IRO Journals

IRO Journal on Sustainable Wireless Systems

Analysis of Visible Light Communication using Integrated Avalanche Photodiode
Volume-4 | Issue-2

A Review on Identifying Suitable Machine Learning Approach for Internet of Things Applications
Volume-3 | Issue-3

TOWARDS GHZ METALLIC ACCESS NETWORKS
Volume-1 | Issue-1

REVIEW ON UBIQUITOUS CLOUDS AND PERSONAL MOBILE NETWORKS
Volume-1 | Issue-3

Process Control Ladder Logic Trouble Shooting Techniques Fundamentals
Volume-1 | Issue-4

TRUST BASED ROUTING ALGORITHM IN INTERNET OF THINGS (IoT)
Volume-1 | Issue-1

COMPUTATIONAL OFFLOADING FOR PERFORMANCE IMPROVEMENT AND ENERGY SAVING IN MOBILE DEVICES
Volume-1 | Issue-4

ANALYSIS OF ROUTING PROTOCOLS IN FLYING WIRELESS NETWORKS
Volume-1 | Issue-3

Dual Edge-Fed Left Hand and Right Hand Circularly Polarized Rectangular Micro-Strip Patch Antenna for Wireless Communication Applications
Volume-2 | Issue-3

Modified Gray Wolf Feature Selection and Machine Learning Classification for Wireless Sensor Network Intrusion Detection
Volume-3 | Issue-2

TRUST BASED ROUTING ALGORITHM IN INTERNET OF THINGS (IoT)
Volume-1 | Issue-1

Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application
Volume-3 | Issue-3

Three Phase Coil based Optimized Wireless Charging System for Electric Vehicles
Volume-3 | Issue-3

Cyber-attack and Measuring its Risk
Volume-3 | Issue-4

REVIEW ON UBIQUITOUS CLOUDS AND PERSONAL MOBILE NETWORKS
Volume-1 | Issue-3

Analysis of Solar Power Generation Performance Improvement Techniques
Volume-4 | Issue-3

Pollination Inspired Clustering Model for Wireless Sensor Network Optimization
Volume-3 | Issue-3

Design of Low Power Cam Memory Cell for the Next Generation Network Processors
Volume-3 | Issue-4

A STUDY OF RESEARCH NOTIONS IN WIRELESS BODY SENSOR NETWORK (WBSN)
Volume-1 | Issue-2

Computation of Constant Gain and NF Circles for 60 GHz Ultra-low noise Amplifiers
Volume-3 | Issue-3

Home / Archives / Volume-3 / Issue-3 / Article-6

Volume - 3 | Issue - 3 | september 2021

Pollination Inspired Clustering Model for Wireless Sensor Network Optimization
Pages: 196-207
Published
29 November, 2021
Abstract

Remote and dangerous fields that are expensive, complex, and unreachable to reach human insights are examined with ease using the Wireless Sensor Network (WSN) applications. Due to the use of non-renewable sources of energy, challenges with respect to the network lifetime, fault tolerance and energy consumption are faced by the self-managed networks. An efficient fault tolerance technique has been provided in this paper as an effective management strategy. Using the network and communication nodes, revitalization and fault recognition techniques are used for handling diverse levels of faults in this framework. At the network nodes, the fault tolerance capability is increased by the proposed protocol model and management strategy. This enhances the corresponding data transmission in the network. When compared to the conventional techniques, the proposed model increases the network lifetime by five times. It is observed from the validation results that, with a 10% increase in the network lifetime, there is a 2% decrease in the fault tolerance proficiency of the network. The network lifetime and data transmission rate are improved while the network energy consumption is reduced significantly. The MATLAB environment is used for simulation purpose. In terms of energy consumption, network lifetime and fault tolerance, the proposed model offers optimal results.

Keywords

Network lifetime Fault management Revitalization Fault tolerance Wireless sensor networks

Full Article PDF
×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
For single article (Indian)
1,200 INR
Article Access Charge
For single article (non-Indian)
15 USD
Open Access Fee (Indian) 5,000 INR
Open Access Fee (non-Indian) 80 USD
Annual Subscription Fee
For 1 Journal (Indian)
15,000 INR
Annual Subscription Fee
For 1 Journal (non-Indian)
200 USD
secure PAY INR / USD
Subscription form: click here