An Accurate Bitcoin Price Prediction using logistic regression with LSTM Machine Learning model
Volume-3 | Issue-3

Design of Distribution Transformer Health Management System using IoT Sensors
Volume-3 | Issue-3

Nepali Image Captioning: Generating Coherent Paragraph-Length Descriptions Using Transformer
Volume-6 | Issue-1

Energy Management System in the Vehicles using Three Level Neuro Fuzzy Logic
Volume-3 | Issue-3

Cloud Load Estimation with Deep Logarithmic Network for Workload and Time Series Optimization
Volume-3 | Issue-3

Design of a Food Recommendation System using ADNet algorithm on a Hybrid Data Mining Process
Volume-3 | Issue-4

Fuel Sales Forecasting with SARIMA-GARCH and Rolling Window
Volume-5 | Issue-3

Review on Data Securing Techniques for Internet of Medical Things
Volume-3 | Issue-3

Automatic Diagnosis of Alzheimer’s disease using Hybrid Model and CNN
Volume-3 | Issue-4

A Novel Approach based on PSO and Coloured Petri Net for improving Services in the Emergency Department
Volume-5 | Issue-1

An Integrated Approach for Crop Production Analysis from Geographic Information System Data using SqueezeNet
Volume-3 | Issue-4

An Accurate Bitcoin Price Prediction using logistic regression with LSTM Machine Learning model
Volume-3 | Issue-3

Design of Distribution Transformer Health Management System using IoT Sensors
Volume-3 | Issue-3

Design of a Food Recommendation System using ADNet algorithm on a Hybrid Data Mining Process
Volume-3 | Issue-4

Automatic Diagnosis of Alzheimer’s disease using Hybrid Model and CNN
Volume-3 | Issue-4

Effective Prediction of Online Reviews for Improvement of Customer Recommendation Services by Hybrid Classification Approach
Volume-3 | Issue-4

Acoustic Features Based Emotional Speech Signal Categorization by Advanced Linear Discriminator Analysis
Volume-3 | Issue-4

Analysis of Statistical Trends of Future Air Pollutants for Accurate Prediction
Volume-3 | Issue-4

Identification of Electricity Threat and Performance Analysis using LSTM and RUSBoost Methodology
Volume-3 | Issue-4

Review on Data Securing Techniques for Internet of Medical Things
Volume-3 | Issue-3

Home / Archives / Volume-3 / Issue-2 / Article-5

Volume - 3 | Issue - 2 | june 2021

Facemask Detection Algorithm on COVID Community Spread Control using EfficientNet Algorithm
Pages: 110-122
DOI
10.36548/jscp.2021.2.005
Published
28 June, 2021
Abstract

Facemask has become mandatory in all COVID-infected communities present across the world. However, in real-life situations, checking the facemask code on each individual has become a difficult task. On the other hand, Automation systems are playing a widespread role in human community to automate different applications. As a result, it necessitates the need to develop a dependable automated method to monitor the facemask code to benefit humans. Recently, deep learning algorithms are emerging as a fast growing application, which has been developed for performing huge number of analysis and detection process. Henceforth, this paper proposes a deep learning based facemask detection process for automating the human effort involved in monitoring process. This work utilizes an openly available facemask detection dataset with 7553 images for the training and verification process, which is based on CNN driven EfficientNet architecture with an accuracy of about 97.12%.

Keywords

Face detection facemask detection COVID 19 CNN EfficientNet

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee 100 USD
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here