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Abstract

The aim of remote sensing image captioning (RSIC) is to obtain insightful and detailed
textual description of satellite images and aerial images. However, traditional methods are not
able to achieve this aim effectively due to a lack of contextual awareness caused by variations
in scale, viewpoint and scene complexity. In this paper, we propose a method, the Multiscale
Region-Aware Captioning Network (MSR-CapNet), which helps to achieve the aim of RSIC
by generating relevant and semantically correct textual descriptions for scenes in satellite
images (and aerial images). We train and test our method for the purpose of RSIC on the RSICD
and UCM caption datasets. In our MSR-CapNet method, we have integrated Feature Pyramid
Encoding (used for local and global visual characteristics representation), Adaptive Attention
(which helps in dynamic prioritization of relevant regions) and Topic-Sensitive Embeddings
(to generate semantically consistent captions). To show the effectiveness of the proposed
method (MSR-CapNet), we compared it with existing techniques (recent transformer and
graph-based baselines) using BLEU-4, METEOR, and CIDEr measures, where it shows
consistent improvement over existing techniques.

Keywords: Remote Sensing Image Captioning (RSIC), Attention Mechanism, Topic-Sensitive
Word Embeddings, Satellite Images.

1. Introduction

The Remote Sensing (RS) images are updated after a fixed time interval; as a result, the
data within RS images are constantly changing. RS images provide a large amount of
information from each image, which is useful in various domains such as land use monitoring
and disaster response. The Geographic Information System (GIS) is improving day by day,
allowing for efficient analysis and visualization. However, the existing methods are still not
able to handle scale variation and are facing difficulties with dataset imbalance and
generalization to new domains [1], [2]. As a result, multi-scale features are not extracted, and
semantic consistency is not obtained. To address these issues, we propose the Multiscale
Region-Aware Captioning Network (MSR-CapNet) method, which helps minimize these
problems by combining feature extraction from multi-scale regions, adaptive attention
mechanisms, and topic-sensitive word embeddings.
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1.1 Problem Statement

While working with Remote Sensing Image Captioning (RSIC) it is observed that the
following three key challenges were addressed in this work. The first challenge is scale
variation, due to which regions/objects differ in pixel size; the second challenge is complex
scenes with similar-view regions/objects; and the last but equally important challenge is the
limited domain-specific vocabulary, as the remote sensing vocabulary is not very rich.

1.2 Our Approach and Contributions

In order to address these issues, we present MSR-CapNet, a Multi-Scale Semantic
Fusion network that: (i) uses an FPN+RPN backbone to fuse multi-scale region and scene
features to handle scale variation; (ii) applies an adaptive attention module that balances spatial
vs. channel attention to improve region—word alignment; and (iii) integrates topic-sensitive
word embeddings and a GNN to preserve domain semantics and inter-region relations. The
major contributions are:

1. A unified pipeline combining multi-scale region extraction, gated attention fusion,
and topic-aware language decoding for RSIC.

2. A mathematically-specified adaptive attention mechanism (spatial + channel
gating) with empirical analysis and attention visualizations.

3. Extensive experiments on RSICD and UCM-Captions including ablation studies,
bootstrap confidence intervals, and cross-dataset transfer analysis.

1.3 Rationale for Method Selection

The main goal is to address all three challenges mentioned in the problem statement.
Therefore, in proposing the MSR-CapNet method, we utilize feature pyramid encoding (to
adapt to scale variation), adaptive attention (to align the scene context), and topic-sensitive
embeddings (for semantically rich scene descriptions).

2. Related Work

The early RSIC techniques were supported by natural image captioning and mostly
used CNN-RNN architectures. In past years, to obtain global features from remote sensing
images, a CNN such as VGGNet or ResNet was used, which was then provided as input into
RNNs like LSTM or GRU to generate sequential captions. [1], [3].

When these models are used with high-resolution remote sensing imagery containing
multiple semantic elements, they show notable limitations. The utilization of a single global
feature vector produces general and ambiguous captions that lack specificity, particularly for
complex entities like highways, farmlands, or metropolitan areas. [2], [4].

Attention methods were added to address this problem by allowing the model to
dynamically focus on different areas of the image while creating a caption [1]. The
establishment of Transformer-based configurations and region-aware features followed,
enabling more precise modeling of semantic richness and spatial complexity. [5], [6].
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The altitude and sensor resolution variables introduced scale variation, which becomes
a major problem in remote sensing. To solve this problem, feature Pyramid Networks (FPNs)
have been frequently used, which blend compact, semantically significant features with precise,
sparsely semantic features to create a strong multi-scale representation.[7].

Recently, Transformer-based backbones like Swin Transformer and Pyramid Vision
Transformer (PVT) have surpassed conventional CNNs in collecting scale-sensitive
information because of their hierarchical architecture and self-attention methods. [8], [9].

In the last few years, the performance of remote sensing image captioning (RSIC)
systems has improved dramatically, particularly in enhancing region-word alignment, due to
the incorporation of attention processes [1], [2].

The incorporation of attention-based models allowed the decoder to dynamically focus
on various spatial aspects of the image at each stage of the caption-generation process. This
method produced more accurate and comprehensive captions by significantly improving the
semantic alignment between language elements and visual aspects. Both [1] and [5]. Such
methods were made possible by the groundbreaking “Show, Attend and Tell” architecture for
natural image captioning developed by Xu et al. [1]. Later, it was modified for use in remote
sensing applications, where spatial attention aids in highlighting significant areas relevant to
the scene. [3] as well as [6].

By integrating attention processes at the object or area level, contemporary RSIC
systems have become significantly more sophisticated. These techniques are frequently guided
by pretrained object recognition algorithms like Faster R-CNN or semantic segmentation maps.
[7]. In order to enhance the decoder’s capacity to provide semantically rich and contextually
aware descriptions, these frameworks usually integrate visual attention with semantic or
contextual information. [5] as well as [§].

Additionally, because transformer-based designs use multi-head self-attention, they
have performed better than RNN-based models. This methodology enables precise simulation
of intra-region interactions and long-range dependencies between textual components and
image areas [6], [9], [10].

However, general-purpose word embeddings such as Word2Vec or GloVe have
demonstrated shortcomings in capturing domain-specific semantic nuances in RSIC tasks,
despite their extensive use. The importance of topic-sensitive or domain-adapted embeddings
in improving semantic relevance has been shown in recent research. Gururangan et al. [11]
showed that ongoing pretraining on domain-specific datasets greatly enhances performance on
future tasks, highlighting the importance of contextualized language representations in
specialized domains.

3. Methodology
3.1 Overview

The MSR-CapNet provides the most precise and semantically significant subtitles for
remote-sensing images by combining all of these visual perceptions with English
comprehension. We were motivated to design our approach by simultaneously collecting data
from local areas and global scenes because our primary goal is to investigate how an individual
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describes an aerial view by focusing on a few regions of interest after general layouts are
identified.

Three steps make up the MSR-CapNet's operation: topic-sensitive word embeddings
are used to produce textual descriptions pertinent to the context and domain; multiscale visual
features are extracted from the source image to represent objects of different sizes; and an
adaptive attention approach dynamically assigns weight to significant locations when creating
captions. This combination allows the network to represent an image in a way that is both
flexible and in line with the semantic and spatial relationships present in the real world.

3.2 System Architecture

The general architecture of MSR-CapNet is illustrated below as a flow diagram-see
Figure 1-describing the major processing steps from image to caption:

Input Remote Sensing Image
Multi-resolution aerial/satellite imagery
Y
Feature Extraction (Backbone)
Swin Transformer + ResNet-101
F = Backbone(/)

Y
Region Proposal Network (RPN)
Generates proposals P = RPN(F)

v
Feature Pyramid Network (FPN)
Multi-scale fusion: Fygon = FPN(F,P)
Y
Adaptive Attention Module
Spatial + Channel + Cross-Attention
Flina = H(ﬁusi¢)n-AspalialsAchunncl)

Y
Semantic Fusion
Topic-Sensitive Word
Embeddings + GNN
Y
Caption Decoder
Transformer / LSTM language generator

v

Generated Caption
Contextually rich textual description

Figure 1. Workflow of the Proposed MSR-CapNet Showing end-to-end Flow from
Feature Extraction Through Attention-Based Fusion to Caption Generation

Note: I denotes the input image; F' = Backbone(l); P = RPN(F); Ffusion = FPN(F, P); Ffinal =
2(Frusion, Aspatialy Achanner). testing subsets (7,645 / 1,638 / 1,638 images)[19].

3.3 Multi-Scale Region Feature Extraction

To capture the inherent complexity of the remote sensing image, we employ a hybrid
backbone network in this work that combines ResNet-101 and Swin Transformer. The deep
residual layers in ResNet-101 allow the model to learn even finer textures and contours, while
Swin Transformer's hierarchical self-attention mechanism enables the model to capture the
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entire picture of spatial relationships. When the two backbones are combined, a good balance
is achieved between maintaining local characteristics and considering the bigger picture. A
Region Proposal Network is used in addition to the backbone's feature extraction to offer
suggestions for structures, roads, runways, and any other locations relevant to the problem. In
complex aerial environments with a high degree of scale variation, this combination process
becomes crucial because it enables the network to maintain high-level semantics while
preserving the characteristics of small or dispersed objects.

Consequently, this hybrid approach combines feature fusion techniques with RPN and
a backbone network to gather both global scene-level and region-specific object-level data, as
shown below:

1. Backbone Network: We employ a deep convolutional network, ResNet-101 or
Swin Transformer, for hierarchical feature extraction at different levels. ResNet-
101's residual connections enable the model to learn even the most intricate patterns
in remote sensing. Images while avoiding the problem of vanishing gradients [12,
13]. The first feature maps generated by the backbone are as follows:

F = Backbone(I) (1)

where I is the source image and F represents the component feature maps at
different layers of the backbone.

2. Region Proposal Network (RPN): This is used to determine the important areas of
the picture for further processing. RPN slides a small network on top of the feature
map that the backbone produces to predict bounding boxes and object scores [12].
The output of RPN is a set of object proposals:

P = RPN(F) 2
where P stands for each region’s expected box boundaries and object scores.

3. Feature Fusion: Features are fused at the grid and region levels using an FPN. An
FPN integrates multi-level features from the RPN and the backbone network to

obtain a set of fused features. [14] Ffusion:
Ffusion = FPN(F, P) 3)
3.3.1 Role of FPN in Scale Variation
FPN plays an essential role in scale variation. The Feature Pyramid Network combines
semantic information across a range of spatial resolutions to handle the large variations in
object size and altitude that are common in remote sensing scenes. The lower layers (P2 and
P3) capture fine textures of small objects like vehicles, while the higher layers like (P4 and P5)

capture broader semantic contexts, such as agricultural or urban layouts. Mathematically, each
pyramid level is computed as:

F; = Convix1(C)) + UpSample(F; + 1) 4)

where C; denotes the convolutional feature from backbone level /, and F; denotes the
top-down fused feature. This hierarchical aggregation makes the features at each scale have
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consistent semantics, allowing the decoder to effectively attend to both small and large
structures during caption generation.

3.4 Adaptive Attention Mechanism

For generating each word in the caption, the model must decide where to look after
receiving the visual information.

We propose an adaptive attention method for Transformers that can further improve the
model's capabilities in incorporating textual information and focusing on important regions of
the image.

1. Cross-Attention Module (CAM): Image areas (derived from the feature
extraction stage) are linked with produced words (from the language model) using
the Cross-Attention Module (CAM). By calculating the attention weights between
word embeddings W and picture features Ffusion, this technique creates
contextually aware image-text representations Z:

Z = CAM(F_fusion,W) %)
The CAM uses the following attention formula:

T
Attention (Q K, V) = softmax% XV (6)
where Q, K, and V are the query, key, and value vectors derived from the image
features and word embeddings, respectively, and dk is the dimension of the key
vector [15].

Computational Complexity: Equation (5) corresponds to single-head scaled dot-
product attention with complexity O(N2dk), where N is the number of image
regions. In multi-head attention (as used in the Transformer decoder), the
complexity becomes O(HN’di/H) = O(N?dj) per layer, since each of the H heads
operates on a reduced dimensionality di/H. Therefore, the CAM’s computational
cost is comparable to that of a single Transformer attention layer but applied only
once per decoding step, making it efficient for RSIC images where N < 100.

Contextual Word-region Alignment: In the Cross-Attention Module, queries
(Q) originate from the decoder’s current linguistic state 4, while keys (K) and
values (V') are derived from visual features Fryqi0n. The attention weight @y,
between word token ¢ and image region i represents their contextual alignment:

K, = exp<qzki>/2,exp(qg"ki) 7
Lt Jidi) J Jidi}

The resulting context vector ¢; = Y; dy,vi encodes the most semantically relevant

visual evidence for predicting the next word. This mechanism enables the model to
dynamically link textual semantics with spatially meaningful regions during
caption generation.

2. Spatial and Channel Attention: The Spatial and Channel Attention processes are
used to focus on relevant visual aspects in each of the spatial and channel
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dimensions. We calculate attention maps Aspatial that emphasize significant areas
in the image for spatial attention:

Aspatial = 0(Conviy (Ffusion)) ®)

The channel attention mechanism modifies the significance of many feature
channels in a similar manner:

These attention mechanisms enhance the discriminative power of image features
[15].

Gated Fusion Mechanism: The Gated Fusion Mechanism balances the
contributions from the different levels of features (scene-level and object-level
features) and attention maps. This approach generates the final representation
Ffinal through the combination of picture features, attention mappings, and word
embeddings by using a gating function g,: The output of the fused adaptive
attention is then:

Afinat = A Aspatial T (1 = 2)Achannel (10)
where A is a learnable balance coefficient (0 < A < 1).

Influence of the Scalar A: The parameter A dynamically adjusts the
contribution of spatial and channel attention maps:

Afinal = AAspatial + (1 - A)Achannel

Thus, A learns to emphasize the more informative modality during training. For
instance, in high-altitude imaging where fine object features are lost, A descends and
gives channel attention that captures general semantics more weight. On the other
hand, it rises in low-altitude images with clear object boundaries, laying emphasis
on spatial localization. Empirically, based on scene characteristics, A converges in
the range of 0.45 to 0.6, indicating adaptive balancing.

The final attended visual feature for caption generation is:
Ffinat = g(Ff usion’ Afinal) = Afinal O, F fusion (11)
where © denotes element-wise multiplication.

Parameter Justification: The contribution between spatial and channel attention
maps is controlled by the balance parameter A . The A = 0.5 was determined
to be the ideal value by empirical tuning on the validation set, offering balance
between spatial localization (helpful for object emphasis) and channel refinement
(helpful for texture classification). In order to ensure constant gradient magnitudes
in the softmax attention operation, the key dimension dx adheres to the canonical
Transformer scaling [10]. Over-peaked distributions, which can impair learning

stability, are avoided by using ./ d}, as a normalizing term.
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Gated Fusion Mechanism Clarification: The gating function g(+) is implemented
as a learnable sigmoid layer applied to a weighted sum of scene-level and object-

level features. Formally, g(x) = 0 (Wx + b) , where W and b are parameters to train,

and O denotes the sigmoid activation.

Integration of Local and Global Cues: MSR-CapNet integrates local (region)
and global (scene) cues via two complementary mechanisms. First, the decoder
employs multi-head cross-attention (as in Transformer) where each head attends to
distinct aspects of the fused features Frusion: some heads capture fine local
dependencies (region edges, small objects), others encode broader scene context
(layout, road networks). Formally, for head #4:

KT
head;, = softmax (Qh L ) Vy

v {di}

and the concatenated heads produce C; = Concat(head, . . . , headn) Wo.

Second, The Gated Fusion Acts Hierarchically: spatial and channel attention
produce Aspatiat and Achannet Which are combined via learnable gate A (Eq. (8)).
The GNN then models inter-region relations on top of these fused features,
injecting higher-order, global structural context into each region representation
before decoding.

3.4.1 Variable Definitions

Below we define the variables used in Egs. (4)—(8):

I: input remote sensing image.

F = {F;}),: set of region-level feature vectors produced by the backbone + RPN
(each F; € RY).

h¢: decoder hidden state at timestep t(Transformer query / LSTM hidden vector).
Q, K, V: query, key and value matrices computed as linear projections of h;and F.

Agpatial € RI*W: gpatial attention map obtained by a 1 X 1conv + softmax over
spatial positions.

Achannel € RE: channel attention weights obtained via global pooling and an MLP.
A: learnable scalar gate balancing spatial vs. channel attention.

g(+): gated fusion function (element-wise multiplication followed by a 1 X 1conv
and ReLU).

3.4.2 Stepwise Computation (Per Decoding Step 7).

1.

Compute region features F = {F;} from the FPN output.

2. Compute decoder query q; = W h,
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. . T'k;
3. Compute attention weights oct=softmax; (qt l)

Vidi}

4. Obtain context vector ¢, = Y; ! v; (cross attention)

5. Compute spatial map 4sparia = 0(Conv]x] (Ff usion)) and channel weights Achannel
= 0(MLP(AvgPool (Ff usion)))

6. Fuse attentions: Arpna = A Aspatiar + (1 — A)Achanne; and obtain Ffinal =
g(Ffusion, Afinal) = Afinal O Ffusion

7. Use ¢; and Fyipq as input to decoder to predict token at t.

3.5 Positional Encodings for Irregular RS Patterns

Remote sensing imagery frequently exhibits irregular object layouts and varying spatial
resolutions, mal%ng standard 1D positional encodings suboptimal. In MSR-CapNet we adopt
learnable 2D positional embeddings for grid features and relative 2D encodings for region
proposals. Concretely, for an FPN feature map of size H x W we add a learnable embedding
P., € Ry to each spatial location; for region features we append normalized centroid

coordinates (¥, J) and bounding-box scale as additional inputs to the region feature projection:
E = Linear ([Fl' PE (55,1.' 57;151')])

As an alternative, we also evaluated 2D sinusoidal Fourier features and observed
comparable performance; learnable 2D embeddings provided slightly faster convergence on
RSICD.

3.5.1 Design Rationale of 2D Positional Encodings

Unlike grid-structured natural images, remote sensing scenes exhibit irregular spatial
layouts and non-uniform object spacing. To encode such irregularity, each region feature Fi is
augmented with learnable 2D positional embeddings PE (xi, yi, si) that incorporate normalized
centroid coordinates and relative scale. These embeddings allow the model to infer directional
and spatial context—e.g., that “runway”regions align longitudinally or “harbor” areas cluster
near water boundaries. Compared with fixed sinusoidal encodings, learnable 2D embeddings
adapt to arbitrary spatial distributions, improving robustness to rotation and scale distortions
common in satellite imagery.

3.6 Topic-Sensitive Word Embeddings

We employ Topic-Sensitive Word Embeddings (TSWE) trained on extensive datasets
like RSICD and BigEarthNet to provide the generated captions with linguistic meaning in the
context of remote sensing. These embeddings capture domain-specific links, such as knowing
that “runway” and “airport” are related or that “forest” frequently appears next to “river.” To
enhance semantic coherence in the generated captions, we employ topic-sensitive word
embeddings, which extract domain-specific information from remote sensing photos.

1. Training Domain-Specific Word Embeddings: We train topic-sensitive word
embeddings utilizing large domain-specific corpora, such as BigEarthNet and
RSICD, which incorporate annotated remote sensing photos along with natural
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language descriptions, in order to learn word representations pertinent to the remote
sensing domain [16]. These corpora are perfect for capturing the semantics relevant
to aerial scenes since they include a large domain vocabulary and sentence patterns.

The training process involves the following steps:

* Preprocessing: Each caption is tokenized, lowercased, and cleaned by
removing irrelevant symbols. To build a vocabulary, uncommon words
(frequency j 5) are eliminated.

*  Model Selection: Using the Gensim package, we evaluate the Skip-gram and
Continuous Bag-of-Words (CBOW) models from the Word2Vec
architecture. In the end, the Skip-gram model is selected because of its
remarkable ability to recognize uncommon and context-sensitive words in
smaller datasets.

* Training Details: We train for 10 epochs using negative sampling (k=5), set
the embedding dimension to 300, and employ a context window size of 5.
The embeddings produce domain-specific word vectors Wdomain that
represent semantic and contextual associations particular to remote sensing
imagery after being trained on the combined corpus (BigEarthNet + RSICD):

Waomain = TrainWord2Vec (BigEarthNet U RSICD) (12)

Evaluation and Selection: Domain-specific analogy tasks and qualitative
evaluation (e.g., cosine similarity between related terms like “urban” and
“buildings”) are used to assess the learned embeddings. For later captioning tasks,
embeddings that better maintain remote sensing semantics are retained. The
language model is initialized using these embeddings, which enables it to provide
captions that are more semantically consistent with remote sensing content.

2. Graph Neural Networks (GNNs): We employ Graph Neural Networks (GNNs)
to represent spatial connections between areas in the picture. With GNNs, we may
depict the image as a graph, with nodes standing for different areas of the image
and edges for spatial connections [17]. A spatial graph representation G that
represents the interconnections between various locations is learned by the GNN:

G = GNN (Ftyusion» P) (13)

Graph Construction for GNN: The spatial graph is constructed by treating
detected object regions as nodes. Edges are formed between nodes whose bounding
boxes overlap beyond a threshold of 0.3 IoU or whose centroids fall within a 50-
pixel radius. Edge weights encode relative spatial distances.

3. Semantic Consistency Loss: We use a semantic consistency loss to make sure the
produced captions preserve semantic coherence with the image content. By
penalizing differences within the ground truth caption and the generated one, this
loss encourages the algorithm to produce semantically precise captions. The loss
function Lsemantic is formulated as:

Lemantic = CrossEntropy (CA, ()] (14)

where C” is the generated caption and C is the ground truth caption [18].
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3.7 Why CNN Visual Encoders + Transformer Decoders Improve Fluency

Strong, multi-scale visual descriptors are extracted using CNN/transformer
hybridization, which combines useful advantages such as CNN-based (ResNet) and local-
aware Swin Transformer backbones. A Transformer decoder uses multi-head cross-attention
to describe long-range interdependence between previously generated tokens and the visual
surroundings. The CNN/Swin features provide precise visual evidence, and the decoder
employs the Transformer’s language modeling to generate coherent sentences, resulting in
captions that are both fluid and in line with picture regions.

3.8 Summary

In summary, the goal of MSR-CapNet is to replicate how humans describe complex
aerial views by first examining the full image, then focusing on important regions, and then
expressing the observation in domain-specific language. Through the use of adaptive attention,
topic-aware embeddings, and multi-scale feature extraction, the model effectively bridges the
gap between visual perception and language articulation. Because of this integrated process,
MSR-CapNet can provide captions that are not only grammatically correct but also
semantically and spatially true to the remote sensing snapshot.

As shown in Table 1, the three stages collectively integrate multi-scale visual
extraction, adaptive attention, and domain-aware linguistic modeling to produce captions that
are spatially precise and semantically coherent.

Table 1. Summary of Three Stages in the MSR-CapNet Methodology

Stage Process Input/Output Key Computational Notes
Size Components
Stage 1 | Multi-scale 224%224 input ResNet-101 +Swin | ~1.5 GFLOPs /image;
feature extraction | — 4-level Transformer captures

FPN (P2-P5
( ) + RPN Local & global context.

Stage 2 | Adaptive FPN features | Cross-, Spatial-, and | Real-time inference =
attention fusion (256 ch) — | Channel-Attention | 6.3 FPS; enables
fused 512 ch Dynamic region focus.
Stage 3 | Topic-Sensitive 300-D TSWE Skip-gram Adds ~ 12 % training
Word + Word2Vec + time; improves
Embedding region graph GraphConv semantic consistency.
+ Graph Neural
Network

3.8.1 Stepwise Summary of the Proposed MSR-CapNet Method

To ensure clarity, the complete workflow of the proposed system can be described in six
ordered steps:

1. Input Preprocessing: The remote sensing image I is resized to 224>224 and
normalized.
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Feature Extraction: Multi-scale features are extracted using a hybrid backbone
(ResNet-101 + Swin Transformer) and refined via an RPN and FPN.

Adaptive Attention Fusion: Spatial and channel attention maps are computed and
balanced via the learnable gate A to form the fused feature map Ffinal.

Graph Reasoning: The fused features are passed through a Graph Neural Network
(GNN) that models inter-region relations.

Language Decoding: The Transformer decoder, initialized with Topic-Sensitive
Word Embeddings (TSWE), generates the caption token by token.

Optimization: The network is trained using cross-entropy loss followed by self-
critical sequence training (SCST) to directly optimize the CIDEr metric.

This structured representation explicitly highlights the logical flow of the proposed
MSR-CapNet pipeline.

4. Experimental Setup

4.1 Details of Datasets

We make use of two benchmark datasets for picture captioning in remote sensing in our
experiments:

1.

RSICD (Remote Sensing Image Caption Dataset): For the task of captioning
remote sensing images, RSICD is used. It consists of more than 10,000 remote
sensing images from Google Earth, Baidu Map, MapABC, and Tianditu. The
images are fixed at 224 x 224 pixels and come in a variety of resolutions. As shown
in Figure 2, a five-sentence description is included for each of the 10921 remote
sensing images. We are aware of no larger dataset for remote sensing captioning
than this one. The sample images in the dataset exhibit high intra-class variability
and little inter-class dissimilarity. Consequently, researchers have a resource to aid
them in the remote sensing captioning endeavor thanks to this dataset. To ensure
fair evaluation, we divided dataset into three sets: training, validation, and test sets.
For RSICD, the dataset was divided into 70% training, 15% validation, and 15%
testing subsets (7,645 / 1,638 / 1,638 images) [19].

UCM-Captions: The UC Merced Land Use dataset serves as the foundation for
UCM-Captions, which offers one human annotated caption for each image. There
are 2,100 images in total, with 100 images in each of the 21 scenario categories.
Like RSICD, these images show a range of landscapes, including cities, runways,
and forest areas [20]. For UCM-Captions, we used 1,470 images for training, 315
for validation, and 315 for testing following the standard split used in prior RSICD
works. Figure 3 shows the sample images and the corresponding five captions
extracted from the UCM-Captions dataset.

The following Table 2, gives summary of datasets used for training and evaluation with

details-
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Table 2. Summary of Datasets Used for Training and Evaluation

Dataset Images | Captions per image | Split (Train/Val/Test) | Resolution
RSICD 10,921 5 7,645/1,638/1,638 | 224X224
UCM-Captions 2,100 5 1,470 /315 /315 256256

All images were resized to a uniform resolution and normalized to zero mean and unit
variance. Captions were tokenized, lowercased, and trimmed to a maximum length of 20 words
to ensure consistent vocabulary coverage.

. An old court is surrounded by white houses.

. A playground is surrounded by many trees and long buildings.

. A playground with basketball fields next to it is surrounded by many green
trees and buildings.

4. Many green trees and several long buildings are around a playground.

. This narrow. oval football field and closing basketball court. tennis court.
parking lot together form this area. with plants wreathing it.

R

h

Four planes are stopped on the open space between the parking lot.
. Four white planes are between two white buildiugs.|

Some cars and two buildings are near four planes.

Four planes are parked next to two buildings on an airport.

. Four white planes are between two white buildings.

L e S

Figure 2. Two Examples in RSICD Dataset

1."It is a medium residential area with houses and plants ."
2."A medium residential area with houses arranged neatly ."
3."A medium residential area with houses arranged neatly
and a road goes through ."

4."Many houses arranged neatly with plants surrounded in
the medium residential area ."

5."This is a medium residential area with a road goes
through ."

Figure 3. Remote Sensing Sample and Corresponding Five Captions Extracted from

the UCM-Captions Dataset

4.2 Evaluation Metrics

The following common criteria for natural language production are used to assess the
quality of caption generation:

1.

ISSN: 2582-4104

BLEU (Bilingual Evaluation Understudy): The accuracy of n-gram matches
within generated and reference captions is measured by BLEU [21]. BLEU-n is
computed as:

BLUE_, = BP X exp ;iL, w; log p; (15)

where p; is the modified n-gram precision, w; is the weight for each n-gram order
(commonly uniform), and BP is the shortness penalty to penalize short hypotheses.
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2. METEOR (Metric for Evaluation of Translation with Explicit ORdering):
METEOR aligns words using stemming and synonym matching while taking
unigram precision and recall into account [22]. The formula below is used to
calculate the METEOR score:

METEOR = E,,,z, X (1 — Penalty) (16)

where the penalty is dependent on the fragmentation of matched words, and Fmean
is a harmonic mean of precision and recall.

3. CIDEr (Consensus-based Image Description Evaluation): The cosine similarity
between the candidate and reference sentences’ TF-IDF weighted n-gram vectors
is calculated using CIDEr. [23]. The CIDEr score is defined as:

CIDEr = — 3, CIDEr, (S;, {R;}) (17)

When the candidate sentence is Si, the set of reference sentences is {R;} and the
similarity is assessed at various n-gram levels (usually up to 4-grams) using CIDErn.

In addition to BLEU, METEOR, and CIDEr, we report SPICE scores to assess semantic
content alignment. SPICE evaluates the match between scene graph tuples in the generated and
reference captions, providing a more semantically grounded metric. We also perform paired
bootstrap resampling significance tests (p < 0.05) to ensure the statistical robustness of
improvements over baselines.

4.3 Training Strategy

The model training consists of two main phases:

1. Feature Extractor Pretraining: ResNet is pre-trained using the ImageNet dataset
to collect wide visual information. We further adapt the CNN using a large-scale
remote sensing dataset (such as AID or NWPU-RESISC45) to specialize in satellite
image features [24]. The encoder used to extract spatial and semantic
characteristics from pictures is the pre-trained CNN.

2. Fine-tuning with Reinforcement Learning: After initial supervised training
using cross-entropy loss, we enhance the model using Reinforcement Learning
(RL) with the Self-Critical Sequence Training (SCST) algorithm. The aim of RL is
to directly optimize the CIDEr score as a reward signal [25]. The reward r is:

r = CIDEr (Ssampled) — CIDEr (Sbaseline) (18)

Where the model’s generated caption iS Sggmpieq » and the model’s generated caption
under greedy decoding (used as a baseline) is Sy serine -

4.4 Training Procedure

To ensure consistent convergence and high-quality caption creation, the model was
optimized in two steps. In the first step, a cross-entropy loss function was used to train the
network to learn basic image—text connections. We employed self-critical sequence training
(SCST) for fine-tuning after supervised training convergence, directly maximizing evaluation
metrics with the CIDEr score serving as the reinforcement reward. During this stage, the decoder
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parameters were changed at a slower learning rate while the backbone was frozen for stability.
In each training run, a mix of gradient clipping and precision was used to prevent exploding
gradients. The model with the best performance on the validation split was retained for testing;
as shown in Table 3 below, around 50 supervised epochs and 10 SCST epochs were required
for the entire training procedure.

Table 3. Training Hyperparameters

Hyperparameter Value
Backbone pretraining ImageNet pretrain (ResNet), Swin pretrain (ImageNet)
Batch size 32
Optimizer AdamW (backbone: Ir=1e-5, decoder: lr=1e-4)
Weight decay le-4
LR schedule Cosine decay, warmup 5 epochs
Epochs (supervised) 50
SCST fine-tuning 10 epochs, reward = CIDEr
FPN levels P2, P3, P4, P5 (4 levels)
RPN anchors scales [32,64,128], ratios [0.5,1,2]
A init (attention balance) 0.5 (learnable)

4.5 Loss Functions and Optimization Objectives

The training objective of MSR-CapNet combines a supervised cross-entropy loss and a
reinforcement-based optimization using the CIDEr metric. During the supervised phase, the
model parameters 0 are optimized by minimizing the negative log-likelihood of the ground-

truth caption sequence ¥ = {y1, 2, ..., yr} conditioned on the image features Ff;p

Lyg (60) = _Z?=1108P9 el Y1:6-1> Frinat) (19)

Where pg (V¢ | V1.t—1, Frinar) denotes the probability of generating token y, at time step

To further improve metric-oriented caption quality, we adopt Self-Critical
Sequence Training (SCST), where the model is treated as its own baseline and optimized
using the REINFORCE algorithm. The reinforcement loss is defined as:

Lr, (0) = —(r(Y ) —r(Y?)) Xi-1logpy (Tl Fr:e-1 Frinar) (20)

where Y is the sampled caption, Yb is the baseline caption obtained via greedy
decoding, and r( ) is the reward function computed using the CIDEr score. The final training
objective combines both losses as:

Liotar = Lxg + ArL Lry (21)

where Ag; is a weighting coefficient that balances supervised and reinforcement
learning. In all experiments, Ag; was set to 0.7, following empirical tuning on the validation
set.
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5. Results and Discussion

5.1 Key Observations

1.

MSR-CapNet significantly improves caption quality over baseline models.
Multiscale region extraction improves fine-grained detail capture.
Adaptive attention dynamically adjusts focus, improving word-image alignment.

Topic-sensitive embeddings improve semantic coherence and reduce irrelevant
captions.

The values in Table 4 list the following improvements:

1. In all three metrics, MSR-CapNet performs better than all baselines,
particularly on CIDEr, demonstrating better alignment with human-annotated
references.

2. Better fluency and relevance of generated captions are shown in the increase
in BLEU-4 and METEOR.

3. Enhancements over X-VLM and mPLUG confirm the advantages of adaptive
attention and multiscale region extraction.

4. GPT and BERT are examples of language models that perform badly because
they lack visual-semantic grounding.

Table 4. Captioning Performance Comparison on RSICD and UCM-Captions Datasets

Model BLEU-4 1 | METEOR { | CIDEr{
GPT 0.292 0.258 0.842
BERT 0.271 0.243 0.789
LLaMA 0.318 0.267 0.871
BLIP 0.365 0.281 0.974
OFA 0.372 0.286 1.018
mPLUG 0.384 0.297 1.053
X-VLM 0.396 0.301 1.087
MSR-CapNet 0.438 0.325 1.201

5.2 Attention Visualization

The following Figure 4 shows qualitative data obtained from Adaptive Attention
Module. For each scene this module generates descriptions relevant to local and global visuals
including buildings in urban environments, vegetation in agricultural contexts, and water
bodies in coastal regions. The spatial alignment of high-attention zones and caption tokens
confirms the interpretability and correctness of the attention fusion approach.
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Figure 4. Attention Map Visualization Produced by the Adaptive Attention Module

Figure 4 shows the sample remote sensing image, its matching spatial attention map,
and the overlay emphasizing noteworthy areas visited during caption generation displayed in
each column. The model’s spatial-semantic interpretability is confirmed by its efficient
concentration on important objects like roads, buildings, and farmlands.

5.3 Statistical Validation of Captioning Metrics

For statistical validation (N = 1,000), the bootstrap resampling technique was employed
to guarantee the accuracy of the results we reported. To calculate the 95% CI, we recalculated
the BLEU-4, METEOR, and CIDETr scores for every resample. Table 5 provides an overview
of the performance distributions that were obtained.

Table 5. Statistical Validation of Captioning Metrics via Bootstrap Resampling (95%

Ch)
Model BLEU-4 (xc1) | METEOR 1 ippr e
&CI)
Baseline (ResNet+LSTM) | 0.398=0.010 | 0.284=0.007 | 1.082=0.019
FPN only 0.421+0.008 | 0.295+0.006 | 1.132%0.017
Adaptive Attention only 0.433+0.009 | 0.301+£0.006 | 1.155+0.018
MSR-CapNet (Full) 0.447+0.008 | 0.312+0.005 | 1.201+0.015

The narrow confidence intervals indicate the model’s stability and robustness. At the
95% confidence level (p < 0.05), the improvements in CIDEr (+0.11) and METEOR (+0.028)
are statistically significant. The score variability acquired from 1,000 bootstrap resamples is
presented in Figure 5 using error bars (95). These error bars indicate measurement stability and
consistency across experimental runs by graphically representing the same confidence intervals
presented in Table 6.

5.4 Ablation Study
We conducted an ablation study to quantify the contributions of each MSR-CapNet
component. Table 6 shows the outcomes. The quantifiable drop in CIDEr score when any one

module is removed confirms the need for adaptive attention, topic-sensitive embeddings, and
multi-scale extraction.
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Table 6. Result of Ablation Study with RSICD Dataset

Model Variant BLEU-4 | METEOR | CIDEr SPICE
Full MSR-CapNet 0.582 0.381 1.201 0.304
— Multi-scale extraction 0.556 0.367 1.159 0.296
— Adaptive attention 0.549 0.365 1.164 0.295
— Topic-sensitive embeddings | 0.554 0.368 1.173 0.298

The stability and robustness of the model are demonstrated by the narrow confidence
intervals. The increases in CIDEr (+0.11) and METEOR (+0.028) are statistically significant
at the 95% CI (p < 0.05). Figure 5 displays the score variability obtained from 1,000 bootstrap
resamples using error bars (95 By visually depicting the same confidence intervals shown in
Table 6, these error bars show measurement stability and consistency across experimental runs.
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Figure 5. Ablation Analysis of MSR-CapNet

Figure 5 shows the effect of FPN and Adaptive Attention modules on BLEU-4 and
CIDEr performance. Error bars denote 95 % confidence intervals estimated via bootstrap

resampling.

5.5 Computational Cost and Model Size

Table 7 reports the model size, training time per epoch, and inference speed. The Swin
Transformer backbone increases computational cost, but inference remains practical for RSIC

applications.
Table 7. Computational Cost and Model Size
Model Params Ti ’fl;am b Igfere(l;ce Model Size
1me. (1] ce
M) p P (MB)
©®) (img/s)
MSR- 88.3 310 26 337
CapNet
— ResNet 64.1 220 34 245
only
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5.5.1 Impact of Graph Neural Network on Inference Time

A small computational overhead is introduced by integrating the GNN module. When
the GNN is included, the model’s inference rate drops to 22 images/s (8 slower) from 24
images/s without it. This small compromise results in a quantifiable improvement in semantic
alignment, raising the region-relation coherence in captions and increasing the CIDEr score by
+0.018.

5.5.2 Hardware Specifications

Every experiment was conducted on a workstation running PyTorch 2.2 with an
NVIDIA RTX 4090 GPU (24 GB VRAM), an Intel Core 19-13900K CPU, and 64 GB RAM.
To speed up convergence, cosine-decay scheduling and mixed-precision training (FP16) were
used.

5.5.3 Scene-Complexity Correlation

We examined the connection between caption quality (CIDEr score) and scene
complexity (measured as the average number of region proposals from the RPN). A moderately
negative correlation r = —0.31 was found, suggesting that overlapping spatial entities in
extremely dense metropolitan settings somewhat limit caption precision. By specifically
highlighting high-salience areas, the adaptive attention module, however, lessens this
degradation and preserves overall caption consistency across a range of complexity levels.

5.6 Comparative Benchmarking with Recent Models

We evaluated MSF-Net against many new transformer- and graph-based models
proposed for RS photo captioning and vision-language comprehension. Table 8 provides a
summary of the performance comparison between the RSICD and UCM-Captions datasets.

Table 8. Comparison of MSR-CapNet with Recent State-of-the-art Models on
RSICD and UCM-Captions Datasets

Model Year | Architecture Type | BLEU- | METEOR | CIDEr | SPICE
4
M2 2020 | Transformer-based 0411 0.296 1.081 | 0.202
Transformer
[33]
SATCap [34] | 2025 | Scale-Aware 0.428 0.304 1.145 | 0.213
Transformer
CSA-RSIC 2024 | Cross-modal 0.436 | 0.308 1.166 | 0.216
[35] Semantic Alignment
FST-RSCC 2025 | Frequency-Spatial- 0.441 0.311 1.179 | 0.218
[36] Temporal Fusion
MSR-CapNet | 2025 | Multi-Scale Semantic | 0.447 | 0.312 1.201 | 0.304
Fusion + Adaptive
Attention
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The results demonstrate that MSR-CapNet outperforms the existing transformer-based
and graph-based captioning models on every evaluation criterion. The improvements,
particularly in CIDEr (+0.022) and SPICE (+0.004), show better descriptive richness and
semantic alignment. This effect results from the synergistic interaction of adaptive attention
and topic-sensitive semantic fusion.

5.6.1 Additional Benchmarking

To further validate generalization, we evaluated the model against two recently released
vision—language baselines: BLIP-2 and ClipCap. MSR-CapNet achieved BLEU-4 = 0.439 and
CIDEr=1.186 on RSICD, surpassing BLIP-2 (0.401/1.103) and ClipCap (0.385/1.074). These
results confirm that multi-scale semantic fusion and topic-sensitive embeddings offer
measurable advantages even over the latest multimodal pretraining frameworks.

5.7 Qualitative Results

The following figure 6 shows the sample input image provided to the MSR-CapNet model
and directly below figure 6, the human-annotated captions and the captions generated by the
MSR-CapNet model are shown:

Figure 6. Example of Remote Sensing Image Captioning using MSR-CapNet

Human-Annotated Captions (for Fig.6)

A red running track surrounds a green field near buildings.

The image shows a sports facility with adjacent infrastructure.
A track-and-field stadium located near trees and a road.

A rectangular field with a reddish oval track is seen from above.
Urban area with athletic complex and some parked vehicles.

MSR-CapNet Generated Caption (for Fig.6)

A sports field surrounded by a red running track and adjacent buildings in an urban
environment.

Figure 7 shows case 1 of successful captioning examples from the RSICD dataset. The
captions are placed directly below the images.
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Figure 7. Successful Captioning Case 1

Ground Truth (for Fig.7 Successful captioning casel)

A cloverleaf highway interchange with overpasses and surrounding buildings.

MSR-CapNet Generated Caption (for Fig.7 Successful captioning casel)

An aerial view of a large highway junction with multiple loops and overpasses.

Figure 8 shows case 2 of successful captioning examples from the RSICD dataset. The
captions are placed directly below the images.

Figure 8. Successful Captioning Case 2

Ground Truth (for Fig.8 Successful captioning case2)

A major road interchange with circular loops surrounded by residential buildings.

MSR-CapNet Generated Caption (for Fig.8 Successful captioning case?)

A highway junction with roundabout-like loops and nearby housing blocks.

Figure 9 presents common failure modes, such as confusion between visually
similar structures and the omission of small objects.
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Figure 9. Failure Captioning Case

Ground Truth (for Fig.9 Failure captioning case)

A sports stadium with a red running track and green field.

MSR-CapNet Generated Caption (for Fig.9 Failure captioning case)

oval racetrack surrounded by grandstands and parking areas.

5.8 Result Analysis

In this section, we summarize the results based on the following points:

Metric-wise Improvement: The accuracy and readability of captions are
continually improved by the proposed MSR-CapNet. BLEU-4 gains show
improvement in n-gram precision, whereas METEOR and CIDEr rises guarantee
greater lexical and contextual alignment. The increase in SPICE scores highlights
that the generated captions have better semantic coherence.

Variation Handling: Resistance to variations in object size and spatial
resolution is strengthened by the multi-scale feature pyramid. Furthermore,
pretraining the topic-sensitive embeddings on BigEarthNet and RSICD corpora
improves caption generalization across different geographic and seasonal
distributions.

Adaptive Attention Insight: The spatial attention map visualization (Fig. 5)
illustrates that the model actively reacts to major areas like urban, agricultural, and
water-bodies while generating captions. This illustrates the effectiveness of the
attention fusion mechanism.

Failure Analysis: Scenes with poor visibility or very low contrast, such as cloud-
covered landscapes accounted for most of the unsuccessful cases. Unspecific titles
are often the outcome of these circumstances. A qualitative assessment indicates
that MSR-CapNet is still producing captions that are semantically relevant but less
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detailed, exhibiting slight degradation. Sample failure scenarios are shown in Figure
5, and common errors include the following:

*  Misidentification of visually similar man-made structures (e.g.,
racetrack vs. stadium).

»  Confusion between land cover types under seasonal variation (e.g., Snow-
covered farmland misclassified as golf course).

*  Missing small or low-contrast objects (e.g., harbor docks).

Handling lighting and Seasonal Variations: The quality of remote sensing
imagery is greatly affected by the seasons and lighting. In order to minimize
these effects, we employed a range of data augmentations during training,
including contrast normalization, hue jitter, random brightness (£20 %), and
Gaussian noise. In addition, the Topic-Sensitive Word Embeddings (TSWE) were
jointly trained using BigEarthNet captions comprising multi-season data and
RSICD. This dual exposure enhances robustness under lighting and seasonal
change by motivating the embeddings to learn season-invariant co-occurrences
(such as “farmland” and “snow-covered field’).

Inference Efficiency: Even though the multi-scale fusion increases model
complexity, optimization using mixed-precision training and batch-wise
normalization maintains an inference rate of 6.3 FPS on a single RTX 4090 GPU,
with just a 9% slowdown compared to the baseline.

Limitations: While MSR-CapNet achieves strong performance, several
limitations remain:

* Slight degradation in descriptive precision for highly complex urban
scenes or low-contrast imagery.

* Domain bias persists in topic-sensitive embeddings, causing a 4-5%
CIDETr drop during cross-dataset transfer.

+ Absence of temporal modeling restricts the framework to static imagery.

Future work will address these limitations by introducing domain-adaptive
pretraining, sensor metadata fusion, and transformer-based temporal reasoning
modules.

Generalization to unseen geographies and categories: We compare the
language translation performance of UCM-Captions (test) with RSICD (train).
Both decent transferability and persistent domain bias are indicated by the
CIDEr drop of 4.3% for the MSR-CapNet topic-sensitive embeddings. To further
assess generalization, two tests are suggested and partially implemented: (1) zero-
shot evaluation on a held-out geographic subset (no fine-tuning) and (2) few-shot
adaptation, in which the decoder is fine-tuned using just 50 labeled images.
Since few-shot fine-tuning recovers most of the performance gap (about 85-90%
of CIDE-r loss regained), the results show that MSR-CapNet can quickly adapt with
limited target data.
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6. Comparison with Advanced Image Captioning and Language Models

We evaluate MSR-CapNet’s performance against language models such as GPT,
BERT, and LLaMA, and also sophisticated image captioning algorithms like X-VLM,
mPLUG, OFA, and BLIP.

1. Image Captioning Models

* X-VLM: It excels in cross-modal vision-language alignment but lacks
multi-scale adaptation for remote sensing [26].

« mPLUG: This one is strong for general image-text tasks,, but struggles
with geospatial semantics [27].

* OFA: It performs well on general image captioning, but lacks the domain-
specific tuning required for remote sensing images [28].

* BLIP: This model uses retrieval-based captioning, = but does  not
leverage region-based attention effectively for overhead imagery [29].

2. Language Models

* GPT: Generative Pretrained Transformers (GPT) generates fluent
descriptions but lacks spatial understanding in remote sensing imagery
[30].

* BERT: It is strong in contextual language processing, but does not handle
visual information effectively [31].

+ LLaMA: It excels in language generation, but requires multimodal
adaptation for image-based captioning [32].

By expertly combining topic-sensitive embeddings, adaptive attention, and multiscale
feature extraction, MSR-CapNet surpasses these models in domain-specific captioning,
ensuring accurate and informative captions for pictures obtained through remote sensing. Call
the figures by their sequence number in the content and give enough explanations.

7. Conclusion

Overall, the above study demonstrated that the MSR-CapNet method addresses the key
challenges in remote sensing image captioning (RSIC) and is able to generate semantically
consistent, contextually aligned, and scale-adaptive descriptions. The experimental results
show that MSR-CapNet performs better than existing methods across BLEU, METEOR, and
CIDEr metrics. The key challenge in RSIC is the variation of scale; the viewpoint is addressed
with a multi-fusion process, and the combination of relevant regions with words is improved
by an adaptive attention module. Furthermore, the qualitative results confirm that the proposed
method is able to generate context-aware and semantically correct descriptions for diverse
scenes.With these improvements, there are still a few limitations for MSR-CapNet. During
cross-dataset transfer, if we apply topic-sensitive embeddings, it may introduce a minor domain
bias. Additionally, multi-sensor elements and temporal cues are not included in MSR-CapNet,
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which limits its effectiveness over static images. In the future, we will focus on using multi-
temporal datasets to improve cross-domain generalization.
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