Volume - 3 | Issue - 4 | december 2021
DOI
10.36548/jiip.2021.4.006
Published
23 December, 2021
The real-time issue of reliability segmenting root structure while using X-Ray Computed Tomography (CT) images is addressed in this work. A deep learning approach is proposed using a novel framework, involving decoders and encoders. The encoders-decoders framework is useful to improve multiple resolution by means of upsampling and downsampling images. The methodology of the work is enhanced by incorporating network branches with individual tasks using low-resolution context information and high-resolution segmentation. In large volumetric images, it is possible to resolve small root details by implementing a memory efficient system, resulting in the formation of a complete network. The proposed work, recent image analysis tool developed for root CT segmented is compared with several other previously existing methodology and it is found that this methodology is more efficient. Quantitatively and qualitatively, it is found that a multiresolution approach provides high accuracy in a shallower network with a large receptive field or deep network in a small receptive field. An incremental learning approach is also embedded to enhance the performance of the system. Moreover, it is also capable of detecting fine and large root materials in the entire volume. The proposed work is fully automated and doesn’t require user interaction.
KeywordsPlant phenotyping root system analysis deep learning image segmentation X-ray computed tomography