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Abstract 

This study introduces an innovative hybrid ARIMA-ANN model personalized for cloud 

workload prediction. Unlike existing models that focus solely on linear or nonlinear patterns, 

the approach combines the strengths of ARIMA for time-series linear trends and ANN for 

nonlinear data complexities. This integration ensures higher accuracy, as validated using the 

MIT Supercloud dataset. The methodology leverages data pre-processing, sensitivity analysis, 

and advanced validation techniques, demonstrating improved accuracy in scenarios of high 

workload variability. This model supports cloud providers in resource optimization and 

dynamic load management. 
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 Introduction 

Cloud computing, a foundation of distributed computing, relies on dynamic resource 

management to deliver optimal Quality of Service (QoS) and meet Service Level Agreements 

(SLAs). Infrastructure as a Service (IaaS) providers face challenges managing volatile CPU 

and memory demands. Accurate workload prediction ensures resource optimization, reducing 

over-provisioning and cost. 

Existing methods, such as ARIMA and ANN, handle specific workload patterns but 

lack the versatility required for diverse and unpredictable workloads. This study introduces a 
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hybrid ARIMA-ANN model, blending linear forecasting with nonlinear learning capabilities. 

The novelty lies in addressing complex workload scenarios, validated using a real-world 

dataset. This approach achieves superior prediction accuracy and robustness, essential for 

dynamic resource allocation in cloud systems. 

 Related Work 

The study focuses on the prediction models for efficient cloud resource provisioning, 

emphasizing the role of auto-scaling algorithms and comparing QoS parameters between 

conventional and efficient provisioning methods. It highlights designing prediction 

mechanisms and utilizing methods for workload determination [1]. In their research study [2], 

the authors discuss the shift to cloud computing, the rise of edge computing to complement 

cloud deployments, and challenges in orchestrating edge-cloud applications. It underscores the 

significance of machine learning in workload characterization, component placement, and 

application elasticity, classifying algorithms into supervised and unsupervised categories. This 

study [3] uses a hybrid ARIMA–ANN model to forecast future CPU and memory utilization 

in cloud resource provisioning. The model detects linear and nonlinear components in cloud 

traces, while the artificial neural network (ANN) uses residuals. The Savitzky–Golay filter 

finds a range of forecast values, reducing forecasting error by introducing a range of values. 

The accuracy of the prediction is tested using statistical analysis using Google's 29-day trail 

and BitBrain. Cloud computing is gaining popularity, requiring accurate prediction of 

computing resource usage for efficient management. However, excessive costs can be a 

concern. The study [4] presents a novel approach that uses data-driven prediction algorithms 

to generate short- and long-term cloud resource usage predictions. The solution readjusts to 

different load characteristics and usage changes. Preliminary tests showed 36% better 

prediction quality, and real-life historical data showed 9.28% to 80.68% better prediction 

quality.  This research study [5] is a systematic survey and comparative study of machine 

learning-driven cloud workload prediction models. It discusses the importance of predictive 

resource management, operational design, motivation, and challenges. The study classifies 

different prediction approaches into five categories, focusing on theoretical concepts and 

mathematical functioning.  The proposed method in [6] presents COSCO2, a workload 

prediction framework optimized with a sheep flock optimization algorithm. It accurately 
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predicts workloads, reducing energy consumption and outperforming existing methods for 

datasets like NASA and Saskatchewan HTTP traces.  The study [7] proposes an autonomic 

prediction suite to improve the accuracy of cloud computing's auto-scaling system. It suggests 

that selecting the right time-series prediction algorithm based on the incoming workload pattern 

can increase the prediction accuracy. The research conducts theoretical investigations and 

empirical validations, designing a self-adaptive prediction suite that automatically chooses the 

most suitable algorithm. The research study [8] discusses designing cloud client prediction 

models using machine learning, identifying Support Vector Regression (SVR) as the best 

model for non-linear workload patterns.  The study [9] addresses challenges in volatile resource 

demands and proposes a meta-algorithm for algorithm selection based on past performance, 

with insights into dynamic regret and optimal solutions.  The method proposed in [10] 

introduces a DCRNN, a deep learning model for accurate workload prediction, to improve 

forecasting accuracy and minimize the error between the predicted and the actual workloads.  

The method put forth in [11] describes a framework for provisioning virtual machines using 

Kalman filter-based data preprocessing, enhancing service quality by reducing provisioning 

latency. Experimental results show that the framework reduces latency and improves cloud 

service quality, using Alicloud as an experimental infrastructure.  The study presents RPPS, a 

Cloud Resource Prediction and Provisioning scheme, which predicts future demand and 

performs proactive resource provisioning for cloud applications. It uses the ARIMA model, 

combines coarse-grained and fine-grained resource scaling, and adopts a VM-complementary 

migration strategy. The prototype has high prediction accuracy and good resource scaling, 

making it a valuable solution for enterprises facing demand fluctuations in cloud data centers 

[12].  The research [13] presents a machine learning-based solution for cloud resource 

optimization, using anomaly detection to reduce costs while maintaining QoS. It emphasizes 

the importance of initial training and future research in model reuse without system duplication.  

The study [14] focuses on QoS-based resource provisioning to optimize allocation, reduce 

execution time and costs, and improve resource scheduling. It emphasizes the role of workload 

analysis in understanding QoS requirements.  The method put forth in [15] presents the RRAU 

approach for resource management, improving metrics such as Job Completion Time (JCT) 

and monetary cost compared to conventional methods. It emphasizes optimizing VM runtimes 

and asset utilization.  The researchers in [16] propose a capacity planning approach utilizing 

hybrid spot instances for improved utilization and reliability. It enhances throughput during 

out-of-bid situations and suggests future integration of reactive modules for better QoS impact 
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analysis. The study in [17] introduces a container-based video surveillance cloud platform with 

predictive resource allocation, optimizing service density and cost prediction. It demonstrates 

the effectiveness of Docker technology over VM-based platforms in supporting microservices 

like video on demand. This article [18] presents a method for elastic resource provisioning 

using date clustering in cloud service platforms. The method consists of tasks clustering, task 

prediction, dynamic resource provisioning, and scheduling. It partitions tasks based on 

similarity and forecasts future tasks. The method achieves high guarantees, resource utilization, 

and total energy consumption in the Google cloud traces dataset.  The study [19] addresses 

monitoring challenges in hybrid clouds, proposing a solution that automates management 

across hybrid environments.  The study [20] introduces PCA-BPN for estimating simulation 

workloads in cloud manufacturing, achieving superior accuracy in execution time prediction, 

especially in factory simulation contexts. 

 Comparison of Various Computing Types 

3.1 Centralized Computing 

Centralized computing relies on a central server for all computations and data storage. 

This model is simple to implement and administer, with centralized management and security, 

but it struggles with scalability and is prone to single points of failure. Examples include 

traditional mainframe systems. 

3.2 Distributed Computing 

Distributed computing involves interconnected nodes working collaboratively. It offers 

scalability and reliability with fault tolerance and optimized resource usage. However, 

performance can be limited by network bandwidth. Examples include peer-to-peer networks 

and Hadoop. 

3.3 Grid Computing 

Grid computing coordinates geographically dispersed resources to function as a unified 

system. It allows scalability and redundancy but may face latency and bandwidth challenges. 

Control is typically centralized, with shared resource utilization. Examples include 

SETI@home and the Globus Toolkit. 
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3.4 Cluster Computing 

Cluster computing connects multiple nodes to work together, providing fault tolerance 

and scalability by adding nodes. Management can be centralized or distributed, with shared 

resources tailored for specific tasks. Examples include HPC and Beowulf clusters. 

3.5 Cloud Computing 

Cloud computing provides elastic, on-demand resource sharing through virtualized 

environments. Resources are distributed but centrally managed, with data stored across 

multiple regions. Prominent platforms include AWS, Google Cloud Platform, and Microsoft 

Azure. 

 Types of Workload 

4.1 Static Workload 

Static workloads involve a fixed number of requests, with constant memory, processor 

capacity, and bandwidth. These workloads follow consistent usage patterns and do not scale 

dynamically. Examples include web servers and email services. Figure 1 represents the pattern 

of static workload. 

 

Figure 1. Static Workload Pattern 

4.2 Periodic Workload 

Periodic workloads involve recurring cycles, such as daily, weekly, or seasonal peaks. 

They require scalability to handle peak loads efficiently while avoiding resource 
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underutilization during off-peak periods. These workloads demand flexible resource allocation. 

Figure 2 represents the periodic workload pattern. 

 

Figure 2. Periodic Workload Pattern 

4.3 Unpredictable Workload 

Unpredictable workloads are dynamic and lack regular patterns, making resource 

planning challenging. These workloads experience random surges due to factors like 

unexpected traffic or environmental conditions. Cloud providers must address variability 

through dynamic resource allocation. Figure 3 depicts the unpredictable workload pattern 

 

Figure 3. Unpredictable Workload Pattern 

4.4 Continuously Changing Workload 

Continuously changing workloads exhibit gradual increases or decreases in resource 

demand over time. Resource allocation adjusts dynamically to align with the evolving scope 

and scale of tasks. Figure 4 represents continuously changing workload pattern. 
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Figure 4. Continuously Changing Workload Pattern 

4.5 Once in a Lifetime Workload 

This workload represents peak utilization events unlikely to recur, requiring manual 

provisioning or decommissioning of resources. Such workloads often involve one-time high 

resource consumption. Figure 5 represents the Once in a Lifetime Workload pattern 

 

Figure 5. Once in a Lifetime Workload Pattern 

 Proposed Methodology 

5.1 Time series forecasting Models 

Time series can be defined with data for y(t) it’s a series of dispersed data values taken 

at successive time intervals and t is time and time is a variable that increases continuously from 

zero to one and one to two in equal intervals. It is a manner that they arrange the observations 

right from the observation that is observed most to the observation observed least. As usual, 
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the single variable has a time series while more than one variable is encoded in the multivariate 

time series. However, time series could be of two types: and these are: Continuous time series 

and Discrete time series. When the time series is continuous, this is because the observations 

the events occur at a continuous time point, while for the data recorded on discrete time series, 

the observations are taken at equal time steps. It has four components: These are seasonal 

working shifts, regular working shifts, at random working shift and periodic working shifts. 

On the basis of classification of numerous time series, economists divided them into four sub-

series. They are fashionable, oscillatory, periodic, and non-periodic and are feasible from the 

observed facts. With reference to the impacts of the four elements, as well as the multiplicative 

and the additive models, use the time series computations [3]. 

Multiplicative Model  

𝑌(𝑡)  =  𝑇(𝑡)  ∗  𝑆(𝑡)  ∗  𝐶(𝑡)  ∗ 𝐼(𝑡)  

Additive Model  

𝑌(𝑡)  =  𝑇(𝑡) + 𝑆(𝑡) + 𝐶(𝑡) + 𝐼(𝑡) 

T(t)-Trend Component 

S(t) Seasonal Component 

C(t) Cyclic Component 

I(t)-Irregular component 

5.2 ARIMA – Autoregressive Integrated Moving Average 

Autoregression represents a concept suggesting that a variable that varies is regressed 

on preceding or lag values. Integrated (I) refers to the level of the simple transformation of an 

immature form of data in the time series in the smoothing process that aims at replacing each 

of the value of time series with the variation of the data value from the preceding data value. 

MA employs the stochastic component of an observation in a moving average model fitted to 

lag observations. 

The parameters of this model are: 
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P: the number of lag observations in the model more precisely identified as the lag 

order. 

D: the number of times the raw observations are differenced; also the degree of 

differencing. 

Q: the second parameter that could be changed is the size of the moving average 

window or simply the order of the moving average. 

𝑦 ( 𝑡) =  θ0  +  ϕ 1 𝑦 𝑡 − 1  +  ϕ 2 𝑦 𝑡−2 . . . + ϕ 𝑝  𝑦 𝑡−𝑝  +  ε𝑡  +  θ1 ε𝑡−1 + θ2 ε𝑡−2 . . . + θ𝑞 ε𝑡−𝑞 

𝑦𝑡 and 𝜀𝑡 are the actual value and the random error at time period t respectively, 𝜙𝑖 =

1, 2, … 𝑝) and 𝜃𝑖 = 1,2, … 𝑞) are the model parameters [3].   

5.3 ANN 

The ANN structure is very similar to the neuron structure of the human brain. ANNs 

approximate the various nonlinearities in the data. To model the time series data, the 

relationship between the output (𝑦𝑡) and the inputs (𝑦𝑡−1, 𝑦𝑡−2, … 𝑦𝑡−𝑝) is expressed as  

𝑦𝑡 = 𝑊0 + ∑ 𝑤𝑗 . 𝑔(𝑤0𝑗 + ∑ 𝑤𝑖𝑗. 𝑦𝑡−𝑖) + 𝜀𝑡

𝑝

𝑖=1

𝑞

𝑗=1

 

𝑤𝑖𝑗 (𝑖 = 0, 1, 2, … 𝑝; 𝑗 = 1, 2, … 𝑞) represents the model parameters also called the 

connection weights; p is the number of input nodes and q is the number of hidden nodes and g 

is the transfer function of the hidden layer. Indeed, the ANN model can be considered almost 

a nonlinear autoregressive model. This model’s coefficient is then computed from the input of 

the ANN where the latter is fed with the observed data sequence and the latter trained with this 

sample sequence. The performance is checked on a sample after the training process is over 

[3]. 

5.4 Data Collection and Preprocessing 

Dataset: MIT Supercloud Dataset 

Source and Samples: Kaggle - 96,893 entries with 23 columns. 

Features: Memory usage, and GPU memory utilization. 
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Preprocessing: 

• Empty values are replaced by NaN and then NaN value elimination. 

• Time-series transformation for sequential analysis. 

• Scaling and normalization for feature consistency. 

5.5 Model Training and Optimization 

• All data is scaled to a range between 0 and 1 using MinMaxScaler. This is 

essential for neural networks to ensure uniform weight updates during 

training. 

• ANN uses lagging to transform the time-series data into a supervised learning 

problem: 

o X (Features): The data at time t. 

o y (Targets): The data at time t+1. 

• Loss function: Mean Squared Error (MSE). 

• Optimizer: Adam optimizer with learning rate 0.05. Adam (Adaptive Moment 

Estimation) combines the benefits of momentum and RMSprop optimizers. It 

dynamically adjusts learning rates for each parameter, making it efficient for 

non-stationary objectives.  

• Epochs: 100. 

• Batch size: 32. 

5.6 Evaluation Metrics and Tools 

The code evaluates the models using metrics and tools specific to the methods applied. 

For the ANN model, Mean Squared Error (MSE) is used to measure the average squared 

difference between predicted and actual values, computed using 

sklearn.metrics.mean_squared_error, with lower MSE indicating better performance. For 

the ARIMA model, evaluation relies on statistical summaries provided by 

statsmodels.tsa.arima.model. ARIMA, which assess model fit and complexity, includes 

metrics like Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and 

Log-Likelihood. Tools like sklearn.neural_network.MLPRegressor handles ANN training, 
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while sklearn.preprocessing. MinMaxScaler scales features to improve model convergence. 

Visualization is performed using Matplotlib to plot actual vs. predicted values for ANN. 

Additional metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), or R² Score could enhance the analysis further, providing more comprehensive 

insights into model performance. 

 Architecture 

The ARIMA-ANN model, to predict the area of confidence values for CPU and 

memory utilization is presented in Figure. 6. The measurement for the analysis was done using 

the Google cluster data collection. Note that pre-processing of time series data requires null 

elimination. Finally, the time series is passed to the ARIMA model, where the implementation 

of predictions of CPU and memory usage of each request for the ensuing N requests is executed 

using the data. ARIMA cannot model the residues which are described as the nonlinear 

components of the model. The residuals, which were collected, are fed along with the upcoming 

data into the network model. It constructs the model of the prognosis of CPU and memory 

demands. 

 

 

 

Figure 6. Architecture of Hybrid ARIMA – ANN Model [3] 
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The final values of the prediction are achieved from the sum of the values derived from 

both models of prediction. Therefore, the time series plots are derived from taking values from 

these two times and overlaid with the other times series. It appears that recent data, in fact, 

especially tempting for the knowledge of the past than other special kind of data from the 

distant past are. The error bars for the n-step ahead CPU and memory use estimation are located 

on the data which were smoothened. 

 Experimental Setup 

The workload traces provide detailed information on jobs and tasks, including their 

CPU and memory usage, over one month. The dataset consists of timestamped entries 

(microseconds as 64-bit integers) and other resource utilization metrics, which allow the 

creation of time-series data for analysis. In the implementation, memory utilization 

(`avgmemoryutilization_pct`) and maximum GPU memory usage 

(`maxgpumemoryused_bytes`) are the primary focus. Data preprocessing involves replacing 

zero values with NaN and dropping rows with missing values. For modeling, an Artificial 

Neural Network (ANN) and ARIMA model are used. The ANN is trained and validated using 

70% and 30% of the data, respectively, and Min-Max scaling is applied for feature 

normalization. For n-step predictions, the model processes lagged features, with evaluation 

based on Mean Squared Error (MSE). The ARIMA model captures temporal trends and 

autocorrelations, with its performance assessed via statistical summaries. The implementation 

and training are carried out in Python, providing a robust framework for GPU workload 

prediction. The sample of data used is depicted in Figure 7. 

 

 

Figure  7 Sample Data 
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 Results and Evaluation 

8.1 Prediction of Memory Utilization 

The summary of the model used in this implementation is given in Figure 8. The 

Memory Utilization actual vs predicted plot is given in Figure 9. 

   

Figure 8 Model Summary                           Figure 9 Memory Actual vs Predicted 

The ANN mean square error between actual and predicted values are calculated and  

it was approximately 0.04122451258775828 

8.2 Prediction of Memory 

The summary of the model used in this implementation is given in Figure 10. The GPU 

actual vs predicted plot is given in Figure 11. 

     

            Figure 10. Model Summary                           Figure 11. GPU Actual vs Predicted 
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 Conclusion 

However, to provide high QoS with optimum resource usage in clouds, it is imperative 

to predict workloads correctly. The workload characteristics of the hybrid model, which 

include linear and non-linear, afford cloud providers the tools necessary to manage inventories 

a priori and increase preparedness for varying workloads and demand. However, in case of any 

change in the workload pattern, it would be necessary to bring the model into the parameter 

estimation process to keep an accurate forecast. This open and flexible strategy also reduces 

the dangers of under-providing services, including service downtime, high energy expenses, 

and client loss. By using dynamic sliding windows and giving the latest data a higher weight, 

predictions are enhanced, supplying providers of cloud services with a powerful instrument to 

regulate resources for dynamic workloads. 
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