
IRO Journal on Sustainable Wireless Systems (ISSN: 2582-3167)
www.irojournals.com/irosws/

IRO Journal on Sustainable Wireless Systems, September 2024, Volume 6, Issue 3, Pages 273-291 273
DOI: https://doi.org/10.36548/jsws.2024.3.008

Received: 02.09.2024, received in revised form: 27.09.2024, accepted: 11.10.2024, published: 19-10-2024
© 2024 Inventive Research Organization. This is an open access article under the Creative Commons Attribution-NonCommercial International (CC BY-NC 4.0) License

Advanced Route Optimization using

Hybrid Algorithms and Road-based

Distance Calculation

Shubham Giri1, Neha Vora2

1Student, 2Assistant Professor, SVKM'S Usha Pravin Gandhi College of Arts, Science and Commerce,

Mumbai, Maharashtra, India

E-mail: 1shubhamgiri0905@gmail.com, 2nehavora2501@gmail.com

 Abstract

This study proposes a hybrid approach to route optimization, comparing and combining

Genetic Algorithms (GA), Ant Colony Optimization (ACO), and Dynamic Programming (DP)

to solve the Traveling Salesman Problem (TSP) and similar routing challenges. The objective

is to minimize travel time and cost by incorporating real-time road data from

OpenRouteService and Google Maps APIs. The hybrid algorithms are tested on large datasets,

demonstrating their scalability and adaptability to real-world complexities such as fluctuating

traffic conditions. Through mathematical modelling and pseudocode, the performance of each

algorithm is compared, highlighting their effectiveness in optimizing logistics operations. The

results indicate that this approach significantly reduces computational time and operational

costs, providing a robust solution for modern logistics.

Keywords: Route Optimization, Traveling Salesman Problem (TSP), Genetic Algorithms

(GA), Ant Colony Optimization (ACO), Dynamic Programming (DP), Haversine Distance,

OpenRouteService API.

 Introduction

Territorial expansion coupled with an ever-increasing population has led to potential

developed areas being located farther from the target markets. All over the world, efficient

logistics and transportation systems remain central in managing expectations for the timely

Advanced Route Optimization using Hybrid Algorithms and Road-based Distance Calculation

ISSN: 2582-3167 274

dispatch of products and services. Whether it’s last-meal delivery in the towns or the wider

logistics of shipping goods across countries, cutting down on time and costs incurred while

making these deliveries has become a prerequisite for any business seeking to be competitive.

With consumers increasingly demanding products to be delivered on the same or the next day,

poorly planned routes have been blamed for missing delivery timelines, wasting fuel, and

enlarging the cost of doing business [1].

Such optimization techniques mitigate inefficiencies by identifying inexpensive ways

of delivering commodities at many feeder locations. The classical optimization problems

include the traveling salesman problem (TSP) concerned with the shortest possible route to a

location and back to where it started [5]. The TSP is usually regarded as a model for tackling

various real-life logistical challenges. Not yet, though. Due to the realities of the situation, there

are practical difficulties in the context of these problems beyond the scope of consideration in

theoretical models such as traffic volume, road geography, and rapid changes such as weather

and availability of vehicles [5].

The evolution of technology, meanwhile, has created a more favourable environment

for solving such problems with algorithms such as Genetic Algorithms (GA), Ant Colony

Optimization (ACO), and Dynamic Programming (DP) [2,5,7].

While we are fairly comfortable with the theoretical basis of route optimization, its

application to modern logistics has a few more complications. Traditional algorithms such as

TSP assume that the distance between any two stops in the set does not change. Many of the

mathematical formulations assume that distances between stops are direct (Euclidean) lines –

as the crow flies – rather than the complicated networks of roads that connect them [5]. In

addition, dynamics introduce a confounding variable: route distances can change throughout

the day as a result of traffic or weather conditions, and roads can close temporarily [14]. Real-

world logistics must also contend with factors such as demand that fluctuates hour by hour as

people make purchasing decisions and occasional breakdowns of vehicles [1, 14]. To combat

these issues, more sophisticated methods such as dynamic routing that adapts on the fly to real-

world conditions including traffic or weather are becoming increasingly relevant. Real-world

datasets must frequently be updated with live data to reflect current conditions. What’s more,

the routing algorithm must be able to recalculate the best path at any moment in time.

 Shubham Giri, Neha Vora

IRO Journal on Sustainable Wireless Systems, September 2024, Volume 6, Issue 3 275

 Furthermore, a crucial requirement in the real-world logistics setting is that the

algorithms should be scalable. For any company operating at a massive scale globally, the

demands of optimizing even thousands of routes in real time are enormous. For such large-

scale datasets, the brute-force approach of standard algorithms such as TSP may be

computationally infeasible [5]. Heuristic-based algorithms, such as Genetic Algorithms and

Ant Colony Optimization, can dominate traditional algorithms due to their efficacy in handling

massive data sets [2, 11]. These algorithms draw inspiration from the process observed in

nature to provide near-optimal solutions rapidly.

 As a result, the hybrid approaches that make use of the strengths of two or more

algorithms are highly preferred. Genetic Algorithms can provide fine-grained solutions by

searching large solution spaces but will have some difficulty fine-tuning any solutions found.

However, greater efficiency can be attained using Dynamic Programming, which provides

locally optimal solutions for smaller subproblems. Especially, when hybridised, they can

exploit their complementary strengths and compensate their weaknesses [3,8].

 In addition to hybrid algorithms, utilizing real-time road-based data from APIs like

OpenRouteService and Google Maps enables more practical, real-world route optimizations

[14, 15]. Traditional models that rely on static distance calculations are insufficient for dynamic

environments where road networks are constantly changing [14]. By incorporating live traffic

data, these hybrid algorithms can provide adaptive solutions that reflect real-time road

conditions, ultimately reducing travel time, fuel consumption, and operational costs [15].

 Related Work

 Optimization has a rich history, focusing on classical algorithms such as the Traveling

Salesman Problem (TSP) and its variants. TSP is a classical combinatorial optimization

problem that aims to find the shortest path that visits each city (or location) once and returns to

the starting point. Early solutions to TSP relied on brute-force methods to evaluate each path,

which was computationally expensive and impractical for large datasets [5]. Despite its

limitations, TSP has formed the basis for the continued development of path optimization

algorithms [5].

Advanced Route Optimization using Hybrid Algorithms and Road-based Distance Calculation

ISSN: 2582-3167 276

Genetic algorithms (GAs) simulate the process of natural selection by generating a

population of possible solutions and using selection, competition, and mutation to iterate to the

best or near-best solution [11]. It has been proven that GA can be efficient and fast for optimal

solutions of TSP as its variants communicate to find efficient solutions by looking ahead and

looking back [11]. The ACO approach has been particularly successful in solving complex

problems by using the intelligence of ants to find optimal solutions [2]. Each problem can be

solved only once and the solutions are stored in memory.

 The DP algorithm is particularly useful in solving TSP variants with overlapping

problems and provides good solutions using the results of previous computations to improve

the optimization process [7].

 APIs such as OpenRouteService and Google Maps provide road network information,

traffic updates, and real-time travel information. Researchers have improved the accuracy and

usability of solutions in dynamic environments by incorporating these APIs into the

optimization [14, 15]. The integration of real-time data supports adaptive strategies that adapt

routes to current traffic conditions, road closures, and other dynamic factors, leading to

applicable solutions in modern logistics [1, 6]. The advantages of algorithms can overcome the

limitations of any one method. Researchers have made significant progress in optimization by

combining genetic algorithms with ant colony optimization or by combining dynamic

programs with heuristic methods [3, 8]. These hybrid algorithms provide flexibility, scalability,

and robustness in solving complex routing problems, making them suitable for real-world

logistics applications [8].

 Methodology

3.1 Dataset Preparation

The dataset used in this study consists of geographical coordinates representing various

buildings or transportation stops. Each stop is identified by its latitude and longitude, which

can be derived using publicly available tools such as Google Maps. The dataset is a collection

of random locations in Mumbai and Thane. We have 1903 stops with their name, longitude,

and latitude. A sample of the cleaned dataset is shown in Table 1

 Shubham Giri, Neha Vora

IRO Journal on Sustainable Wireless Systems, September 2024, Volume 6, Issue 3 277

Table 1. Sample Cleaned Dataset

Stop Name Latitude Longitude

Stop 1 18.921 72.832

Stop 2 18.925 72.842

Stop 3 19.089 72.919

...

To ensure the dataset's quality and completeness, we performed extensive data

preprocessing. The following steps were taken:

1. Removing Missing Values: Any stops with missing latitude or longitude were

excluded. Stops with incomplete coordinate information are invalid for accurate route

optimization and were therefore removed from the dataset.

2. Filtering Outliers: Geospatial boundaries were applied to eliminate stops outside the

operational region. The selected geographic bounds were:

Latitude: Between 18.89 and 19.30 Longitude: Between 72.77 and 73.0

The result of preprocessing and without preprocessing has been compiled in Table 2.

Table 2. Dataset without Pre-processing and with Preprocessing

 Without Pre-processing With Pre-processing

Total Stops 1903 1703

Unnamed 150 0

3.2 Algorithms

 The Haversine formula is used to calculate the shortest distance between two points

on the Earth's surface using their latitude and longitude coordinates. It serves as a baseline for

comparing the accuracy of road-based distance calculations provided by APIs like

Advanced Route Optimization using Hybrid Algorithms and Road-based Distance Calculation

ISSN: 2582-3167 278

OpenRouteService and Google Maps. The Haversine formula provides an accurate

approximation of the shortest distance between two separate points(on Earth's surface) based

on their geographical coordinates. It assumes a spherical Earth model and calculates the great-

circle distance, which is essential for understanding the direct distance between stops in

geographical routing problems.

 TSP is a classical combinatorial optimization problem where the objective is to find

the shortest route that visits each city (or stops) once and returns to the starting city. Here we

use the brute force method to solve TSP in comparison with higher-order methods. The brute

force approach involves evaluating all possible stopping permutations to find the best path and

calculating the total distance for each permutation.

Permutations: The algorithm generates all possible orderings (permutations) of stops

and calculates the total distance for each permutation.

Optimization Criterion: It selects the permutation with the minimum total distance as

the optimal route.

Computational complexity: Brute-force TSP is computationally expensive with a time

complexity of O(n!), making it impractical for large n.

 Shubham Giri, Neha Vora

IRO Journal on Sustainable Wireless Systems, September 2024, Volume 6, Issue 3 279

Pseudocode: 1

 Using TSP with brute force (Pseudocode 1) for large numbers is not efficient but

while using this on a small collection of the dataset along with Haversine as baseline we can

get an optimized route but in a straight line which is shown in the following Figure 1.

Figure 1. Brute Force TSP using Haversine

 The Genetic Algorithm (GA) (Pseudocode 2) solves the shortest path problem by

simulating the process of evolution. The algorithm starts by generating a population of possible

routes (solutions). Through selection, the best-performing routes (those with shorter distances)

are chosen for reproduction. Crossover combines segments of these routes, while mutation

introduces randomness to explore new paths.

def solve_tsp_brute_force(cords):

 shortest_path = None

 minimum_distance = float('info)

 for perm in permutations(range(len(coords))):

 distance = calculate_distance(perm)

 if distance < minimum_distance:

 minimum_distance = distance shortest_path= perm

 return shortest_path, minimum_distance

Advanced Route Optimization using Hybrid Algorithms and Road-based Distance Calculation

ISSN: 2582-3167 280

Pseudocode: 2

 Ant Colony Optimization (ACO) models the behavior of ants searching for food.

Each ant deposits pheromones along its path, with shorter paths receiving more pheromones.

Over time, ants tend to follow the strongest pheromone trails, leading to the discovery of the

shortest route as in Pseudocode 3.

def genetic_algorithm(cities, population_size, generations):

 population = initialize_population(cities, population_size)

 for gen in range(generations):

 fitness_scores = evaluate_population(population)

 selected = select_best_routes (population, fitness_scores)

 offspring = crossover(selected)

 population = mutate(offspring)

 best_route = find_best_solution(population)

 return best_route

 Shubham Giri, Neha Vora

IRO Journal on Sustainable Wireless Systems, September 2024, Volume 6, Issue 3 281

Pseudocode: 3

 Dynamic Programming (DP) (Pseudocode 4) optimizes the shortest path problem by

breaking it down into simpler subproblems. Each subproblem is solved only once, and the

solution is stored for future use, ensuring that overlapping subproblems are not recomputed.

def ant_colony_optimization(cities, num_ants, generations, evaporation_rate):

 pheromones = initialize_pheromones(cities)

 for gen in range(generations):

 routes = []

 for ant in range(num_ants):

 route = construct_route(cities, pheromones)

 routes.append(route)

 update_pheromones(pheromones, routes, evaporation_rate)

 best_route = find_best_route(routes)

 return best_route

Advanced Route Optimization using Hybrid Algorithms and Road-based Distance Calculation

ISSN: 2582-3167 282

Pseudocode: 4

To utilize the strengths of multiple algorithms, we implemented a hybrid approach

combining Genetic Algorithms (GA), Ant Colony Optimization (ACO), and Dynamic

Programming (DP). This hybrid system ensures optimal performance for different dataset sizes

and real-world variables like traffic changes, road closures, and fluctuating demand. The

implementation was conducted in a cloud-based environment (Google Colab) using Python

and popular libraries like Pandas for data manipulation, NumPy for numerical computation,

Folium for geospatial visualization of routes, and OpenRouteService API and Google Maps

API for real-time road distance and traffic data.

The complexity of an algorithm determines its feasibility and scalability when applied

to real-world, large-scale datasets. By comparing the complexities of various algorithms, we

can identify which methods are suitable for small datasets, large datasets, and dynamic

environments where time constraints are critical.

def dynamic_programming_tsp(cities):

 dp = {}

 for i in range(len(cities)):

 dp[(i, frozenset([i]))] = (distance(0, i), [0, i])

 for subset_size in range(2, len(cities)):

 for subset in combinations(range(len(cities)), subset_size):

 for next_city in subset:

 dp[(next_city, frozenset(subset))] = min (

 (dp[(city, frozenset(subset - {next_city}))][0] +

distance(city,next_city),dp[(city,frozenset(subset-{next_city}))][1] + [next_city])

 for city in subset if city != next_city

)

 return min(dp[(last_city, frozenset(range(len(cities))))][0] + distance(last_city, 0),

dp[(last_city, frozenset(range(len(cities))))][1] + [0])

 Shubham Giri, Neha Vora

IRO Journal on Sustainable Wireless Systems, September 2024, Volume 6, Issue 3 283

The Computational Complexity Table plays a vital role in guiding the choice of

algorithms for route optimization depending on the problem size and the available

computational resources. Here's how it influenced our work:

Algorithm Feasibility

● For small datasets (up to 100 locations), Brute-Force TSP is feasible despite its factorial

time complexity. However, for larger datasets, it becomes impractical due to

exponential growth in computational time.

● The Genetic Algorithm and ACO are more scalable due to their lower time complexity

(polynomial growth). These algorithms can handle datasets with hundreds or even

thousands of locations, making them suitable for real-world logistics applications.

Scalability for Large Datasets

● In large datasets (over 1000 stops), Dynamic Programming (DP) offers an exact

solution but suffers from exponential time complexity for larger numbers of locations.

This makes it more appropriate for medium-sized problems.

● GA and ACO are capable of handling such large datasets by providing near-optimal

solutions within a reasonable timeframe, as their polynomial time complexity grows

slower compared to DP or Brute-Force methods.

Dynamic Real-World Conditions

● Real-world logistics systems require not only scalability but also adaptability.

Algorithms need to provide fast results as traffic and road conditions change in real-

time. This is where GA and ACO outperform the DP as their time complexities allow

for rapid recalculation of routes with new input data.

● In dynamic environments, both ACO and GA can quickly adapt to changes by reusing

pheromone trails (in ACO) or evolving the population (in GA), while Brute-Force and

DP cannot recompute solutions fast enough due to their high complexity. All of this

can be compiled and the quantitative comparison can be seen in Table 3.

Advanced Route Optimization using Hybrid Algorithms and Road-based Distance Calculation

ISSN: 2582-3167 284

3.3 Explanation of Each Algorithm's Complexity

● Brute-Force TSP: This approach evaluates every possible permutation of routes,

leading to O(n!) time complexity. While it provides the exact solution, the number of

permutations grows exponentially as the number of stops increases, making it

computationally infeasible for more than a few dozen locations.

● Genetic Algorithm (GA): The time complexity of GA is O(g·n·m), where g is the

number of generations, n is the number of cities, and m is the population size. This

makes GA suitable for handling larger datasets by balancing exploration of different

routes and convergence toward an optimal solution. Its space complexity of O(n·m)

ensures that even large problems remain manageable in memory.

● Ant Colony Optimization (ACO): ACO's time complexity is O(g·n²·m), where g is

the number of generations, n is the number of cities, and m is the number of ants. ACO's

quadratic dependency on the number of cities makes it slower than GA for very large

datasets, but its ability to balance exploration and exploitation through pheromone trails

makes it more efficient in dynamically changing environments.

● Dynamic Programming (DP): DP's time complexity is O(n²·2ⁿ), which makes it

computationally expensive for large datasets, as the exponential growth in time makes

it impractical beyond a few dozen locations. However, it provides optimal solutions for

medium-sized datasets by breaking down the problem into smaller subproblems and

storing intermediate results to avoid recomputation.

 Shubham Giri, Neha Vora

IRO Journal on Sustainable Wireless Systems, September 2024, Volume 6, Issue 3 285

Table 3. Comparison of Algorithms

Algorithm Time

Complexity

Dataset

Size

Computation

Time

Accuracy Remarks

Brute-Force TSP O(n!) Small

(100

stops)

~Several

minutes

100%

(Optimal)

Computationally

infeasible for large

datasets.

Genetic

Algorithm

O(g·n·m) Small

(100

stops)

~Seconds ~96%

(Near-

Optimal)

Handles small to large

datasets efficiently.

 Medium

(500

stops)

~Minutes ~96% Balances exploration

and convergence well.

 Large

(1903

stops)

~Tens of

minutes

~94% Can handle large

datasets with a

marginal increase in

computation time.

Ant Colony

Optimization

(ACO)

O(g·n²·m) Small

(100

stops)

~Seconds ~96% Slower than GA for

larger datasets but

excels in dynamic

environments.

 Medium

(500

stops)

~Minutes ~96% Effective in real-time

traffic conditions.

 Large

(1903

stops)

~Hours ~94% Computation time

increases

quadratically with

large datasets.

Dynamic

Programming

(DP)

O(n²·2ⁿ) Small

(100

stops)

~Seconds 100%

(Optimal)

Provides optimal

solutions, but

computation time

grows exponentially.

 Medium

(500

stops)

~Hours 100%

(Optimal)

Impractical for

datasets beyond a few

dozen locations.

Advanced Route Optimization using Hybrid Algorithms and Road-based Distance Calculation

ISSN: 2582-3167 286

3.4 Steps for Hybrid Algorithm Implementation

 Data Preprocessing: The datasets (geographical coordinates of stops) were cleaned

to remove outliers, missing values, and invalid coordinates. Preprocessing ensures that the

algorithms only work on valid data.

 Hybrid Algorithm Composition: GA generates an initial population of routes.ACO

refines the population by leveraging pheromone-based search, ensuring the exploration of

multiple paths.DP is used to handle smaller subsets of routes and ensure that local optimal

solutions are found within each subset.

 Both OpenRouteService and Google Maps APIs were essential in the integration of

real-time road data. These APIs provided:

Real-time Traffic Updates: This allowed the algorithms to dynamically recalculate

routes based on changing road conditions such as traffic congestion, road closures, and

accidents.

Road Network Data: The APIs provided detailed road maps and distances based on

real-world routes, which were more accurate than simple Euclidean or Haversine distance

calculations.

The integration of these services enabled the hybrid algorithms to minimize travel time

and cost by continuously adapting to current road conditions, ensuring that the routes were

optimized for real-world usage.

3.5 Datasets Used for Testing

 To ensure scalability and robustness, we tested the hybrid algorithm on multiple

datasets of varying sizes:

 Mumbai and Thane Dataset: Comprising 1903 geographical stops, reduced to 1703

after data preprocessing.

 Smaller Subsets: Subsets of 100, 500, and 1000 stops were created to test algorithm

efficiency on datasets of different sizes.

 Shubham Giri, Neha Vora

IRO Journal on Sustainable Wireless Systems, September 2024, Volume 6, Issue 3 287

 Dynamic Dataset: A dataset that incorporates real-time updates, reflecting changing

traffic patterns over the course of the day.

 Each dataset was structured in terms of latitude and longitude coordinates for various

locations (e.g., delivery stops, and warehouses).

 The hybrid algorithm was designed to be scalable, handling datasets from small (100

stops) to large (1903 stops). The scalability was achieved by: GA efficiently exploring large

solution spaces by evolving population over generations.ACO dynamically adjusts pheromone

trails based on real-world traffic and road conditions.DP reduces computational complexity by

solving smaller subproblems for localized regions of the dataset.

3.6 Performance Metrics

To evaluate the performance of the algorithms, several key metrics were used:

 Travel Time: This was measured using the APIs from OpenRouteService and Google

Maps. Real-time traffic data was incorporated to provide an accurate estimation of the total

travel time.

Cost: The cost metric was calculated based on the distance travelled and fuel

consumption. The algorithms aimed to minimize both travel distance and operational costs by

optimizing routes dynamically.

Computational Efficiency: We evaluated how quickly each algorithm could compute

the shortest path. The time taken for the computation was recorded for each dataset size,

comparing the efficiency of Brute-Force TSP, GA, ACO, and DP.

Accuracy: We compared the results of GA and ACO with the optimal solutions

provided by Brute-Force TSP for small datasets. Accuracy was determined by the proximity

of the algorithm's solution to the known optimal solution.

 Results and Discussion

 Smaller Datasets: For smaller datasets (100-500 stops), the hybrid algorithm found

optimal routes within seconds, demonstrating efficiency.

Advanced Route Optimization using Hybrid Algorithms and Road-based Distance Calculation

ISSN: 2582-3167 288

 Larger Datasets (1000-1903 Stops): The hybrid approach scaled effectively, with

route calculation times increasing only marginally compared to traditional algorithms like TSP,

which became computationally infeasible for larger datasets.

 Real-Time Scenarios: In dynamic traffic scenarios, the hybrid algorithm achieved

up to a 15-20% reduction in travel time compared to static routing solutions.

 A precise observation has been compiled in Table 4.

Table 4. Performance Improvement with Hybrid Algorithm

Metric Dataset

Size

Static

Algorithms

(Traditional)

Hybrid

Algorithm

(GA + ACO

+ DP)

Improvement

(%)

Remarks

Travel Time

(Static)

Small

(100

stops)

~10-12

minutes

~8-10

minutes

~15-20% Real-time updates

reduced travel time

in dynamic

environments.

 Medium

(500

stops)

~30-35

minutes

~25-28

minutes

~15-20% Faster adaptation to

changing traffic

patterns.

 Large

(1903

stops)

~120-130

minutes

~100-110

minutes

~15-20% ACO improved real-

time responsiveness,

especially in larger

datasets.

Cost

Optimization

Small

(100

stops)

$500 $420 ~16% Reduced fuel

consumption due to

more efficient

routing.

 Medium

(500

stops)

$1500 $1250 ~17% Hybrid algorithm

optimized both route

and fuel

consumption.

 Shubham Giri, Neha Vora

IRO Journal on Sustainable Wireless Systems, September 2024, Volume 6, Issue 3 289

 Conclusion

The hybrid algorithm proved highly effective in handling both small- and large-scale

datasets, integrating real-time traffic data to provide viable solutions for real-world logistics

operations, where traffic patterns and road conditions constantly fluctuate. The system

demonstrated scalability by delivering near-optimal routes in a reasonable time, even for

datasets with over 1000 stops. However, its dependence on external APIs like

OpenRouteService and Google Maps could cause latency issues, especially during peak usage,

and real-time routing, while accurate, may be slowed by API response times in highly dynamic

environments. Future research will focus on advanced machine learning models that can predict

traffic conditions and dynamically reroute vehicles before congestion occurs. Additionally,

cloud-based optimization services could allow companies to scale route optimization to

thousands of delivery stops in their daily operations.

 Large

(1903

stops)

$4500 $3800 ~15.5% Minimization of

operational costs via

a hybrid approach.

Computation

Time

Small

(100

stops)

~Minutes ~Seconds ~60-70% Hybrid algorithms

scaled effectively,

reducing

computation time

significantly.

 Medium

(500

stops)

~Hours ~Minutes ~60-70% Marginal increase in

computation time,

despite handling

larger datasets.

 Large

(1903

stops)

~Several

Hours

~Tens of

minutes

~65-75% Traditional methods

became

computationally

infeasible for large

datasets.

Advanced Route Optimization using Hybrid Algorithms and Road-based Distance Calculation

ISSN: 2582-3167 290

References

[1] Zhang, Jin, Rongrong Guo, and Wenquan Li. "Research on Dynamic Scheduling and

Route Optimization Strategy of Flex-Route Transit Considering Travel Choice

Preference of Passenger." Systems 12, no. 4 (2024): 138.

[2] Dorigo, Marco, and Luca Maria Gambardella. "Ant colony system: a cooperative

learning approach to the traveling salesman problem." IEEE Transactions on

evolutionary computation 1, no. 1 (1997): 53-66.

[3] Holland, John H. Adaptation in natural and artificial systems: an introductory analysis

with applications to biology, control, and artificial intelligence. MIT press, 1992.

[4] Soe, N. Chan, and T. Lai Lai Thein. "Haversine formula and RPA algorithm for

navigation system." International Journal of Data Science and Analysis 6, no. 1 (2020):

32.

[5] Laporte, Gilbert. "The traveling salesman problem: An overview of exact and

approximate algorithms." European Journal of Operational Research 59, no. 2 (1992):

231-247.

[6] Assad, Arjang A. "Richard E. Bellman." In Profiles in Operations Research: Pioneers

and Innovators, pp. 415-445. Boston, MA: Springer US, 2011.

[7] Gendreau, Michel, and Jean-Yves Potvin, eds. Handbook of metaheuristics. Vol. 2.

New York: Springer, 2010.http://old.math.nsc.ru/LBRT/k5/OR-

MMF/2019_Book_HandbookOfMetaheuristics.pdf

[8] Applegate, David L. The traveling salesman problem: a computational study. Vol. 17.

Princeton university press, 2006.

[9] Lawler, Eugene L. "The traveling salesman problem: a guided tour of combinatorial

optimization." Wiley-Interscience Series in Discrete Mathematics (1985).

[10] Goldberg, David E. "Genetic and evolutionary algorithms come of age."

Communications of the ACM 37, no. 3 (1994): 113-120.

 Shubham Giri, Neha Vora

IRO Journal on Sustainable Wireless Systems, September 2024, Volume 6, Issue 3 291

[11] Russell, Stuart J., and Peter Norvig. Artificial intelligence: a modern approach.

Pearson, 2016

[12] Held, Michael, and Richard M. Karp. "A dynamic programming approach to

sequencing problems." Journal of the Society for Industrial and Applied mathematics

10, no. 1 (1962): 196-210.

[13] Lozano-Pinilla, José R., Iván Sánchez-Cordero, and Cristina Vicente-Chicote. "Smart-

Routing Web App: A Road Traffic Eco-Routing Tool Proposal for Smart Cities." In

International Conference on Intelligent Transport Systems, pp. 247-258. Cham:

Springer Nature Switzerland, 2023.

[14] Muñoz-Villamizar, Andres, Javier Faulin, Lorena Reyes-Rubiano, Rafael Henriquez-

Machado, and Elyn Solano-Charris. "Integration of Google Maps API with

mathematical modeling for solving the Real-Time VRP." Transportation research

procedia 78 (2024): 32-39.

[15] Dantzig, George B., and John H. Ramser. "The truck dispatching problem."

Management science 6, no. 1 (1959): 80-91.

