Comparative Analysis of Machine Learning Algorithms for Early Prediction of Parkinson’s Disorder based on Voice Features
Volume-4 | Issue-4

Automated Waste Sorting with Delta Arm and YOLOv8 Detection
Volume-6 | Issue-3

Detection of Fake Job Advertisements using Machine Learning algorithms
Volume-4 | Issue-3

AI-Integrated Proctoring System for Online Exams
Volume-4 | Issue-2

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Blockchain-Enabled Federated Learning on Kubernetes for Air Quality Prediction Applications
Volume-3 | Issue-3

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Using Deep Reinforcement Learning For Robot Arm Control
Volume-4 | Issue-3

Leather Defect Segmentation Using Semantic Segmentation Algorithms
Volume-4 | Issue-2

Real Time Anomaly Detection Techniques Using PySpark Frame Work
Volume-2 | Issue-1

Deniable Authentication Encryption for Privacy Protection using Blockchain
Volume-3 | Issue-3

Smart Fashion: A Review of AI Applications in Virtual Try-On & Fashion Synthesis
Volume-3 | Issue-4

Sentiment Analysis of Nepali COVID19 Tweets Using NB, SVM AND LSTM
Volume-3 | Issue-3

Audio Tagging Using CNN Based Audio Neural Networks for Massive Data Processing
Volume-3 | Issue-4

Frontiers of AI beyond 2030: Novel Perspectives
Volume-4 | Issue-4

Smart Medical Nursing Care Unit based on Internet of Things for Emergency Healthcare
Volume-3 | Issue-4

Early Stage Detection of Crack in Glasses by Hybrid CNN Transformation Approach
Volume-3 | Issue-4

ARTIFICIAL INTELLIGENCE APPLICATION IN SMART WAREHOUSING ENVIRONMENT FOR AUTOMATED LOGISTICS
Volume-1 | Issue-2

Deep Convolution Neural Network Model for Credit-Card Fraud Detection and Alert
Volume-3 | Issue-2

Home / Archives / Volume-3 / Issue-4 / Article-8

Volume - 3 | Issue - 4 | december 2021

Audio Tagging Using CNN Based Audio Neural Networks for Massive Data Processing Open Access
 377
Pages: 365-374
Full Article PDF pdf-white-icon
DOI
10.36548/jaicn.2021.4.008
Published
24 December, 2021
Abstract

Sound event detection, speech emotion classification, music classification, acoustic scene classification, audio tagging and several other audio pattern recognition applications are largely dependent on the growing machine learning technology. The audio pattern recognition issues are also addressed by neural networks in recent days. The existing systems operate within limited durations on specific datasets. Pretrained systems with large datasets in natural language processing and computer vision applications over the recent years perform well in several tasks. However, audio pattern recognition research with large-scale datasets is limited in the current scenario. In this paper, a large-scale audio dataset is used for training a pre-trained audio neural network. Several audio related tasks are performed by transferring this audio neural network. Several convolution neural networks are used for modeling the proposed audio neural network. The computational complexity and performance of this system are analyzed. The waveform and leg-mel spectrogram are used as input features in this architecture. During audio tagging, the proposed system outperforms the existing systems with a mean average of 0.45. The performance of the proposed model is demonstrated by applying the audio neural network to five specific audio pattern recognition tasks.

Keywords

Transfer learning pretrained audio neural networks audio pattern recognition audio tagging machine learning

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here