Journal of Innovative Image Processing is accepted for inclusion in Scopus. click here
Home / Archives / Volume-2 / Issue-3 / Article-6

Volume - 2 | Issue - 3 | september 2020

A Novel CapsNet based Image Reconstruction and Regression Analysis
Pages: 156-164
DOI
10.36548/jiip.2020.3.006
Published
20 July, 2020
Abstract

In the field of image processing, all types of computation models are almost evolved to solve the issues through encoded neurons. However, compared with decoding orientation and regression analysis, still the doors are open due to its complexity. At present technologies uses two steps such as, decoding the intermediate terms and reconstruction using decoded information. The performance in terms of regression analysis is lagging due to the decoded intermediate terms. Conventional neural network models perform better in feature classification and representation, though the performance is reduced while handling high level features. Considering these issues in image classification and regression, the proposed model is designed with capsule network as an innovative method which is suitable to handle high level features. The experimental results of the proposed model are compared with conventional neural network models such as BPNN and CNN to validate the superior performance. The proposed model achieves better retrieval efficiency of 95.4% which is much better than other neural network models.

Keywords

Convolution Neural Networks (CNN) Back Propagation Neural Network (BPNN) Capsule Network Image Classification Regression

×
Article Processing Charges

Journal of Innovative Image Processing (jiip) is an open access journal. When a paper is accepted for publication, authors are required to pay Article Processing Charges (APCs) to cover its editorial and production costs. The APC for each submission is 400 USD. There are no additional charges based on color, length, figures, or other elements.

Category Fee
Article Access Charge 30 USD
Article Processing Charge 400 USD
Annual Subscription Fee 200 USD
Payment Gateway
Paypal: click here
Townscript: click here
Razorpay: click here
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here