Analysis of Soil Nutrients based on Potential Productivity Tests with Balanced Minerals for Maize-Chickpea Crop
Volume-3 | Issue-1

Simulation of Electromagnetic Waves Propagation Using Matlab
Volume-6 | Issue-2

A Review on Low Power VLSI Design Models in Various Circuits
Volume-4 | Issue-2

Design and Development of Three Phase Detuned Filter Reactor for Reduction of Harmonic Distortion in Power Systems
Volume-5 | Issue-2

Evaluating Performance of Different Machine Learning Algorithms for the Acute EMG Hand Gesture Datasets
Volume-4 | Issue-3

Test Automation of Motor Over Temperature Protection Extension Module of Drive
Volume-5 | Issue-2

Industrial Quality Prediction System through Data Mining Algorithm
Volume-3 | Issue-2

Comparative Analysis an Early Fault Diagnosis Approaches in Rotating Machinery by Convolution Neural Network
Volume-3 | Issue-2

Nakagami-m Fading Detection with Eigen Value Spectrum Algorithms
Volume-3 | Issue-2

Abstractive Summarization System
Volume-3 | Issue-4

SMART STREET SYSTEM WITH IOT BASED STREET LIGHT OPERATION AND PARKING APPLICATION
Volume-1 | Issue-1

ENERGY AND POWER EFFICIENT SYSTEM ON CHIP WITH NANOSHEET FET
Volume-1 | Issue-1

Abstractive Summarization System
Volume-3 | Issue-4

A Review on Meshing Techniques in Biomedicine
Volume-3 | Issue-4

MIMO BASED HIGH SPEED OPTICAL FIBER COMMUNICATION SYSTEM
Volume-1 | Issue-2

Industrial Quality Prediction System through Data Mining Algorithm
Volume-3 | Issue-2

Comparative Analysis of Temperature Measurement Methods based on Degree of Agreement
Volume-3 | Issue-3

Transistor Sizing using Hybrid Reinforcement Learning and Graph Convolution Neural Network Algorithm
Volume-3 | Issue-3

VIRTUAL REALITY SIMULATION AS THERAPY FOR POSTTRAUMATIC STRESS DISORDER (PTSD)
Volume-1 | Issue-1

Comparative Analysis an Early Fault Diagnosis Approaches in Rotating Machinery by Convolution Neural Network
Volume-3 | Issue-2

Home / Archives / Volume-2 / Issue-2 / Article-4

Volume - 2 | Issue - 2 | june 2020

Navo Minority Over-sampling Technique (NMOTe): A Consistent Performance Booster on Imbalanced Datasets
Pages: 96-136
Full Article PDF pdf-white-icon
DOI
10.36548/jei.2020.2.004
Published
06 June, 2020
Abstract

Imbalanced data refers to a problem in machine learning where there exists unequal distribution of instances for each classes. Performing a classification task on such data can often turn bias in favour of the majority class. The bias gets multiplied in cases of high dimensional data. To settle this problem, there exists many real-world data mining techniques like over-sampling and under-sampling, which can reduce the Data Imbalance. Synthetic Minority Oversampling Technique (SMOTe) provided one such state-of-the-art and popular solution to tackle class imbalancing, even on high-dimensional data platform. In this work, a novel and consistent oversampling algorithm has been proposed that can further enhance the performance of classification, especially on binary imbalanced datasets. It has been named as NMOTe (Navo Minority Oversampling Technique), an upgraded and superior alternative to the existing techniques. A critical analysis and comprehensive overview on the literature has been done to get a deeper insight into the problem statements and nurturing the need to obtain the most optimal solution. The performance of NMOTe on some standard datasets has been established in this work to get a statistical understanding on why it has edged the existing state-of-the-art to become the most robust technique for solving the two-class data imbalance problem.

Keywords

imbalanced data machine learning classification data mining over-sampling under-sampling SMOTe NMOTe

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here