Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Blockchain-Enabled Federated Learning on Kubernetes for Air Quality Prediction Applications
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Hybrid Parallel Image Processing Algorithm for Binary Images with Image Thinning Technique
Volume-3 | Issue-3

Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare
Volume-3 | Issue-4

QoS-aware Virtual Machine (VM) for Optimal Resource Utilization and Energy Conservation
Volume-3 | Issue-3

Probabilistic Neural Network based Managing Algorithm for Building Automation System
Volume-3 | Issue-4

Fusion based Feature Extraction Analysis of ECG Signal Interpretation - A Systematic Approach
Volume-3 | Issue-1

Multi-scale CNN Approach for Accurate Detection of Underwater Static Fish Image
Volume-3 | Issue-3

Real Time Anomaly Detection Techniques Using PySpark Frame Work
Volume-2 | Issue-1

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Audio Tagging Using CNN Based Audio Neural Networks for Massive Data Processing
Volume-3 | Issue-4

Frontiers of AI beyond 2030: Novel Perspectives
Volume-4 | Issue-4

Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare
Volume-3 | Issue-4

Early Stage Detection of Crack in Glasses by Hybrid CNN Transformation Approach
Volume-3 | Issue-4

ARTIFICIAL INTELLIGENCE APPLICATION IN SMART WAREHOUSING ENVIRONMENT FOR AUTOMATED LOGISTICS
Volume-1 | Issue-2

Deep Convolution Neural Network Model for Credit-Card Fraud Detection and Alert
Volume-3 | Issue-2

Home / Archives / Volume-1 / Issue-1 / Article-5

Volume - 1 | Issue - 1 | september 2019

IDENTIFICATION AND CLASSIFICATION OF CANCER CELLS USING CAPSULE NETWORK WITH PATHOLOGICAL IMAGES
Pages: 37-44
DOI
10.36548/jaicn.2019.1.005
Published
September, 2019
Abstract

Cancer is a deadly disease that is costing the lives of many people. Over 9.6 million death is reported in 2018 due to cancer. We propose an ideal methodology to identify and classify cancer cells using pathological images with the help of capsule network. Capsule network's capability to learn patterns based on previous iterations can be exploited for this purpose. This can help in identification of cancer at early stages and work at the root cause of the disease and walk towards completely shutting down the disease. Image processing is done along with fuzzification and further, it is handled with capsule network classifier and analysed.

Keywords

Image Processing Capsule Network Artificial Neural Network Cancer detection Fuzzy system

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee 100 USD
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here