Diabetic Retinopathy Detection Using Machine Learning
Volume-4 | Issue-1

Monocular Depth Estimation using a Multi-grid Attention-based Model
Volume-4 | Issue-3

Speedy Image Crowd Counting by Light Weight Convolutional Neural Network
Volume-3 | Issue-3

Construction of Efficient Smart Voting Machine with Liveness Detection Module
Volume-3 | Issue-3

An Economical Robotic Arm for Playing Chess Using Visual Servoing
Volume-2 | Issue-3

Triplet loss for Chromosome Classification
Volume-4 | Issue-1

Unstructured Noise Removal for Industrial Sensor Imaging Unit by Hybrid Adaptive Median Algorithm
Volume-3 | Issue-4

Real Time Sign Language Recognition and Speech Generation
Volume-2 | Issue-2

Analysis of Artificial Intelligence based Image Classification Techniques
Volume-2 | Issue-1

Design of ANN Based Machine Learning Method for Crop Prediction
Volume-3 | Issue-3

A REVIEW ON IOT BASED MEDICAL IMAGING TECHNOLOGY FOR HEALTHCARE APPLICATIONS
Volume-1 | Issue-1

COMPUTER VISION BASED TRAFFIC SIGN SENSING FOR SMART TRANSPORT
Volume-1 | Issue-1

Diabetic Retinopathy Detection Using Machine Learning
Volume-4 | Issue-1

Accurate Segmentation for Low Resolution Satellite images by Discriminative Generative Adversarial Network for Identifying Agriculture Fields
Volume-3 | Issue-4

Deep Learning based Handwriting Recognition with Adversarial Feature Deformation and Regularization
Volume-3 | Issue-4

State of Art Survey on Plant Leaf Disease Detection
Volume-4 | Issue-2

Optimal Compression of Remote Sensing Images Using Deep Learning during Transmission of Data
Volume-3 | Issue-4

OverFeat Network Algorithm for Fabric Defect Detection in Textile Industry
Volume-3 | Issue-4

VIRTUAL RESTORATION OF DAMAGED ARCHEOLOGICAL ARTIFACTS OBTAINED FROM EXPEDITIONS USING 3D VISUALIZATION
Volume-1 | Issue-2

Two-Stage Frame Extraction in Video Analysis for Accurate Prediction of Object Tracking by Improved Deep Learning
Volume-3 | Issue-4

Home / Archives / Volume-3 / Issue-4 / Article-8

Volume - 3 | Issue - 4 | december 2021

Deep Learning based Handwriting Recognition with Adversarial Feature Deformation and Regularization
Pages: 367-376
DOI
10.36548/jiip.2021.4.008
Published
24 December, 2021
Abstract

Due to the complex and irregular shapes of handwritten text, it is challenging to spot and recognize the handwritten words. In low-resource scripts, retrieval of words is a difficult and laborious task. The need for increasing the number of samples and introducing variations in the extended training datasets occur with the use of deep learning and neural network models. All possible variations and occurrences cannot be covered in an efficient manner with the use of the existing preprocessing strategies and theories. A scalable and elastic methodology for wrapping the extracted features is presented with the introduction of an adversarial feature deformation and regularization module in this paper. In the original deep learning framework, this module is introduced between the intermediate layers while training in an alternative manner. When compared to the conventional models, highly informative features are learnt in an efficient manner with the help of this setup. Extensive word datasets are used for testing the proposed model, which is built on popular frameworks available for word recognition and spotting, while enhancing them with the proposed module. While varying the training data size, the results are recorded and compared with the conventional models. Improvement in the mAP scores, word-error rate and low data regime is observed from the results of comparison.

Keywords

Handwriting recognition deep learning feature deformation error estimation neural network

×

Currently, subscription is the only source of revenue. The subscription resource covers the operating expenses such as web presence, online version, pre-press preparations, and staff wages.

To access the full PDF, please complete the payment process.

Subscription Details

Category Fee
Article Access Charge
15 USD
Open Access Fee 100 USD
Annual Subscription Fee
200 USD
After payment,
please send an email to irojournals.contact@gmail.com / journals@iroglobal.com requesting article access.
Subscription form: click here