IoT Enabled Smart Bin for Waste Management with Incentivized Rewards
Volume-6 | Issue-1

Big Data Analytics for Improved Risk Management and Customer Segregation in Banking Applications
Volume-3 | Issue-3

Smart and Explainable Credit Card Fraud Detection Using XGBoost and SHAP
Volume-7 | Issue-2

An IoT-based Smart Security Locker System with OTP Verification
Volume-5 | Issue-3

DDoS Detection using Machine Learning Techniques
Volume-4 | Issue-1

Design of Deep Learning Algorithm for IoT Application by Image based Recognition
Volume-3 | Issue-3

Automated Attendance System using RFID and IoT
Volume-7 | Issue-3

Analysis of Serverless Computing Techniques in Cloud Software Framework
Volume-3 | Issue-3

Health Record Management System – A Web-based Application
Volume-3 | Issue-4

A Novel Signal Processing Based Driver Drowsiness Detection System
Volume-3 | Issue-3

Suspicious Human Activity Detection System
Volume-2 | Issue-4

ROBOT ASSISTED SENSING, CONTROL AND MANUFACTURE IN AUTOMOBILE INDUSTRY
Volume-1 | Issue-3

EFFICIENT RESOURCE ALLOCATION AND QOS ENHANCEMENTS OF IOT WITH FOG NETWORK
Volume-1 | Issue-2

Live Streaming Architectures for Video Data - A Review
Volume-2 | Issue-4

IoT Based Monitoring and Control System using Sensors
Volume-3 | Issue-2

Big Data Analytics for Improved Risk Management and Customer Segregation in Banking Applications
Volume-3 | Issue-3

A Novel Signal Processing Based Driver Drowsiness Detection System
Volume-3 | Issue-3

IoT BASED AIR AND SOUND POLLUTION MONITIORING SYSTEM USING MACHINE LEARNING ALGORITHMS
Volume-2 | Issue-1

Analysis of Serverless Computing Techniques in Cloud Software Framework
Volume-3 | Issue-3

Hybrid Intrusion Detection System for Internet of Things (IoT)
Volume-2 | Issue-4

Home / Archives / Volume-2 / Issue-1 / Article-4

Volume - 2 | Issue - 1 | march 2020

Improved Response Time and Energy Management for Mobile Cloud Computing Using Computational Offloading
Pages: 38-49
DOI
10.36548/jismac.2020.1.004
Published
20 March, 2020
Abstract

The mobile devices capabilities are found to be greater than before by utilizing the cloud services. There are various of service rendered by the cloud paradigm and the mobile devices usually allows the execution of the resource-intensive applications on the resource- constrained mobile device to be offloaded to the cloudlets that are resource rich thus enhancing the its processing capabilities. But accessing the cloud services within the minimum response time and energy consumption still remains as a serious research problem. So the proposed method put forth in the paper scopes in developing a frame work to choose the optimal cloud service provider. The frame work proposed is categorized into two stages where the initial stage engages the classifier to segregate the mobile device according to the fuzzy K-nearest neighbor and cultivates an improved computational offloading employing the Hidden Markov Model and ACO- ant colony optimization. The algorithm proffered is implemented in the MATLAB version 9.1 and the performance is evinced on the basis of the response time, energy consumption and the processing cost. The results obtained through the proposed method proves to provide an 89% better response time, 95 % better energy consumption and 50% enhanced processing cost compared to the few existing computational offloading methods put forth for the mobile cloud computing.

Keywords

Mobile Cloud Computing Computational Offloading Response Time Energy Consumption Fuzzy KNN Hidden Markov Model and Ant colony optimization

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here