Analysis of Visible Light Communication using Integrated Avalanche Photodiode
Volume-4 | Issue-2

Smart WSN-based System for Forest Fire Detection with Reduced False Alarms
Volume-5 | Issue-2

Smart Dustbin using ESP32 for Waste Management
Volume-6 | Issue-4

A Review on Identifying Suitable Machine Learning Approach for Internet of Things Applications
Volume-3 | Issue-3

TOWARDS GHZ METALLIC ACCESS NETWORKS
Volume-1 | Issue-1

A Survey on Wireless Network Intrusion Detection
Volume-4 | Issue-1

Investigation on Unmanned Aerial Vehicle (UAV): An Overview
Volume-4 | Issue-3

REVIEW ON UBIQUITOUS CLOUDS AND PERSONAL MOBILE NETWORKS
Volume-1 | Issue-3

Process Control Ladder Logic Trouble Shooting Techniques Fundamentals
Volume-1 | Issue-4

Digital Transformation by Data Fabric
Volume-4 | Issue-3

TRUST BASED ROUTING ALGORITHM IN INTERNET OF THINGS (IoT)
Volume-1 | Issue-1

Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application
Volume-3 | Issue-3

Three Phase Coil based Optimized Wireless Charging System for Electric Vehicles
Volume-3 | Issue-3

Cyber-attack and Measuring its Risk
Volume-3 | Issue-4

REVIEW ON UBIQUITOUS CLOUDS AND PERSONAL MOBILE NETWORKS
Volume-1 | Issue-3

Analysis of Solar Power Generation Performance Improvement Techniques
Volume-4 | Issue-3

Pollination Inspired Clustering Model for Wireless Sensor Network Optimization
Volume-3 | Issue-3

Design of Low Power Cam Memory Cell for the Next Generation Network Processors
Volume-3 | Issue-4

A STUDY OF RESEARCH NOTIONS IN WIRELESS BODY SENSOR NETWORK (WBSN)
Volume-1 | Issue-2

Computation of Constant Gain and NF Circles for 60 GHz Ultra-low noise Amplifiers
Volume-3 | Issue-3

Home / Archives / Volume-2 / Issue-1 / Article-6

Volume - 2 | Issue - 1 | march 2020

A Novel Bi-Velocity Particle Swarm Optimization Scheme for Multicast Routing Problem
Pages: 50-58
DOI
10.36548/jsws.2020.1.006
Published
25 April, 2020
Abstract

A nondeterministic polynomial (NP) with complete Multicast routing problem is defined using a bi-velocity particle swarm optimization (BVDPSO) is proposed in this paper. The shift of particle swarm optimization to the discrete or binary domain, stepping away from the continuous domain is the major impact of the work. Initially a bi-velocity strategy is built such that it characterizes each dimension in terms of 0 and 1. The basic function of this strategy is to describe the MRP's binary characteristics such that 0 stands for the node not being selected while 1 stands for selection. Based on the location and velocity of the original PSO in the continuous domain, the BVDPSO is updated. This will preserve the global search ability and fast convergence speed of the original PSO. 58 instances of large, medium and small scales are used for experimentation in the OR-Library. Based on the results, it is identified that it is possible to get near-optimal or optimal solutions for BVDPSO as it requires generation of limited multicast trees. This approach is found to be optimal over its peers and outperforms recent heuristic algorithms and many advanced techniques used for the MRP problem. They also outperform several PSO, ant colony optimization and genetic algorithms.

Keywords

Steiner tree Particle swarm optimization multicast routing problem communication networks nondeterministic polynomial

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here