Fuel Sales Forecasting with SARIMA-GARCH and Rolling Window
Volume-5 | Issue-3

An Accurate Bitcoin Price Prediction using logistic regression with LSTM Machine Learning model
Volume-3 | Issue-3

Nepali Image Captioning: Generating Coherent Paragraph-Length Descriptions Using Transformer
Volume-6 | Issue-1

A Comprehensive Review on Advanced Driver Assistance System
Volume-4 | Issue-2

A Novel Approach based on PSO and Coloured Petri Net for improving Services in the Emergency Department
Volume-5 | Issue-1

Credit Risk Analysis using Explainable Artificial Intelligence
Volume-6 | Issue-3

Implications of Tokenizers in BERT Model for Low-Resource Indian Language
Volume-4 | Issue-4

Design of Distribution Transformer Health Management System using IoT Sensors
Volume-3 | Issue-3

Energy Management System in the Vehicles using Three Level Neuro Fuzzy Logic
Volume-3 | Issue-3

Cloud Load Estimation with Deep Logarithmic Network for Workload and Time Series Optimization
Volume-3 | Issue-3

An Integrated Approach for Crop Production Analysis from Geographic Information System Data using SqueezeNet
Volume-3 | Issue-4

An Accurate Bitcoin Price Prediction using logistic regression with LSTM Machine Learning model
Volume-3 | Issue-3

Design of Distribution Transformer Health Management System using IoT Sensors
Volume-3 | Issue-3

Design of a Food Recommendation System using ADNet algorithm on a Hybrid Data Mining Process
Volume-3 | Issue-4

Automatic Diagnosis of Alzheimer’s disease using Hybrid Model and CNN
Volume-3 | Issue-4

Effective Prediction of Online Reviews for Improvement of Customer Recommendation Services by Hybrid Classification Approach
Volume-3 | Issue-4

Acoustic Features Based Emotional Speech Signal Categorization by Advanced Linear Discriminator Analysis
Volume-3 | Issue-4

Analysis of Statistical Trends of Future Air Pollutants for Accurate Prediction
Volume-3 | Issue-4

Identification of Electricity Threat and Performance Analysis using LSTM and RUSBoost Methodology
Volume-3 | Issue-4

Review on Data Securing Techniques for Internet of Medical Things
Volume-3 | Issue-3

Home / Archives / Volume-2 / Issue-4 / Article-3

Volume - 2 | Issue - 4 | december 2020

Adaptive Shape based Interactive Approach to Segmentation for Nodule in Lung CT Scans
Pages: 216-225
DOI
10.36548/jscp.2020.4.003
Published
28 December, 2020
Abstract

In lung cancer diagnosis, growth of pulmonary nodule should be detected perfectly. Mostly watershed segmentation methods play a very important role in lung CT images to detect their growth. But this method detection will be ineffective in terms of energy function and speed as well. The proposed modified graph-cut technique is providing the good performing result in the speed and accuracy of the process than the conservative graph cut methods. Also, this research paper is proposed adaptive shape based interactive approach to segmentation for lung CT scan image and provide a more efficient. This proposed algorithm is proving that the energy function of the system is lesser than old methods. In this research paper, applying shape-based technique in segmentation technique has been proposed and proved for better accuracy with low energy function.

Keywords

lung cancer computed tomography segmentation adaptive shape prior

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here