Comparative Analysis of Machine Learning Algorithms for Early Prediction of Parkinson’s Disorder based on Voice Features
Volume-4 | Issue-4

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Detection of Fake Job Advertisements using Machine Learning algorithms
Volume-4 | Issue-3

AI-Integrated Proctoring System for Online Exams
Volume-4 | Issue-2

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Blockchain-Enabled Federated Learning on Kubernetes for Air Quality Prediction Applications
Volume-3 | Issue-3

Automated Waste Sorting with Delta Arm and YOLOv8 Detection
Volume-6 | Issue-3

Enhancing Health Monitoring using Efficient Hyperparameter Optimization
Volume-4 | Issue-4

Leather Defect Segmentation Using Semantic Segmentation Algorithms
Volume-4 | Issue-2

Real Time Anomaly Detection Techniques Using PySpark Frame Work
Volume-2 | Issue-1

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Audio Tagging Using CNN Based Audio Neural Networks for Massive Data Processing
Volume-3 | Issue-4

Frontiers of AI beyond 2030: Novel Perspectives
Volume-4 | Issue-4

Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare
Volume-3 | Issue-4

Early Stage Detection of Crack in Glasses by Hybrid CNN Transformation Approach
Volume-3 | Issue-4

ARTIFICIAL INTELLIGENCE APPLICATION IN SMART WAREHOUSING ENVIRONMENT FOR AUTOMATED LOGISTICS
Volume-1 | Issue-2

Deep Convolution Neural Network Model for Credit-Card Fraud Detection and Alert
Volume-3 | Issue-2

Home / Archives / Volume-3 / Issue-4 / Article-1

Volume - 3 | Issue - 4 | december 2021

Probabilistic Neural Network based Managing Algorithm for Building Automation System Open Access
 415
Pages: 272-283
DOI
10.36548/jaicn.2021.4.001
Published
22 November, 2021
Abstract

A building automation system is a centralized intelligent system, which controls the operation of energy, security, water, and safety by the help of hardware and software modules. The general software modules employed for automation process have an algorithm with pre-determined decisions. However, such pre-determined decision algorithms won’t work in a proper manner at all situations like a human brain. Therefore a human biological inspired algorithms are developed in recent days and termed as neural network algorithms. The Probabilistic Neural Network (PNN) is a kind of artificial neural network algorithm which has the ability to take decisions same as like of human brains in an efficient way. Hence a building automation system is proposed in the work based on PNN for verifying the effectiveness of neural network algorithms over the traditional pre-determined decision making algorithms. The experimental work is further extended to verify the performances of the basic neural network algorithm called Convolution Neural Network (CNN).

Keywords

Smart building PNN linked data building management neural network automation

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here