Fuel Sales Forecasting with SARIMA-GARCH and Rolling Window
Volume-5 | Issue-3

An Accurate Bitcoin Price Prediction using logistic regression with LSTM Machine Learning model
Volume-3 | Issue-3

Nepali Image Captioning: Generating Coherent Paragraph-Length Descriptions Using Transformer
Volume-6 | Issue-1

A Comprehensive Review on Advanced Driver Assistance System
Volume-4 | Issue-2

A Novel Approach based on PSO and Coloured Petri Net for improving Services in the Emergency Department
Volume-5 | Issue-1

Credit Risk Analysis using Explainable Artificial Intelligence
Volume-6 | Issue-3

Implications of Tokenizers in BERT Model for Low-Resource Indian Language
Volume-4 | Issue-4

Design of Distribution Transformer Health Management System using IoT Sensors
Volume-3 | Issue-3

Cloud Load Estimation with Deep Logarithmic Network for Workload and Time Series Optimization
Volume-3 | Issue-3

Energy Management System in the Vehicles using Three Level Neuro Fuzzy Logic
Volume-3 | Issue-3

An Integrated Approach for Crop Production Analysis from Geographic Information System Data using SqueezeNet
Volume-3 | Issue-4

An Accurate Bitcoin Price Prediction using logistic regression with LSTM Machine Learning model
Volume-3 | Issue-3

Design of Distribution Transformer Health Management System using IoT Sensors
Volume-3 | Issue-3

Design of a Food Recommendation System using ADNet algorithm on a Hybrid Data Mining Process
Volume-3 | Issue-4

Automatic Diagnosis of Alzheimer’s disease using Hybrid Model and CNN
Volume-3 | Issue-4

Effective Prediction of Online Reviews for Improvement of Customer Recommendation Services by Hybrid Classification Approach
Volume-3 | Issue-4

Acoustic Features Based Emotional Speech Signal Categorization by Advanced Linear Discriminator Analysis
Volume-3 | Issue-4

Analysis of Statistical Trends of Future Air Pollutants for Accurate Prediction
Volume-3 | Issue-4

Identification of Electricity Threat and Performance Analysis using LSTM and RUSBoost Methodology
Volume-3 | Issue-4

Review on Data Securing Techniques for Internet of Medical Things
Volume-3 | Issue-3

Home / Archives / Volume-6 / Issue-1 / Article-4

Volume - 6 | Issue - 1 | march 2024

Agrarian Synthesis and Precision Cultivation Optimization System Open Access
Tharaniya S  , Vignesh J, Nandhitha Karthikeyini M, Nijandhan K  86
Pages: 40-54
Cite this article
S, Tharaniya, Vignesh J, Nandhitha Karthikeyini M, and Nijandhan K. "Agrarian Synthesis and Precision Cultivation Optimization System." Journal of Soft Computing Paradigm 6, no. 1 (2024): 40-54
Published
12 April, 2024
Abstract

The ever-growing demand for food production calls for innovative solutions in agriculture. This research introduces a machine learning-based approach, specifically utilizing logistic regression, to predict optimal crops based on soil and weather conditions. The dataset encompasses crucial attributes including Nitrogen (N), Phosphorus (P), Potassium (K), temperature, humidity, pH, rainfall, with corresponding crop labels. The proposed methodology employs logistic regression, a powerful classification algorithm, to model the relationships between input features and crop types. Through careful feature engineering, the model is fine-tuned to enhance its predictive accuracy. Rigorous evaluation metrics validate the model's performance, ensuring its reliability in real-world applications. Results showcase the logistic regression model's efficacy in accurately predicting suitable crops for given soil and weather parameters. This predictive tool serves as a practical decision support system for farmers, aiding in crop selection and resource allocation. This research contributes to the synergy of machine learning and agriculture, showcasing logistic regression as a valuable tool for crop prediction and resource optimization. As technology continues to transform traditional farming, the integration of logistic regression in precision agriculture offers a practical and efficient approach to crop selection.

Keywords

Machine Learning Logistic Regression Crop Prediction Precision Farming Agricultural Productivity Soil and Weather Parameters

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here