Journal of Innovative Image Processing is accepted for inclusion in Scopus. click here
Home / Archives / Volume-3 / Issue-4 / Article-2

Volume - 3 | Issue - 4 | december 2021

Accurate Segmentation for Low Resolution Satellite images by Discriminative Generative Adversarial Network for Identifying Agriculture Fields
Pages: 298-310
Full Article PDF pdf-white-icon
DOI
10.36548/jiip.2021.4.002
Published
17 December, 2021
Abstract

Agricultural field identification is still a difficult issue because of the poor resolution of satellite imagery. Monitoring remote harvest and determining the condition of farmlands rely on the digital approach agricultural applications. Therefore, high-resolution photographs have obtained much more attention since they are more efficient in detecting land cover components. In contrast, because of low-resolution repositories of past satellite images used for time series analysis, wavelet decomposition filter-based analysis, free availability, and economic concerns, low-resolution images are still essential. Using low-resolution Synthetic Aperture Radar (SAR) satellite photos, this study proposes a GAN strategy for locating agricultural regions and determining the crop's cultivation state, linked to the initial or harvesting time. An object detector is used in the preprocessing step of training, followed by a transformation technique for extracting feature information and then the GAN strategy for classifying the crop segmented picture. After testing, the suggested algorithm is applied to the database's SAR images, which are further processed and categorized based on the training results. Using this information, the density between the crops is calculated. After zooming in on SAR photos, the crop condition may be categorized based on crop density and crop distance. The Euclidean distance formula is used to calculate the distance. Finally, the findings are compared to other existing approaches to determine the proposed technique's performance using reliable measures.

Keywords

Satellite images agriculture fields monitoring GAN image segmentation object detection

×
Article Processing Charges

Journal of Innovative Image Processing (jiip) is an open access journal. When a paper is accepted for publication, authors are required to pay Article Processing Charges (APCs) to cover its editorial and production costs. The APC for each submission is 400 USD. There are no additional charges based on color, length, figures, or other elements.

Category Fee
Article Access Charge 30 USD
Article Processing Charge 400 USD
Annual Subscription Fee 200 USD
Payment Gateway
Paypal: click here
Townscript: click here
Razorpay: click here
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here