Smart Inventory System for Expiry Date Tracking
Volume-7 | Issue-2

Exploiting Vulnerabilities in Weak CAPTCHA Mechanisms within DVWA
Volume-7 | Issue-2

Investigating Process Scheduling Techniques for Optimal Performance and Energy Efficiency in Operating Systems
Volume-6 | Issue-4

Gamification in Mobile Apps: Assessing the Effects on Customer Engagement and Loyalty in the Retail Industry
Volume-5 | Issue-4

AI based Identification of Students Dress Code in Schools and Universities
Volume-6 | Issue-1

Review on Sanskrit Sandhi Splitting using Deep Learning Techniques
Volume-6 | Issue-2

AI-Powered Data Interaction: A Natural Language Chatbot for CSV, Excel, and SQL Files
Volume-7 | Issue-1

A Comprehensive Study of Zero-Day Attacks
Volume-5 | Issue-3

TF-IDF Vectorization and Clustering for Extractive Text Summarization
Volume-6 | Issue-1

A Review on Cryptocurrency and its Advancements in Present World
Volume-4 | Issue-4

AUTOMATION USING IOT IN GREENHOUSE ENVIRONMENT
Volume-1 | Issue-1

Principle of 6G Wireless Networks: Vision, Challenges and Applications
Volume-3 | Issue-4

Classification of Remote Sensing Image Scenes Using Double Feature Extraction Hybrid Deep Learning Approach
Volume-3 | Issue-2

Light Weight CNN based Robust Image Watermarking Scheme for Security
Volume-3 | Issue-2

VIRTUAL REALITY GAMING TECHNOLOGY FOR MENTAL STIMULATION AND THERAPY
Volume-1 | Issue-1

Design of Digital Image Watermarking Technique with Two Stage Vector Extraction in Transform Domain
Volume-3 | Issue-3

Analysis of Natural Language Processing in the FinTech Models of Mid-21st Century
Volume-4 | Issue-3

PROGRESS AND PRECLUSION OF KNEE OSTEOARTHRITIS: A STUDY
Volume-3 | Issue-3

Image Augmentation based on GAN deep learning approach with Textual Content Descriptors
Volume-3 | Issue-3

Comparative Analysis for Personality Prediction by Digital Footprints in Social Media
Volume-3 | Issue-2

Home / Archives / Volume-4 / Issue-1 / Article-6

Volume - 4 | Issue - 1 | march 2022

Analogy of Machine Learning Approaches and BERT for Sentiment Analysis Open Access
K. Vidya  , S. Janani  362
Pages: 52-60
Full Article PDF pdf-white-icon
Cite this article
Vidya, K., and S. Janani. "Analogy of Machine Learning Approaches and BERT for Sentiment Analysis." Journal of Information Technology and Digital World 4, no. 1 (2022): 52-60
DOI
10.36548/jitdw.2022.1.006
Published
26 May, 2022
Abstract

For assessing customer sentiment in Amazon product reviews, this article compares two machine learning algorithms and a deep learning method, BERT (Bidirectional Encoder Representations from Transformer). Machine learning is the most practical approach in the current era of artificial intelligence for training a neural network to handle the majority of real-world issues. In this paper, the real-world scenario of sentiment analysis is considered, ideally the classification problem. Firstly, the data is provided into a model, which evaluates the feature that uses the Term Frequency (TF) and Inverse Document Frequency (IDF) pre-processing methods. Secondly, the algorithms, Naive Bayes classifier and Support Vector Machine are used to analyze the sentiment of the consumer comments and compute metrics like F1 score. Finally, the input data is fed for BERT to process and compute the F1 score. To summarize, this study is to provide a detailed comparative analysis of machine learning techniques and deep learning algorithms.

Keywords

Sentiment analysis Naïve Bayes classifier SVM BERT

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here