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Abstract  

This study presents a deep learning-based approach to improve the prediction of 

coronary artery disease (CAD) using X-ray angiography images. The primary objective is to 

achieve accurate and automated CAD identification by employing a convolutional neural 

network (CNN) model. The methodology involves preprocessing the dataset through 

normalization and augmentation techniques and utilizes a U-Net architecture for precise 

detection of coronary stenosis. To ensure robustness and generalizability, hyperparameter 

tuning and dropout regularisation are applied during model training. The proposed model 

achieves high performance, with an average Dice coefficient of 0.57 and a Jaccard Index of 

0.47 on a held-out test set, indicating its effectiveness in segmenting coronary artery stenosis. 

These findings support the integration of deep learning methods into clinical workflows for 

enhanced CAD diagnosis and early intervention. 

Keywords:Coronary Artery Disease (CAD), X-Ray Angiography, Deep Learning, 

Convolutional Neural Network (CNN), U-Net, Segmentation, Stenosis Detection 

1. Introduction 

Due to its high morbidity and mortality rates, coronary artery disease (CAD) remains a 

significant global health challenge. CAD is characterized by the buildup of plaque leading to 

the narrowing or blockage of coronary arteries, which can result in severe outcomes such as 

heart attacks and sudden cardiac death. Early detection and accurate diagnosis are critical for 
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effective disease control and intervention. Clinicians rely on imaging techniques, particularly 

X-ray angiography, to assess the shape and function of the coronary arteries and detect 

stenosis. Recent advancements in machine learning, especially convolutional neural networks 

(CNNs), have transformed medical image analysis, opening up new possibilities for risk 

stratification and CAD prediction. Researchers utilize large databases of X-ray angiography 

images to develop reliable prediction models. Among the various architectures, U-Net has 

been selected for this study due to its proven success in medical image segmentation tasks, 

particularly in delineating structures with limited and irregular shapes like coronary arteries. 

U-Net's encoder-decoder structure allows for precise localization and boundary detection, 

which is essential for identifying coronary artery stenosis. This study proposes a deep 

learning approach for CAD prediction using a CNN-based model trained on a well-annotated 

dataset of X-ray angiography images. The methodology includes precise data preprocessing, 

model selection, and comprehensive evaluation to ensure the model's accuracy. Additionally, 

a real-time CAD prediction tool is developed for healthcare professionals, allowing them to 

input images and receive interactive visualisations. This approach aims to enhance patient 

outcomes through early intervention and improved diagnosis, reducing the burden of CAD on 

healthcare systems. 

Through this comprehensive analysis, the study highlights how machine learning-

driven CAD prediction can revolutionize cardiovascular care and support personalized 

treatment strategies. 

2. Literature Review 

This section presents a thorough literature analysis, examining the earlier work and 

studies on heart disease prediction using machine learning algorithms. This study provides 

insights into existing approaches, findings, and gaps in the subject, serving as a platform for 

our investigation. To enhance coronary artery segmentation in cardiac CT angiography, the 

work[1] introduces DR-LCT-UNet, a modified U-Net architecture that incorporates Dense 

Residual and Local Contextual Transformer modules. The authors report better performance 

on multiple criteria when compared to current approaches. They credit a number of 

techniques, including deep supervision, multi-level feature retention, improved contrast, and 
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noise reduction, for this improvement.  Nevertheless, the study does not analyse cases of 

CAD that are very difficult (such as severe stenosis or widespread calcifications).  

In this paper [2], a useful deep learning-based tool called CoMoFACT—which can 

mimic coronary artery motion artefacts in CT images—is shown. This model offers a new 

method for producing realistic training data, which is essential for creating deep learning 

models that are reliable for CAD applications where motion artefacts can seriously 

deteriorate image quality. The study shows that deep learning models trained on CoMoFACT 

data can precisely measure motion artefacts. This feature is clinically significant since it may 

improve imaging procedures and may activate real-time motion correction algorithms to 

improve diagnostic efficacy. 

This research [3] targets motion artefact correction, a major problem in cardiac CT 

angiography, by presenting CoMPACT, a deep learning-driven method. The technique 

measures motion vectors by utilising convolutional neural networks (CNNs) and incorporates 

them into a specific motion compensation algorithm.  Although the study's results on clinical 

photos are intriguing, it admits its limits when it comes to handling extremely complicated 

motion patterns. This emphasises how these techniques must be further improved to handle 

the entire spectrum of possible motion artefacts that arise in clinical CAD diagnosis. 

3. Convolutional Neural Networks (CNN) 

CNNs are a powerful deep-learning architecture specifically designed for image 

analysis [4]. Their ability to learn increasingly complex hierarchical features makes them 

exceptionally well-suited for medical imaging tasks, including those in coronary artery 

disease analysis.  The core principle of convolution, inspired by the visual system, enables 

CNNs to extract patterns at various scales while preserving spatial relationships within the 

image. This is crucial in medical images[5] where subtle variations in texture, shape, and 

intensity often encode important diagnostic information. The convolutional layer is a basic 

component of CNNs. These layers use convolution to process the input image through a 

range of flexible filters. Every filter is made to find certain elements in isolated areas of the 

input images such as edges, textures, or forms. These filters create feature maps that encode 

more abstract representations of the input data as they go across the input image. By using 

this hierarchical feature extraction method, CNNs learn to recognize complex variations and 

patterns seen in the pictures. CNNs frequently use pooling layers in addition to convolutional 
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layers to decrease the spatial dimensions of feature maps, which lowers computational costs 

and enhances translation invariance. CNNs can capture complex associations among 

characteristics because of the introduction of nonlinearity through activation functions such 

as ReLU. Fully connected layers integrate the learned features from the convolutional and 

pooling layers to yield the final output, which in image classification applications, represents 

the class probabilities. 

4. CNN Classification Algorithms 

LeNet, AlexNet, VGGNet, R-CNN, U-Net, and SegNet are just a few of the 

groundbreaking CNN designs that have greatly advanced computer vision. Although the 

depth, intricacy, and performance of these designs differ, they all aim to maximize CNNs' 

ability to learn hierarchical representations of visual data. Table 1 provides a comparison of 

these CNN models, detailing their architectures, along with their respective advantages and 

disadvantages. 

Table 1. CNN Classification Algorithm Comparison 

Algorithm 
Model 

Architecture 
Advantages Disadvantages Applications 

LeNet (LeCun et 

al.,1998)[6] 

Convolutional 

Neural Network 

(CNN) with 

convolutional 

layers, pooling 

layers, and fully 

connected layers 

for digit 

recognition. 

 Simple 

architecture, easy 

to implement. 

 Effective feature 

extraction via 

convolutional 

layers. 

 Shallow 

architecture lacks 

depth for 

complex tasks. 

 Limited 

generalisation to 

larger and more 

varied datasets. 

Handwritten digit 

recognition 

(MNIST), early 

image 

classification 

tasks. 

AlexNet 

(Krizhevsky et 

al., 2012)[7] 

Deep CNN with 

stacked 

convolutional 

layers, ReLU 

activations, and 

dropout 

regularisation. 

 Introduced 

deeper network 

layers and ReLU 

for faster 

training. 

Improved feature 

learning via 

larger 

convolutional 

kernels. 

 High 

computational 

cost due to 

deeper 

architecture. 

 Requires a large 

amount of 

labelled data. 

Image 

classification 

(e.g., ILSVRC), 

object detection, 

CAD image 

analysis. 
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VGGNet 

(Simonyan & 

Zisserman, 

2014)[8] 

Very deep CNN 

with small (3x3) 

convolutional 

filters, max-

pooling layers, 

and fully 

connected layers. 

Consistent use of 

small filters 

enhances 

network depth. 

 Strong feature 

extraction power. 

Computationally 

expensive due to 

depth. 

High memory 

usage for 

training. 

Image 

classification, 

feature extraction 

for medical 

images, CAD 

analysis. 

R-CNN (Girshick 

et al., 2014)[9] 

Region-based 

CNN that 

generates region 

proposals, applies 

CNN feature 

extraction, and 

classifies regions. 

High accuracy 

for object 

detection in 

complex scenes. 

 Adaptable to 

various detection 

tasks. 

Multi-stage 

pipeline is 

computationally 

intensive. 

 Slow processing 

compared to 

newer methods. 

Object detection, 

medical image 

lesion detection, 

CAD region 

analysis. 

U-Net 

(Ronneberger et 

al., 2015)[10] 

Encoder-decoder 

architecture with 

skip connections, 

specifically for 

image 

segmentation 

tasks. 

 Excellent for 

pixel-level 

classification and 

segmentation. 

Combines high-

level features 

with spatial 

details via skip 

connections. 

Can be excessive 

for simpler tasks. 

Requires 

substantial 

computational 

resources. 

Biomedical 

image 

segmentation, 

artery lumen 

segmentation in 

CAD. 

SegNet 

(Badrinarayanan 

et al., 2017)[11] 

Encoder-decoder 

architecture with 

efficient memory 

usage, optimised 

for segmentation 

tasks. 

 Highly efficient 

with memory-

saving techniques 

in the decoder. 

 Suitable for real-

time tasks. 

Sacrifices some 

segmentation 

accuracy for 

efficiency. 

Real-time image 

segmentation, 

large-scale CAD 

dataset analysis. 

5. Methodology 

5.1Dataset and Preprocessing 

This study utilised a dataset of 1,200 angiography images from the 

ARCADE[12](Atlas of Coronary Artery Disease and its Effects) dataset, focusing on cases 

with coronary artery stenosis (Figure 1). The dataset was divided into 1,000 images for 

training, with 200 images held out for validation. Image masks were generated using the 

provided information on closed polygons, which marked the areas of interest in the 

angiography images. The dataset was organized based on critical selection criteria, including 

stenosis severity distribution and image quality standards. To address common variations in 

brightness and contrast found in angiography images, min-max scaling was applied for 

intensity normalisation. Dataset-specific parameters were optimised to ensure consistency, 
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which is crucial for accurate CAD analysis. Furthermore, data augmentation techniques like 

random flips and rotations were applied to simulate realistic variations in coronary artery 

orientation. These augmentations aimed to enhance model generalisation and reduce the risk 

of overfitting, particularly due to the limited dataset size. 

 

Figure 1. Sample Training Images from the ARCADE[12] Dataset. 

5.2Model Architecture and Summary: U-Net for Coronary Artery Segmentation 

The proposed U-Net model leverages a multi-level convolutional structure for precise 

coronary artery stenosis segmentation. The architecture is structured with specific 

components that include the following layers: 

• DoubleConv Module: Each DoubleConv module consists of two consecutive 

3x3 convolutional layers, each followed by batch normalisation and a ReLU 

activation. This module captures complex features at every stage of 

downsampling and upsampling, enhancing the U-Net’s ability to discern 

stenosis-related details. 

• Encoder Path: Comprising the DoubleConv modules and max-pooling layers, 

the encoder path has four levels that progressively downsample the input, 

preserving essential feature information at various scales. 

• Bottleneck Layer: Positioned between the encoder and decoder paths, the 

bottleneck layer compresses and encodes global context across multiple scales, 

essential for accurately segmenting multi-scale stenotic regions. 

• Decoder Path: The decoder mirrors the encoder path with four levels, each 

upsampling the input via transposed convolutions followed by a DoubleConv 
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module. This path restores the spatial resolution while capturing fine-grained 

details through concatenation with encoder feature maps using skip 

connections. 

• Final Convolution and Output Layer: A 1x1 convolution maps the output to 

segmentation classes, followed by a sigmoid activation to yield probabilistic 

outputs for mask segmentation. 

• Dice Loss for Segmentation: A customised Dice loss function is used to 

calculate the overlap between predicted and target masks, supporting single 

mask segmentation, and ensuring effective learning even with imbalanced 

classes. 

Model Summary: The model consists of 7.8 million trainable parameters, with no 

non-trainable parameters, bringing the total parameters to 7.8 million. The trained model size 

is 31.062 MB. The model has 82 modules in train mode, indicating the complex data tasks of 

image segmentation. 

This implementation optimises the U-Net for complex stenosis segmentation, 

supported by advanced feature extraction and context-aware design. The Dice coefficient loss 

with Sigmoid-adjusted prediction enables accurate segmentation masks, leveraging this 

custom architecture for improved clinical applicability in CAD analysis. 

5.3Training Strategy and Hyperparameters 

The model was trained using the Adam optimizer with an initial learning rate of 10-3 , 

which was dynamically adjusted using a learning rate scheduler (reducing the rate by 0.1 

when the validation loss plateaued). The Dice coefficient loss function was chosen, given its 

suitability for imbalanced datasets, particularly in medical imaging like CAD analysis. 

Key hyperparameters were set as follows: 

• Epochs: 50 

• Batch Size: 16 

• Dropout Rate: 0.5 (applied in both the encoder and decoder to prevent 

overfitting) 

Additionally, data augmentation techniques were employed to simulate real-world 

variations, including random rotations, flips, and scaling, enhancing generalisation and 

reducing overfitting risks. 
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5.4Preprocessing Methodology 

The preprocessing pipeline in this study is designed to optimise the X-ray 

angiography images, improving model performance and ensuring consistent input for 

effective CAD segmentation. The preprocessing consists of two main steps: 

• Data Normalisation: Images are scaled to a uniform range of [0, 1] by dividing each pixel 

value by the maximum intensity (255 for grayscale images). This helps stabilise and 

expedite training by providing standardised input data. 

• Data Augmentation: 

• Custom Augmentation Transformer: This transformer applies random 

rotations (90°, 180°, and 270°) and horizontal flips with a 50% probability. 

The randomised transformations introduce variability to the dataset, making 

the model more robust to orientation and position changes. 

• Preprocessing Image Pipeline: The function applies a binary threshold to the 

image, identifying non-black pixels and facilitating the detection of contours. 

Using these contours, the area of interest is defined for cropping. The image 

and its corresponding mask are then cropped based on these coordinates. A 

median blur is applied to the cropped image to reduce noise, and CLAHE 

(Contrast Limited Adaptive Histogram Equalization) is utilised to enhance 

contrast. The processed image and mask are resized to a target dimension of 

(512, 512) to ensure uniform input for the deep learning model. 

These preprocessing techniques significantly enhance the U-Net’s ability to detect 

stenosis in varying angiography images by standardising intensity and improving data 

diversity. Figure 2, which shows sample images processed using normalisation, noise 

reduction, and CLAHE can visually demonstrate the effectiveness of this pipeline. 
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Figure 2. Pre-processed Sample Images Displaying Cropping, Contrast Enhancement and Noise 

Reduction 

5.5Tools Used for Implementation 

• TensorFlow/Keras: For model design, training, and evaluation. 

• PyTorch Lightning: For simplifying PyTorch code structure and managing 

model training workflows. 

• Python: The primary programming language for implementation and data 

preprocessing. 

• NumPy: For numerical computations and matrix operations. 

• OpenCV: Used for image processing and augmentation tasks. 

• Matplotlib/Seaborn: For visualising training metrics and segmentation results. 

6. Evaluation Metrics 

Metrics for assessment are statistical instruments that compare the predicted masks with 

the actual masks in the dataset to determine how successfully a model segments masks. The 

Sørensen–Dice index, or Dice Coefficient, measures the overlap between the ground truth 

and predicted masks to quantify segmentation accuracy. A perfect segmentation score is one. 

It is essential for CAD analysis since it is extremely sensitive to segmentation 

boundaries[13]. One further way to quantify segmentation overlap is through the Jaccard 
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Index (Intersection over Union).  Regarding coronary artery segmentation models, this is 

pertinent and conceptually similar to the Dice Coefficient. The sensitivity (recall) of the 

model measures its ability to identify actual artery stenosis pixels[14]. In order to diagnose 

CAD, even minor plaque or mild stenosis must be detected using a very sensitive model. 

7. Result 

Careful normalisation using the normalisation method ensured consistent intensity 

values across the ARCADE[12] angiography dataset, improving the U-Net model's feature 

learning process. Data augmentation, specifically random flips and rotations, successfully 

diversified the training set. This enhanced the model's ability to recognize stenoses in images 

acquired with varying orientations, ultimately boosting its robustness. The U-Net model was 

trained using the Dice coefficient loss function to optimise its segmentation capabilities, and 

the Adam optimiser proved effective in guiding the learning process. Analysis of the loss 

curve over training epochs provided insights into model convergence behaviour and helped 

identify any potential overfitting issues. Evaluation on a held-out test set demonstrated the 

model's strong performance in segmenting coronary artery stenosis. The projected 

segmentations and expert-annotated ground truth masks demonstrated strong alignment, with 

an average Dice coefficient of 0.57 and a Jaccard Index of 0.47, indicating effective 

distinction between stenotic and non-stenotic regions. With sensitivity of 0.86, the model is 

detecting about 86% of actual stenosis regions. Compared to the validation results in 

Kjerland's 2017 [15] study, which achieved a Dice coefficient of 0.59 on CT scans, our 

slightly lower performance is attributed to image challenges such as background noise and 

distortions, which affect segmentation accuracy, especially in smaller artery structures and 

stenotic regions. 
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Figure 3. Coronary Artery stenosis in Angiography Image, Stenosis Region Predicted 

by the Model. 

Visual inspection of segmentation results confirmed the quantitative findings.  The 

model reliably delineated stenotic areas in a variety of images but also offered a nuanced 

view of specific challenging cases where refinement may be needed. Figure 3, which shows a 

coronary artery stenosis in an angiography image with the stenosis region predicted by the 

model, illustrates this performance. These insights will be crucial in guiding further model 

development 

8. Conclusion 

This study demonstrates how well a properly modified U-Net design performs when 

segmenting coronary artery stenosis in angiography images.  Important contributions include 

showing how customised data augmentation and dataset-specific intensity normalisation 

affect model resilience, especially when managing the unpredictability found in clinical CAD 

analysis. Thorough hyperparameter adjustment, directed by the Dice coefficient loss, 

produced precise segmentation, as demonstrated by robust assessment metrics. These results 

highlight how deep learning may improve and expedite CAD workflows.  The created model 

provides a good foundation for automated stenotic area delineation techniques.  This 

approach could assist medical professionals in diagnosing and quantifying stenosis severity 



Deep Learning for CAD Prediction: X-ray Angiography Insights 

 

ISSN: 2582-2012  390 

 

 

more efficiently, which is crucial for timely treatment decisions. Future research will explore 

several new directions. One key area will be validating the clinical utility of the model by 

examining additional CAD-specific parameters. The next step involves investigating the 

model’s capabilities for stenosis quantification, enabling automated evaluation of disease 

burden. Ultimately, these advancements could enhance patient care by integrating the 

findings into decision support systems. Additionally, the reviewed literature emphasizes the 

growing interest in such models, further highlighting their potential for clinical 

implementation. 
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