Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Blockchain-Enabled Federated Learning on Kubernetes for Air Quality Prediction Applications
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Hybrid Parallel Image Processing Algorithm for Binary Images with Image Thinning Technique
Volume-3 | Issue-3

Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare
Volume-3 | Issue-4

QoS-aware Virtual Machine (VM) for Optimal Resource Utilization and Energy Conservation
Volume-3 | Issue-3

Probabilistic Neural Network based Managing Algorithm for Building Automation System
Volume-3 | Issue-4

Fusion based Feature Extraction Analysis of ECG Signal Interpretation - A Systematic Approach
Volume-3 | Issue-1

Multi-scale CNN Approach for Accurate Detection of Underwater Static Fish Image
Volume-3 | Issue-3

Real Time Anomaly Detection Techniques Using PySpark Frame Work
Volume-2 | Issue-1

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Audio Tagging Using CNN Based Audio Neural Networks for Massive Data Processing
Volume-3 | Issue-4

Frontiers of AI beyond 2030: Novel Perspectives
Volume-4 | Issue-4

Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare
Volume-3 | Issue-4

Early Stage Detection of Crack in Glasses by Hybrid CNN Transformation Approach
Volume-3 | Issue-4

ARTIFICIAL INTELLIGENCE APPLICATION IN SMART WAREHOUSING ENVIRONMENT FOR AUTOMATED LOGISTICS
Volume-1 | Issue-2

Deep Convolution Neural Network Model for Credit-Card Fraud Detection and Alert
Volume-3 | Issue-2

Home / Archives / Volume-1 / Issue-2 / Article-4

Volume - 1 | Issue - 2 | december 2019

CAPSULE NETWORK BASED BIOMETRIC RECOGNITION SYSTEM
Pages: 83-94
DOI
10.36548/jaicn.2019.2.004
Published
December, 2019
Abstract

The biometric recognition plays a significant and a unique part in the applications that are based on the personal identification. This is because of the stability, irreplaceability and the uniqueness that is found in the biometric traits of the humans. Currently the deep learning techniques that are capable of strongly generalizing and automatically learning, with the enhanced accuracy is utilized for the biometric recognition to develop an efficient biometric system. But the poor noise removal abilities and the accuracy degradation caused due to the very small disturbances has made the conventional means of the deep learning that utilizes the convolutional neural network incompatible for the biometric recognition. So the capsule neural network replaces the CNN due to its high accuracy in the recognition and the classification, due to its learning capacities and the ability to be trained with the limited number of samples compared to the CNN (convolutional neural network). The frame work put forward in the paper utilizes the capsule network with the fuzzified image enhancement for the retina based biometric recognition as it is a highly secure and reliable basis of person identification as it is layered behind the eye and cannot be counterfeited. The method was tested with the dataset of face 95 database and the CASIA-Iris-Thousand, and was found to be 99% accurate with the error rate convergence of 0.3% to .5%

Keywords

Biometric Recognition Retina Recognition Capsule Neural Network Deep Learning Authentication

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee 100 USD
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here