Fuel Sales Forecasting with SARIMA-GARCH and Rolling Window
Volume-5 | Issue-3

An Accurate Bitcoin Price Prediction using logistic regression with LSTM Machine Learning model
Volume-3 | Issue-3

A Comprehensive Review on Advanced Driver Assistance System
Volume-4 | Issue-2

Nepali Image Captioning: Generating Coherent Paragraph-Length Descriptions Using Transformer
Volume-6 | Issue-1

A Novel Approach based on PSO and Coloured Petri Net for improving Services in the Emergency Department
Volume-5 | Issue-1

Credit Risk Analysis using Explainable Artificial Intelligence
Volume-6 | Issue-3

Implications of Tokenizers in BERT Model for Low-Resource Indian Language
Volume-4 | Issue-4

Design of Distribution Transformer Health Management System using IoT Sensors
Volume-3 | Issue-3

Cloud Load Estimation with Deep Logarithmic Network for Workload and Time Series Optimization
Volume-3 | Issue-3

Energy Management System in the Vehicles using Three Level Neuro Fuzzy Logic
Volume-3 | Issue-3

An Integrated Approach for Crop Production Analysis from Geographic Information System Data using SqueezeNet
Volume-3 | Issue-4

An Accurate Bitcoin Price Prediction using logistic regression with LSTM Machine Learning model
Volume-3 | Issue-3

Design of Distribution Transformer Health Management System using IoT Sensors
Volume-3 | Issue-3

Design of a Food Recommendation System using ADNet algorithm on a Hybrid Data Mining Process
Volume-3 | Issue-4

Automatic Diagnosis of Alzheimer’s disease using Hybrid Model and CNN
Volume-3 | Issue-4

Effective Prediction of Online Reviews for Improvement of Customer Recommendation Services by Hybrid Classification Approach
Volume-3 | Issue-4

Acoustic Features Based Emotional Speech Signal Categorization by Advanced Linear Discriminator Analysis
Volume-3 | Issue-4

Analysis of Statistical Trends of Future Air Pollutants for Accurate Prediction
Volume-3 | Issue-4

Identification of Electricity Threat and Performance Analysis using LSTM and RUSBoost Methodology
Volume-3 | Issue-4

Review on Data Securing Techniques for Internet of Medical Things
Volume-3 | Issue-3

Home / Archives / Volume-6 / Issue-3 / Article-4

Volume - 6 | Issue - 3 | september 2024

Credit Risk Analysis using Explainable Artificial Intelligence Open Access
Sowmiya M N.  , Jaya Sri S., Deepshika S., Hanushya Devi G.  527
Pages: 272-283
Cite this article
N., Sowmiya M, Jaya Sri S., Deepshika S., and Hanushya Devi G.. "Credit Risk Analysis using Explainable Artificial Intelligence." Journal of Soft Computing Paradigm 6, no. 3 (2024): 272-283
Published
13 August, 2024
Abstract

The proposed research focuses on enhancing the interpretability of risk evaluation in credit approvals within the banking sector. This work employs LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations) to provide explanations for individual predictions: LIME approximates the model locally with an interpretable model, while SHAP offers insights into the contribution of each feature to the prediction through both global and local explanations. The research integrates gradient boosting algorithms (XGBoost, LightGBM) and Random Forest with these Explainable Artificial Intelligence (XAI) techniques to present a more comprehensible framework. The results demonstrate how interpretability methods such as LIME and SHAP enhance the transparency and trustworthiness of machine learning models, which is crucial for applications in credit risk evaluation.

Keywords

LIME SHAP Model Prediction Machine Learning High Accuracy Explainable Artificial Intelligence

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee Nil
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here