Comparative Analysis of Machine Learning Algorithms for Early Prediction of Parkinson’s Disorder based on Voice Features
Volume-4 | Issue-4

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Detection of Fake Job Advertisements using Machine Learning algorithms
Volume-4 | Issue-3

AI-Integrated Proctoring System for Online Exams
Volume-4 | Issue-2

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Blockchain-Enabled Federated Learning on Kubernetes for Air Quality Prediction Applications
Volume-3 | Issue-3

Automated Waste Sorting with Delta Arm and YOLOv8 Detection
Volume-6 | Issue-3

Leather Defect Segmentation Using Semantic Segmentation Algorithms
Volume-4 | Issue-2

Enhancing Health Monitoring using Efficient Hyperparameter Optimization
Volume-4 | Issue-4

Real Time Anomaly Detection Techniques Using PySpark Frame Work
Volume-2 | Issue-1

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Audio Tagging Using CNN Based Audio Neural Networks for Massive Data Processing
Volume-3 | Issue-4

Frontiers of AI beyond 2030: Novel Perspectives
Volume-4 | Issue-4

Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare
Volume-3 | Issue-4

Early Stage Detection of Crack in Glasses by Hybrid CNN Transformation Approach
Volume-3 | Issue-4

ARTIFICIAL INTELLIGENCE APPLICATION IN SMART WAREHOUSING ENVIRONMENT FOR AUTOMATED LOGISTICS
Volume-1 | Issue-2

Deep Convolution Neural Network Model for Credit-Card Fraud Detection and Alert
Volume-3 | Issue-2

Home / Archives / Volume-2 / Issue-3 / Article-5

Volume - 2 | Issue - 3 | september 2020

Plagiarism Detection in Programming Assignments using Machine Learning
Pages: 177-184
DOI
10.36548/jaicn.2020.3.005
Published
21 July, 2020
Abstract

Plagiarism in programming assignments has been increasing these days which affects the evaluation of students. Thispaper proposes a machine learning approach for plagiarism detection of programming assignments. Different features related to source code are computed based on similarity score of n-grams, code style similarity and dead codes. Then, xgboost model is used for training and predicting whether a pair of source code are plagiarised or not. Many plagiarism techniques ignores dead codes such as unused variables and functions in their predictions tasks. But number of unused variables and functions in the source code are considered in this paper. Using our features, the model achieved an accuracy score of 94% and average f1-score of 0.905 on the test set. We also compared the result of xgboost model with support vector machines(SVM) and report that xgboost model performed better on our dataset.

Keywords

Source Code Plagiarism Detection Xgboost Programming Assignments Plagiarism Source Code Features

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here