Volume - 3 | Issue - 1 | march 2021
DOI
10.36548/jscp.2021.1.005
Published
20 April, 2021
Navigation, aviation and several other fields of engineering extensively make use of rotating machinery. The stability and safety of the equipment as well as the personnel are affected by this machinery. Use of deep learning as the basis of intelligent fault diagnosis schemes has and investigation of other relevant fault diagnosis schemes has a large scope for development. Thorough exploration needs to be performed in deep neural network (DNN) based schemes as shallow layer network structure based fault diagnosis schemes that are currently available has several considerable limitations. The nonlinear problems may be processed during intelligent fault diagnosis using deep convolutional neural network, which is a special structure DNN. The convolutional neural network (CNN) based scheme is emphasized in this paper. The principle and basic structure of the model are introduced. In rotating machinery, the fault diagnosis schemes using CNN are analyzed and summarized. Various CNN schemes, the potential mechanisms and performance diagnosis are analyzed. A novel smart fault diagnosis strategy is proposed while highlighting the potential aspects of existing schemes and reviewing the challenges.
Keywordsrotating machinery smart fault diagnosis convolution neural network deep learning