IRO Journals

Journal of Artificial Intelligence and Capsule Networks

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Blockchain-Enabled Federated Learning on Kubernetes for Air Quality Prediction Applications
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Hybrid Parallel Image Processing Algorithm for Binary Images with Image Thinning Technique
Volume-3 | Issue-3

Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare
Volume-3 | Issue-4

QoS-aware Virtual Machine (VM) for Optimal Resource Utilization and Energy Conservation
Volume-3 | Issue-3

Probabilistic Neural Network based Managing Algorithm for Building Automation System
Volume-3 | Issue-4

Fusion based Feature Extraction Analysis of ECG Signal Interpretation - A Systematic Approach
Volume-3 | Issue-1

Artificial Bee Colony Optimization Algorithm for Enhancing Routing in Wireless Networks
Volume-3 | Issue-1

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Real Time Anomaly Detection Techniques Using PySpark Frame Work
Volume-2 | Issue-1

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Audio Tagging Using CNN Based Audio Neural Networks for Massive Data Processing
Volume-3 | Issue-4

Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare
Volume-3 | Issue-4

Frontiers of AI beyond 2030: Novel Perspectives
Volume-4 | Issue-4

Early Stage Detection of Crack in Glasses by Hybrid CNN Transformation Approach
Volume-3 | Issue-4

Artificial Intelligence Algorithm with SVM Classification using Dermascopic Images for Melanoma Diagnosis
Volume-3 | Issue-1

An Efficient Machine Learning based Model for Classification of Wearable Clothing
Volume-3 | Issue-4

Home / Archives / Volume-2 / Issue-4 / Article-5

Volume - 2 | Issue - 4 | december 2020

Efficient Energy Load Distribution Model using Modified Particle Swarm Optimization Algorithm
Dr. T. Vijayakumar, Mr. R. Vinothkanna  242  175
Pages: 226-231
Cite this article
Vijayakumar, D. T. & Vinothkanna, M. R. (2020). Efficient Energy Load Distribution Model using Modified Particle Swarm Optimization Algorithm. Journal of Artificial Intelligence and Capsule Networks, 2(4), 226-231. doi:10.36548/jaicn.2020.4.005
Published
08 February, 2021
Abstract

Reduction of emission and energy conservation plays a major role in the current power system for realizing sustainable socio-economic development. The application prospects and practical significance of economic load dispatch issue in the electric power market is remarkable. The various generating sets must be assigned with load capacity in a reasonable manner for reducing the cost of electric power generation. This problem may be overcome by the proposed modified particle swarm optimization (PSO) algorithm. The practical issue is converted and modelled into its corresponding mathematical counterpart by establishing certain constraints. Further, a novel interdependence strategy along with a modified PSO algorithm is implemented for balancing the local search capability and global optimization. Multiple swarms are introduced in the modified PSO algorithm. Certain standard test functions are executed for specific analysis. Finally, the proposed modified PSO algorithm can optimize the economic load dispatch problem while saving the energy resources to a larger extent. The algorithm evaluation can be performed using real-time examples for verifying the efficiency. When compared to existing schemes like artificial bee colony (ABC), genetic algorithms (GAs), and conventional PSO algorithms, the proposed scheme offers lowest electric power generation cost and overcomes the load dispatch issue according to the simulation results.

Keywords

Power generation particle swarm optimization load dispatch genetic algorithm artificial bee colony

Full Article PDF Download Article PDF 
×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

Subscription Payment Details

townscript (INR / USD): click here

Subscription Fee

Annual Subscription 15,000 INR / 200 USD
Subscription form: click here