Analysis of Visible Light Communication using Integrated Avalanche Photodiode
Volume-4 | Issue-2

Smart WSN-based System for Forest Fire Detection with Reduced False Alarms
Volume-5 | Issue-2

Smart Dustbin using ESP32 for Waste Management
Volume-6 | Issue-4

A Review on Identifying Suitable Machine Learning Approach for Internet of Things Applications
Volume-3 | Issue-3

Investigation on Unmanned Aerial Vehicle (UAV): An Overview
Volume-4 | Issue-3

A Survey on Wireless Network Intrusion Detection
Volume-4 | Issue-1

TOWARDS GHZ METALLIC ACCESS NETWORKS
Volume-1 | Issue-1

An Energy Efficient Routing Protocol based on Reinforcement Learning for WSN
Volume-4 | Issue-2

Digital Transformation by Data Fabric
Volume-4 | Issue-3

REVIEW ON UBIQUITOUS CLOUDS AND PERSONAL MOBILE NETWORKS
Volume-1 | Issue-3

TRUST BASED ROUTING ALGORITHM IN INTERNET OF THINGS (IoT)
Volume-1 | Issue-1

Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application
Volume-3 | Issue-3

Three Phase Coil based Optimized Wireless Charging System for Electric Vehicles
Volume-3 | Issue-3

Cyber-attack and Measuring its Risk
Volume-3 | Issue-4

REVIEW ON UBIQUITOUS CLOUDS AND PERSONAL MOBILE NETWORKS
Volume-1 | Issue-3

Analysis of Solar Power Generation Performance Improvement Techniques
Volume-4 | Issue-3

Pollination Inspired Clustering Model for Wireless Sensor Network Optimization
Volume-3 | Issue-3

Design of Low Power Cam Memory Cell for the Next Generation Network Processors
Volume-3 | Issue-4

A STUDY OF RESEARCH NOTIONS IN WIRELESS BODY SENSOR NETWORK (WBSN)
Volume-1 | Issue-2

Computation of Constant Gain and NF Circles for 60 GHz Ultra-low noise Amplifiers
Volume-3 | Issue-3

Home / Archives / Volume-2 / Issue-3 / Article-4

Volume - 2 | Issue - 3 | september 2020

Adaptive Array Processing based Wireless Energy Transmission for IoT Applications
Pages: 128-132
DOI
10.36548/jsws.2020.3.004
Published
02 January, 2021
Abstract

Rechargeable energy sources are essential for the extreme deployment of Internet-of-Things (IoT) sensors with the massive growth in smart systems. In order to meet these requirements, wireless energy transmission (WET) provides demand based power to the sensors. Temporary energy storage is done using supercapacitors. This overcomes the drawback of release of hazardous wastes released by IoT connected disposables after their working life. WET is made possible through adaptive array processing. The system consists of a transmitting side with multiple antennas and a receiving side with a programmable energy harvester. Several far-field adaptive processing schemes such as conventional beamformers, multiple sidelobe canceller (MSLC), multiple beam antenna system, regenerative hybrid array, digital beamformer, and generalized sidelobe canceller are tested and compared with the proposed modified beamforming model for superior performance. As the number of antennas increases, the gain increases. Gain and cumulative distribution function are analyzed over multiple distances for multiple iterations. The received signal strength indicator (RSSI) is also estimated to validate the performance of the proposed model.

Keywords

Internet of Things wireless energy transmission beamforming adaptive array processing antennas

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here