Comparative Analysis of Machine Learning Algorithms for Early Prediction of Parkinson’s Disorder based on Voice Features
Volume-4 | Issue-4

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Detection of Fake Job Advertisements using Machine Learning algorithms
Volume-4 | Issue-3

AI-Integrated Proctoring System for Online Exams
Volume-4 | Issue-2

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Blockchain-Enabled Federated Learning on Kubernetes for Air Quality Prediction Applications
Volume-3 | Issue-3

Automated Waste Sorting with Delta Arm and YOLOv8 Detection
Volume-6 | Issue-3

Enhancing Health Monitoring using Efficient Hyperparameter Optimization
Volume-4 | Issue-4

Leather Defect Segmentation Using Semantic Segmentation Algorithms
Volume-4 | Issue-2

Real Time Anomaly Detection Techniques Using PySpark Frame Work
Volume-2 | Issue-1

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Audio Tagging Using CNN Based Audio Neural Networks for Massive Data Processing
Volume-3 | Issue-4

Frontiers of AI beyond 2030: Novel Perspectives
Volume-4 | Issue-4

Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare
Volume-3 | Issue-4

Early Stage Detection of Crack in Glasses by Hybrid CNN Transformation Approach
Volume-3 | Issue-4

ARTIFICIAL INTELLIGENCE APPLICATION IN SMART WAREHOUSING ENVIRONMENT FOR AUTOMATED LOGISTICS
Volume-1 | Issue-2

Deep Convolution Neural Network Model for Credit-Card Fraud Detection and Alert
Volume-3 | Issue-2

Home / Archives / Volume-3 / Issue-4 / Article-6

Volume - 3 | Issue - 4 | december 2021

Automatic Car Damage detection by Hybrid Deep Learning Multi Label Classification Open Access
 315
Pages: 341-352
DOI
10.36548/jaicn.2021.4.006
Published
10 December, 2021
Abstract

Automating image-based automobile insurance claims processing is a significant opportunity. In this research work, car damage categorization that is aided by the hybrid convolutional neural network approach is addressed and hence the deep learning-based strategies are applied. Insurance firms may leverage this paper's design and implementation of an automobile damage classification/detection pipeline to streamline car insurance claim policy. Using deep convolutional networks to detect car damage is now possible because of recent improvements in the artificial intelligence sector, mainly due to less computation time and higher accuracy with a hybrid transformation deep learning algorithm. In this paper, multiclass classification proposed to categorize the car damage parts such as broken headlight/taillight, glass fragments, damaged bonnet etc. are compiled into the proposed dataset. This model has been pre-trained on a wide-ranging and benchmark dataset due to the dataset's limited size to minimize overfitting and to understand more common properties of the dataset. To increase the overall proposed model’s performance, the CNN feature extraction model is trained with Resnet architecture with the coco car damage detection datasets and reaches a higher accuracy of 90.82%, which is much better than the previous findings on the comparable test sets.

Keywords

Car damage deep learning assessment process CNN convolutional auto encoder SVM

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here