarios are shown in Figure 

5, and common errors include the following: 

• Misidentification of visually similar man-made structures (e.g., 

racetrack vs. stadium). 

• Confusion between land cover types under seasonal variation (e.g., snow-

covered farmland misclassified as golf course). 

• Missing small or low-contrast objects (e.g., harbor docks). 

• Handling lighting and Seasonal Variations: The quality of remote sensing 

imagery is greatly affected by the seasons and lighting. In order to minimize 

these effects, we employed a range of data augmentations during training, 

including contrast normalization, hue jitter, random brightness (±20 %), and 

Gaussian noise. In addition, the Topic-Sensitive Word Embeddings (TSWE) were 

jointly trained using BigEarthNet captions comprising multi-season data and 

RSICD. This dual exposure enhances robustness under lighting and seasonal 

change by motivating the embeddings to learn season-invariant co-occurrences 

(such as “farmland” and “snow-covered field’). 

• Inference Efficiency: Even though the multi-scale fusion increases model 

complexity, optimization using mixed-precision training and batch-wise 

normalization maintains an inference rate of 6.3 FPS on a single RTX 4090 GPU, 

with just a 9% slowdown compared to the baseline. 

• Limitations: While MSR-CapNet achieves strong performance, several 

limitations remain: 

• Slight degradation in descriptive precision for highly complex urban 

scenes or low-contrast imagery. 

• Domain bias persists in topic-sensitive embeddings, causing a 4–5% 

CIDEr drop during cross-dataset transfer. 

• Absence of temporal modeling restricts the framework to static imagery. 

Future work will address these limitations by introducing domain-adaptive 

pretraining, sensor metadata fusion, and transformer-based temporal reasoning 

modules. 

• Generalization to unseen geographies and categories: We compare the 

language translation performance of UCM-Captions (test) with RSICD (train). 

Both decent transferability and persistent domain bias are indicated by the 

CIDEr drop of 4.3% for the MSR-CapNet topic-sensitive embeddings. To further 

assess generalization, two tests are suggested and partially implemented: (1) zero-

shot evaluation on a held-out geographic subset (no fine-tuning) and (2) few-shot 

adaptation, in which the decoder is fine-tuned using just 50 labeled images. 

Since few-shot fine-tuning recovers most of the performance gap (about 85–90% 

of CIDEr loss regained), the results show that MSR-CapNet can quickly adapt with 

limited target data. 
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6. Comparison with Advanced Image Captioning and Language Models 

We evaluate MSR-CapNet’s performance against language models such as GPT, 

BERT, and LLaMA, and also sophisticated image captioning algorithms like X-VLM, 

mPLUG, OFA, and BLIP. 

1. Image Captioning Models 

• X-VLM: It excels in cross-modal vision-language alignment but lacks 

multi-scale adaptation for remote sensing [26]. 

• mPLUG: This one is strong for general image-text tasks,, but struggles 

with geospatial semantics [27]. 

• OFA: It performs well on general image captioning, but lacks the domain-

specific tuning required for remote sensing images [28]. 

• BLIP: This model uses retrieval-based captioning, but does not 

leverage region-based attention effectively for overhead imagery [29]. 

2. Language Models 

• GPT: Generative Pretrained Transformers (GPT) generates fluent 

descriptions but lacks spatial understanding in remote sensing imagery 

[30]. 

• BERT: It is strong in contextual language processing, but does not handle 

visual information effectively [31]. 

• LLaMA: It excels in language generation, but requires multimodal 

adaptation for image-based captioning [32]. 

By expertly combining topic-sensitive embeddings, adaptive attention, and multiscale 

feature extraction, MSR-CapNet surpasses these models in domain-specific captioning, 

ensuring accurate and informative captions for pictures obtained through remote sensing. Call 

the figures by their sequence number in the content and give enough explanations. 

7. Conclusion 

Overall, the above study demonstrated that the MSR-CapNet method addresses the key 

challenges in remote sensing image captioning (RSIC) and is able to generate semantically 

consistent, contextually aligned, and scale-adaptive descriptions. The experimental results 

show that MSR-CapNet performs better than existing methods across BLEU, METEOR, and 

CIDEr metrics. The key challenge in RSIC is the variation of scale; the viewpoint is addressed 

with a multi-fusion process, and the combination of relevant regions with words is improved 

by an adaptive attention module. Furthermore, the qualitative results confirm that the proposed 

method is able to generate context-aware and semantically correct descriptions for diverse 

scenes.With these improvements, there are still a few limitations for MSR-CapNet. During 

cross-dataset transfer, if we apply topic-sensitive embeddings, it may introduce a minor domain 

bias. Additionally, multi-sensor elements and temporal cues are not included in MSR-CapNet, 



Multi-Scale Semantic Fusion Network with Adaptive Attention for Remote Sensing Image Captioning 

 

 

ISSN: 2582-4104  724 

 

which limits its effectiveness over static images. In the future, we will focus on using multi-

temporal datasets to improve cross-domain generalization. 
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